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Relativistic Shock Structure*
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The equations for a relativistic Quid with viscous and thermal dissipation are discussed and are applied to
a plane shock wave in ionized hydrogen. It is shown that if the shock velocity is greater than a critical value
(v/c)g-', at low temperatures), the shock profiles show an increase in velocity or a decrease in the heat-
transfer parameter pT at the upstream end of the shock layer. This qualitative change from the non-
relativistic case is due to the relativistic interaction of heat transfer and momentum transfer.

1. INTRODUCTION

HE study of simple problems often helps to bring
into focus the new effects predicted by a physical

theory. The shock structure problem plays such a role
in relativistic gas dynamics because the relativisitic
interaction of heat transfer and momentum transfer
brings about, for suKciently strong shocks, shock
curves which are qualitatively different from those
predicted by the nonrelativistic theory.

The formulation of the relativistic shock structure
problem is made possible by recent studies' ' of
relativistic kinetic theory, which have in turn shed light
on the form of the equations of relativistic Quid dy-
namics with dissipation, first discussed by Eckart4 and
later by Landau and Lifshitz. ' Among the results of
these studies' is a recognition that some arbitrariness
exists in the definition of the velocity four-vector
X,(i=0,1,2,3), which leads to differences in the forms
of the mass (or particle) flux vector 3E; and the heat
Qux vector q;. If ); is chosen in the direction of
mean particle motion, as is done by Eckart4 and Kelly, '
3f; keeps its nondissipative form, and q; consists of two
terms, one proportional to the negative temperature
gradient and the second to the Quid deceleration along
a streamline. If X; is chosen in the direction of mean
mass-energy transport, as is done by Landau and Lif-
shitz, ' M; changes by a term proportional to the heat
flux, and q; is proportional to the gradient of (1+ii)/T,
where p is the relativistic chemical potential and T is
the temperature. It can be shown that the two ap-
proaches are equivalent to first order in q/c(is+ p). For
this problem, the former has been found more conveni-
ent, and the formulation of the problem in the following
section is adapted from the results of Kelly. '

*This study was supported by the National Aeronautics &
Space Administration under grant NsG-302-63.' W. Israel, J. Math. Phys. 4, 1163 (1963).

D. C. Kelly, University of Miami (unpublished).' N. A. Chernikov, Dokl. Akad. Nauk SSSR 112, 1030 (1951);
Dokl. Acad. Nauk 114, 530 (1957); 133, 84 (1960); 144, 314
(1962); 144, 544 (1962) LEnglish transls. : Soviet Phys. —Doklady
2, 248 (1957); 5, 764 (1961);7, 414 (1962)j.

4 C. Eckart, Phys. Rev. 58, 919 (1940).' L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergam-
mon Press, London, 1959).

2. FORMULATION OF THE PROBLEM

The coordinate system used here is

x;= (ict,x,y,s), i =0,1,2,3

for which the metric tensor is

e is the speed of the Quid relative to the shock, and c
is the speed. of light.

The heat flux vector and the viscous stress tensor
are, respectively, '

mme' ( r)u
q;= s,s~

~'
'

&ax, 'ax,) '

(r)X N, c)Xs)
&ij= —crisitssjnl + ssmn

&ax„r)x ax~)

(2.1)

Ny—is;, (2.2)
Bxy

where ~ is the thermal conductivity, 0 is the reciprocal
effective temperature:

o =mc'/kT (2.3)

m is the rest mass of the Quid particle, k is Boltzmann's
constant, s;; is the "projection tensor"

sg=g, ,+X A;, (2.4)

rl is the coeflicient of viscosity, i' is the bulk or second
viscosity.

The stress energy tensor takes the form

T@ T;; + (q;X,+q,A )+rr... —— (2.5)

where T; is the nondissipative stress energy tensor,
and the mass Qow vector is

M,=pcs, , (2.6)

For a plane shock wave, with Quid. motion in the X
direction only, the velocity four-vector X; is

),= (iy,Py0,0),
where
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(2 7)

(2 8)

M'= pcs= constant=M,

T"=y'P+P'y'w+2Pyq jc+p'r =constant=8, .

T"=Ps'(w+P)+7 (1+P')qjc+Pv'r
= constant =Q/c, (2.9)

where
gmc'y' d o.

g=
ko-' dx y

r= c(-', ~+—f)dP~/dx;

(2.10)

(2.11)

w is the (rest+internal) fiuid energy per unit proper
volume, and p is the fiuid pressure.

The gas is assumed to be ionized, hydrogen, and
radiation and "nuclear chemistry" are ignored so that
the gas obeys the following equation of state, modified
from the results of Synge. '

where p is the density of the Quid in its proper frame.
The equations of relativistic Quid dynamics, M', ;=0
and T'&,;=0, when written in the frame of reference
moving with the shock, in which x is the only inde-

pendent variable, became, after a single integration:

where the subscript 0 represents the upstream
equilibrium state, B=F/Mc, 8= 2p/o B', pi= Pal/B,
Lp (-',——g+ f)/M, Lrr ~m/kM.

Relativistic effects are represented in these equations
in a number of ways:

To first order in B', Eqs. (2.19) and (2.20) become

Lrfdg/dx= 38—((1—pp)'+A) —B'oP (38+co) (2.21)

(2.22)Lpdpp//dx= pp+8/ig 1+B'(u/(1 ——ig) —28+A],

(1) By the parameter B, which ranges from zero
(nonrelativistic case) to infinity (extreme relativistic
case). A heat transfer term occurs in the momentum
equation (2.20) to order B'.

(2) In the form of H(o), which changes the nature
of the equation at high temperature.

(3) In the transport coefficients ~, q, and i, whose

dependence on the state of the gas must be found from
relativistic kinetic theory.

(4) By the explicit and implicit occurrence of y.
In this connection it is most significant that yT,
rather than T, is a naturally occurring variable.

(2 12) where

(2.13)

w+p= pc'H(o),

p= 2pc'/a,
where

H(o) =G(o)+r G(r o.), (2.14)

G(g) =E'p(a)/E'p(a. ); (2.15)

E„(g) is the eth-order modified Bessel function of the
second kind, and r is the ratio of electron to proton
rest masses.

The following approximate equations of state, based
on the asymptotic formulas of Synge, ' are useful:
Region I:

H (g) = 1+r +5/o fo ~& 3/2r; T&10P 'K], (2.16)

Region II:
H (o)= 1+13/2o. L3/2r &~ a &~ pP;

10" 'K& T&5X10' 'K], (2.17)
Region III:

A = 2(ppHp —(1+r ))/BP —1.
The zeroth order terms in Eqs. (2.21) and (2.22)

are identical to the nonrelativistic shock structure
equations for a monatomic gas.

3. ANALYSIS OF THE SHOCK CURVE

The qualitative changes in the shock structure curve
brought about by relativistic e6ects are best demon-
strated by study of Eqs. (2.19) and (2.20) in the 8—pi

"phase plane, " and applicati. on of standard shock
structure methods7 to the problem.

The nature of the shock curve is determined by the
functions F(pI,g) and G.( i,gp), whose derivatives with

respect to their arguments can be written as follows:

F„=DH 4/g) PP(gH +2/g) 2/gP—P]/yP—
for F=0 (3.1)

dg 2 (H —yypHp) 2g 2'
LH ——+—=G((o,g),d$8'p y' y

(2.19)

dM i 0
Lp— coH+ 1 ppyB'G (ar—,—g)—i

—=F (pp,—g), (2.20)
ds y yen )
J. L. Synge, The Relativistic Gus (North-Holland Publishing

Company, Amsterdam, 1957).

II(o)=8/o Lo &-'. T&10"'K]. (2.18)

Region II represents the case of relativistic electrons,
and in region III both the electrons and the protons
are relativistic.

The above results can be combined into a pair of
equations which are the relativistic analog of the usual
gas dynamic shock. structure equations:

F =t;1+P (-'H.+&)I2]j~,
G.=»[( H.+2/ )+2/ P']/~'

G,= —( 'H.y2)/~'

where
H, =dH/do .

(3 2)

(3.3)

(3.4)

The nature of the singularities at upstream point 0
and downstream point 1 depends on the sign of
(F„Gp FpG„) at these poin—ts, and from Eqs. (3.1)—(3.4)
and the definitions of Ii and G it follows that

F„Gp PpG„= $2aH, P'H(o'H—+2)]/P'y4 — (3 5)

It can be shown, following the procedure of Synge,
7 D. Gilbarg and D. Paolucci, J. Rat. Mech. Anal. 2, 617

(19S3).
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FIG. 1. Bounding curves —case A.
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P,2= 2(rH, /H(o2H, +2), (3.6)

that the signal speed in an ionized relativistic gas is it is clear from Eq. (3.12) that at point 1, the subsonic
state, Fq and G„, are both greater than 0. At point 0,
however, their sign is determined by the ratio po/p, :

so that Eq. (3.5) can be written as

F„Ge FgG„= 20H—.(1 N3r')/P'y'— (3.7)
p, (p, (F,)0, G„)0) case A, (3.14)

Po)P, (Fg(0, G„(0) case B. (3.15)
where N~ is the Mach number, P/P, . Therefore, since
H, is negative, this expression is positive at point 0,
for which g~&1, and negative at point 1, for which
E~&1. Thus, point 0 is a node and point 1 a saddle
point. This means that a shock curve exists, and that
for the sake of numerical determination of this curve
its slope at point 1 is known.

The equation of the shock curve in the phase plane is

d8 Lr G(&u,8)

d(u L~ F ((o,8)
(3.8)

The progress of the curve from point 1 to point 0 is
determined by the shapes of the curves F(or,8) =0 and
G(&o,8) =0, whose respective slopes are given by

d8/do) = F„/Fg, — (3.9)

P;=P, =—2/( H.y2),
which corresponds to

N3r p' H/( OH, ) . —— —

(3.11)

(3.12)

From Eqs. (3.2) and (3.3), Fe and G are greater
than 0 for P(P, and less than 0 for P)P, . Since

II~&—O-Hg, (3.13)

d8/de = —G„/Gg . (3.10)

There are two distinct cases, one of which is qualita-
tively similar to nonrelativistic shocks, and the other
of which is quite different. The dividing line between
these cases is a shock speed of

It can also be shown that F„)0 at point 0, and Gg&0
always, so that the slopes of both F=O and G=O at
point 0 are negative in case A and positive in case B.
Furthermore, the sign of P„at point 1 can be either
positive or negative, as in the nonrelativistic case, but is
always negative in case B.

The shapes of the bounding curves in case A are thus
qualitatively similar to those for nonrelativistic shocks,
as shown in Fig. 1, and by the argument of Gilbarg and
Paolucci, ~ the shock curve remains within the region
between the two curves as integration proceeds from
point 1 to point 0.

The situation in case 3, however, is more complicated,
particularly for the curve F=O. This curve, shown in
Fig. 2, has a singularity when p= p, . At that point both
F„and Ii& change sign and analysis shows that on the
left leg of the curve 0 —+ ~. The curve G=O has a
horizontal slope at P=P,. Qualitatively, there are two
possible paths along which the shock curve can reach
point 0, as shown by the dashed lines in Fig. 2. One
of these (case B1) crosses F=0 with a vertical tangent
(d&g/dg=O), and the second (case B2) crosses G=O with
a horizontal tangent (d8/dh=O). The particular path
will be determined by the shock conditions and the
ratio Lr/L~, which in turn depends on the relativistic
transport properties g, |, and ~ which are as yet un-
known. The shapes of the shock curve (yT and e
versus x) for cases B1 and B2 are shown in Fig. 3.
In case $1 the Quid velocity relative to the shock in-
creases before it decreases, and in case 32 the product
yT within the shock decreases before it increases.



A 1164 PAUL A. KOCH

VO yi Ti

yT

r SHOCK CO'RVK
CASK Bi

yo To

CASK 81

e,
Vo y(T,

yT

CUp
yo To

FIG. 2. Bounding curves —case B.

This phenomenon of the velocity rise or pT drop in a
relativistic shock, for P&P, is a striking example of
what Eckart calls "the momentum of heat. " That is,
momentum transfer and heat transfer within the up-
stream end of the shock layer interact in such a way
that pT cannot rise monotonically unless the resulting
heat transfer imparts some extra momentum to the
fluid, or alternatively a monotonic decrease in the fluid

momentum can only be brought about by a drop in

pT and the resultant heat transfer.
It is of interest to investigate the circumstances under

which the drop in pT is accompanied by a decrease in
temperature itself. Since the minimum in 8/y occurs
at G=0, it is sufficient 'for this purpose to find the sign

CASK 82

FIG. 3. Shock curves —case B.

The expression in brackets in Eq. (3.16) is positive
for P&P~&P„where

P~' 2P 'Pr'+—P '=o (3.17)

Thus, if Pp&Pr, the temperature decreases with the
velocity in the upstream end of the shock layer.

The value of P, can be found from the approxima-

of d(8/y)/dkp along this curve:

d 8) 1 d8 8 dy P8B ) PP)
v~ 1—

~

—1 . (3.16)
dkd p) 'rdkp g—p '/de 'y E P r

e,.e,

FIG. 4. Bounding curves —Shock
into region ID.
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P,s=4/9, region II (3.19)

tions to the state function H(o), depending on the state
of the preshock gas:

This special case is also characterized by the fact
that Op=el. This is most readily seen from combina-
tion of Eqs. (2.7)& (2.9), and (2.12) at the equilibrium

points, which gives the jump equation

P,s = 3, region III. (3.20) Yoffo Pl+i ~ (3.21)

Since the signal sPeed for a gas in region III is P,s= e,
all shocks into a relativistic gas are above the critical
speed.

The phase-plane plot for this case is shown in Fig. 4.
It is clear that case B2 applies here, since d8/dx must

be 0 at some point in the shock.
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Calculation of the Yang-Lee Distribution of Zeros
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The connection between the zeros of the grand partition function Z and the function x =lim V ' ln Z at
infinite volume is discussed. Assuming a functional equation for x given, conditions for the lines containing
zeros and. an expression for the density of zeros are derived. Explicit results are given in a special case with
an attractive interaction potential.

INTRODUCTION

T is known that Yang and Lee based their phase-
~ - transition theory' on the observation that, if the
zeros of the grand partition function Z(s) in the limit
of infinite volume have an accumulation point at a
positive real value zp of the fugacity, some thermody-
namic functions are discontinuous at sp. For all thermo-
dy'namic systems which so far have yielded to an explicit
solution, ' the zeros fall on de6nite lines C in the com-
plex s plane and become dense on C at V —&~. If this
turns out to be a general feature of thermodynamic
systems, phase-transition points sp are determined as the
points of intersection of C and the positive real 2,

' axis.
The nature of a transition is governed by the density of
zeros on C near sp.

Only in trivial cases is it possible to And the roots of
Z(s) =0 directly, because when the number of particles
X becomes large, Z(s) is an extremely complicated
polynomial of degree of the order of Ã. In certain cases,
however, it is possible to find a functional equation,
the solution of which is the limit of V—' lnZ for U ~~.
In this paper we consider the re1ation between the dis-
tribution of zeros and the solutions of an equation of
this type. It is found that under certain conditions the
lines of zeros are uniquely determined. An expression is
derived for the density of zeros in terms of the limit
function.

' C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).' T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952); E. H.
Hauge and P. C. Hemmer, Physica 29, 1338 (1963);P. C. Hemmer
pnd E. H. Hauge, Phys. Rev. 133, A1010 (1964).

As an application of the method the distribution has
been explicitly solved in the case of a linear model with

potential consisting of hard core and square-well at-
traction. The main features of the results are shown

graphically.

z
y(z) = lim —1nZ(z, U) = dsg(s) ln~ 1— . (1)

g-+op s(s)

The derivative of x(s) is

g(s)
y'(s) = ds

s—z(s)
(2)

Along the curve C we have ds=dse'4't'&, where P(s) is
the argument of the tangent of C at the point z(s).
De6ne

G(&(s))=g(s)e ""
The real variable s can now be replaced by the complex

ANALYTIC CONTINUATION OF lc, '(z)

Ke assume that in the limit V —+~ all the zeros of
Z(s, U, T) fall on definite smooth lines C in the complex
s plane, and are dense on C. Denoting the number of
zeros on the line element ds at s=s(s) by Vg(s)ds, s
being a real parameter taken along C, we have


