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and the expressions (MT 3.10), (MT 5.14) for ln can
be put into the form (6) by algebraic manipulations
which need not be reproduced here.

The expressions (MT 3.7), (MT 5.12) for the entropy
can be derived from (6) using the standard thermo-
dynamic formulas, and are found to be related to the
quasiparticle distribution function p(k) by the ideal

Fermi and Bose gas formulas. Although this result is
implicit in past work, ' the explicit recognition of
the resultant connection with Landau s Fermi-liquid
theory" is due to Morita and Tanaka.

"L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (19S6)
LEnglish transl. : Soviet Phys. —JETP 3, 920 (1937)]. See in
particular Eqs. (3), (4).
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The frequency distribution of the absorption and emission coefIIicients on the wings of the hydrogen
Lyman-a line broadened by local 6elds of both electrons and (quasistatic) iona in a plasma is calculated in
the classical path approximation for regions well outside the half-intensity points. Depending on velocities
and frequency separations from the line center, electron collisions are treated by an impact theory, which
accounts both for Debye shielding and for the finite duration of the collisions, or by the quasistatic theory.
Quadrupole interactions are considered in addition to the usual dipole interactions, and the (dominant)
contribution of dipole interactions to the impact broadening is calculated to higher orders in the iterated so-
lution of the time-dependent Schrodinger equation. Asymmetries introduced by quadratic Stark effect, by
quadrupole interactions, by field-strength dependence of the oscillator strengths, and by the ion broadening
of the central component through quadratic-Stark-effect and quadrupole interactions are evaluate'd. Also
considered are asymmetries from the variation of factors usually assumed to be constant (frequencies and
Boltzmann factors), and from the transformation from frequency to wavelength increments. Remaining
theoretical uncertainties in the absolute values of absorption or emission coeKcients for typical plasma
conditions are estimated to be less than 10% over ranges in which these coefEcients vary by three orders
of magnitude.

1. INTRODUCTION

N dense plasmas the shapes (profiles) of absorption
~ - and emission coefficients near atomic lines are con-
siderably influenced by interactions between the absorb-
ing or emitting species and ions and electrons. This is
especially pronounced for hydrogen lines, because of
their large (linear) Stark effect. For this reason, and
because hydrogen is so abundant in stellar atmospheres,
theoretical and experimental interest have been concen-
trated largely on the Stark broadening of hydrogen
lines. For the central regions of the profiles it is often
permissible to use the two extreme approximations to
the general theory of pressure broadening, namely
impact and quasistatic approximations for electrons and
ions, respectively. With this simplification, and only
considering dipole interactions, detailed profiles have

+ Jointly supported by National Science Foundation, U. S.
Once of Naval Research, and U. S. Air Force Once of Aerospace
Research.

t Part of this work was done during a sabbatical year at the
"Institut fur Plasmaphysik" at Garching, Germany, as a National
Science Foundation Fellow.

been calculated for lines of the Lyman and Balmer
series. ' Agreement with experiments, especially for the
HP line, for which the most precise calculations have
been made, ' is usually within the estimated theoretical
uncertainties of about 10jo.s

This very satisfactory agreement seems to obtain as
long as the absorption coeflicient is not more than two
orders of magnitude below its peak value, and also only
if' asymmetries in the measured profiles are ignored.
Further away from the line center agreement with vari-
ous asymptotic formulas' ' is not as good for the HP
line' and also not for higher members of the Balmer

' H. R. Griem, A. C. Kolb, and K. Y. Shen. Phys. Rev. 116, 4
(1959); see also U. S. Naval Research Laboratory Report NRL-
5805, 1962 (unpublished).

2 H. R. Griem, A. C. Kolb, and K. Y. Shen, Astrophys. J. 135,
272 (1962).

g H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book
Company, Inc. , New York, 1964).' H. R. Griem, Astrophys. J. 136, 422 (1962).

'%.L. Kiese, D. R. Pacquette, and J. K. Solarski, Phys. Rev.
129, 1225 (l963).
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series."While this is of no serious consequence for most
laboratory applications of line-broadening theory, the
actual behavior on the distant wings is most important
for the analysis of stellar atmospheres where the central
portions are obscured because of the large optical depths
involved and are, moreover, normally dominated by
Doppler ef'fects.

Optical depths near the centers of the first members of
the Lyman series tend to be large in laboratory plasmas
as well. Therefore, experiments on Lyman lines' "have
been concerned with the distant line wings. Because of
their great strengths, it has been possible to extend the
measurements to smaller values of the normalized line-

shape function than in most studies of Balmer lines
without serious overlap with lines of diferent principal
quantum numbers. This fact, and the possibility of
examining the various corrections to the theory in much
greater detail, makes further study of the Lyman-n line
especially attractive, even though experimental prob-
lems in the vacuum ultraviolet region of the spectrum
are rather severe. The hope is that certain conclusions
drawn from comparison between Lyman-o. measure-
ments and theory can be generalized to explain some of
the discrepancies found for the wings of other hydrogen
lines, especially the excess intensities over twice the
Holtsmark prediction found in one of the experiments. 5

The present paper is organized as follows: Section 2

contains a discussion of the principal assumptions made
in the subsequent. calculations and an exposition of the
asymptotic wing formula for lines subject to both quasi-
static broadening through linear Stark e8ect and to
impact broadening. (Corrections to this formula are
derived in Appendix A.) In Sec. 3 the impact broadening
is calculated to arbitrary order in the iterated solution
of the time-dependent Schrodinger equation, using the
dipole interaction. Corrections due to quadrupole inter-
actions are evaluated in the following section, which also
gives a discussion of the errors incurred in the impact
broadening calculations. The results of these calcula-
tions are averaged over electron velocities in Sec. 5,
where also the various cutoff parameters are chosen.
The actual wing formula for Lyman-n is derived in
Sec. 6, including the asymmetry between red and blue
wings. (Details of the calculation of asymmetries intro-
duced by higher order perturbations are given in Ap-
pendix B.) In Sec. 7 the results are summarized (in-
cluding estimates of theoretical errors) andcompared
with measurements.

2. GENERAL THEORY

As in the earlier calculations, " the classical path
approximation will be made throughout. Also, depend-

'K. Ferguson end H. Schlui'ter, Ann. Phys. (N. Y.) 22, 351
(1963).

~ C. R. Vidal, Z. Naturforsch. 19a, 947 (1964).
R. C. Elton, U. S. Naval Research Laboratory Report NRL-

5967, 1963 (unpublished).
~ R. C. Elton and H. R. Griem, Phys. Rev. 135, A1550 (1964)."G. Boldt and W. S. Cooper, Z. Naturforsch. 19a, 968 (1964).

ing on velocities and frequency separations the broaden-
in.g electrons will either be described by the impact or by
the quasistatic approximation. (The latter is always
used for ions. ) By showing that the final results depend
only weakly on the parameter which determines the
transition between the validity regimes of impact and
quasistatic approximations, this procedure can be
justified. Furthermore, the cutoG at large impact param-
eters is not critical either, as it essentially only enters the
"weak-collision" term through a logarithmic factor.
When Debye shielding is the relevant mechanism, the
equivalent cutoff has been shown to come at 1.123 times
the Debye radius" rather than precisely at this radius.
The error in the logarithm is thus 0.12 if this difference
is ignored in view of the difficulties in accounting for the
finite duration of collisions" with comparable exacti-
tude. However, by varying the corresponding parameter,
one finds that Anal results are not at all critically affected
by the uncertainty in this cutoff parameter. The cutoR
at small impact parameters necessitated in preceding
calculations''" by the breakdown of second-order
perturbation theory is no longer required because the
eGects of dipole interactions are now calculated to higher
orders and the then equally important quadrupole inter-
actions are also included. This allows one to move the
lower cutoff to the de Broglie wavelength divided by
2m as suggested by quantum-mechanical considera-
tions, "e.g. , for Lyman-n to a radius smaller by a factor
about 3 than the former strong collision impact param-
eter. The uncertainty in the cross section due to apply-
ing the classical path approximation should thus be only
about 10'Po of this strong-collision contribution which in
turn gives usually only a small fraction of the total
broadening.

The point of departure for the actual calculations of
the line profile l.(oi), where &o is the angular frequency
separation from the unperturbed line, is again I

see
Eq. (56) of Ref. 1, Eq. (6) of Ref. 2, or Eqs. (4)—(35)
of Ref. 3)

l.(co)=— dFW(F) Re Q d p

Here Ii denotes the strength of the quasistatic fields
(mostly due to ions), W(F) the corresponding distribu-
tion function, d p the dipole vector matrix elements
between sublevels n of the upper level (a) and sublevels
P of the lower level (b) for the line. The sum over double
indices n, p and n', p' (designating states in "line space")
selects the line. Also, EI,(F) and IIb(F) are the Hamil-

"H. R. Griem, M. Saranger, A. C. Kolb, and G. Oertel, Phys.
Rev. 125, 177 (1962).

~ M. Lewis, Phys. Rev. 121, 501 (1961)."3.Kivel, Phys. Rev. 98, 1055 (1955).
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tonians describing the various sublevels (relative to the
unperturbed levels) as functions of the quasistatic field
strength, and C,g is the impact broadening operator to
be discussed in the next section. To a very good approxi-
mation, the lower level of Lyman-a is unperturbed and
Hs(F) thus almost vanishes, and. C,s essentially only
operates in a space.

Furthermore, for large frequency separations, only
two regions of F values contribute. In the first region
(small F) the multiplicative factor of W(F) in Eq. (1)
is nearly independent of F and the term H (F)—Hs(F)
can thus be ignored. Also, this factor can be expanded
in terms of (—C/~) and the remaining integral is simply
Js"W(F)dF = 1. In the second region (large F) W(F) is
nearly constant while the above factor then has a sharp
maximum for F values ful6lling

H, (F) IIs(F)—=e(s, zs)F =—Ace. (2)

Here the dipole approximation was employed and F was
assumed to be in the s direction. Replacing W(F) by its
value for F from Eq. (2) the integration can again be
performed, using

dx/(ix+1) =s. .

It is consistent with these approximations to use for
W(F) the asymptotic Holtsmark distribution (for large
F) which can be obtained from the probability of finding
the nearest perturber in r, r+dr, i.e., W(r)dr=4lrN, r'dr,
through W(F)=W(r)~dr/dF). With F=e/rs this re-
sults in

W(F) ~2rres "N,F 'I', —

examined there are corrections due to Debye shielding
of the ion fields and ion-ion interactions.

3. DIPOLE CONTRIBUTION TO
IMPACT BROADENING

In this section the impact broadening operator C,~ is
calculated to arbitrary order in the iterated solution of
the Schrodinger equation for the time-development
operator U(t, t') in the interaction representation,

ihd U(t, t')/dt =e'~'i" V (t)e '~'i"U(t, t') . (5)

However, the classical (straight) path and the dipole
approximations for the interaction V (t) are retained as
in Refs. 1—4 and 11, i.e., for single collisions

y+ v(t —ts)
V(t) =e' ~ f (6)

i 9+v(t ts) i'—
Here y is the position vector of the perturbing electron
at the time ts of its closest approach, v its velocity, and
r the coordinate vector operator of the atomic electron.
As further approximations, the impact broadening of
the ground-state (b) will again be neglected and also
the differences in the inatrix elements of the "unper-
turbed" Hamiltonian H, i.e., the differences in the
energy levels of principal quantum number 2 due to
quasistatic 6elds. A 6nal assumption is that all collisions
may either be considered completed in the relevant time
interval or not contributing at all (see Refs. 11 and 12).
Then the impact broadening operator becomes

4

C =2irN tif(v)ds pdp{U(~, —oo) —1).

N, being the density of (singly charged) ions and
(quasistatic) electrons.

The indicated operations finally lead to

1 )e +ca

= 2s.N ef(s)ds pdp
--i iv)

&n

dt„ iV(1„i)

dt„V(t„)

dti V(ti), (7)

which is essentially Eq. (61) of Ref. 1. The first term is
the usual asymptotic Holtsmark" result. (Here the sum
is only over half the Stark components, and it was
assumed that parabolic wave functions are employed.
Also, Z, and Zb are now in atomic units. ) The second
term describes the impact broadening contribution.

In the transition region between line core and line
wing the asymptotic expansion must be carried further.
This is done in Appendix A, following Kolb." Also

'4 J. Holtsmark, Ann. Physik SS, 5'I'/ (1919)."A. C. Kolb, dissertation, University of Michigan, 1947
(unpublished); University of Michigan Engineering Research
Institute, ASTIA Document No. AD 155040 (unpublished). I ~

oo 1 1 +
U(ao, —oo) —1= P ——

~-&et iII )
V(~)d1

~

ta 1 2 All' R
(8)

~=~ mr impv

where Tis the densityof impact broadening particles and
f(ti) their velocity distribution function. The { ).
denotes the average over angles associated with 9 and v.
(The subscript av will be omitted from here on.)

All V(1„)may be assumed to describe the same per-
turbation by a single charged particle. (Mixed terms
involving diGerent perturbers average out for n= 1, 2, 3
and are negligible for terms e&4 since these contribute
only for small impact parameters where simultaneous
interactions are quite unlikely. ) The multiple integrals
thus reduce to powers of single integrals,
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using Eq. (6) and introducing u= p, ~p, R= r/up
= me'r/O'. This result will now be used to calculate the
&2, 1, &1

I
4

I 2, 1, &1) matrix element, which controls
the impact broadening of the unshifted component. (As
explained at the beginning of Sec. 6, it is sufhcient to
consider only one of the C-matrix elements. ) The non-
zero R-matrix elements are then

ZwilX
FIG. 1. Diagram of the matrix elements of (n. R)"which occur in

the nth iteration of the time-dependent Schrodinger equation with
the dipole interaction.

3 3
&p+il ~.

l sp) =—,&p+il ~.
l
sp) =~i—,

&pplR, lsp)=3.

Here
I par) stands for

I
nlm) =

I 2~ 1~ a1»
I pp) for

and
I sp) for

I
200). Figure 1 demonstrates which matrix

elements contribute to &peril(u R)"Ip~i). The single

lines designate the R, matrix elements, i.e., contribute
a factor 9u, ' between vertexes i and i+1. The double
lines correspond to 8, and R„matrix elements which
contribute (-,')(I,'+I„')for each of the two paths be-
tween subsequent vertexes. The end links of the chain
result in the same factor, and summing the diagram
thus yields for even rl= 21 (for odd I the matrix element
vanishes)

E—1
&peril (u. R)alp/i)=2i —iLp(N &+I s)ji+2i—

sl p(N s+I s)$l—i (3N )&
1f

(l—1)(l—2)
+2'—'I -,'(si,'+I„')j' ' (3N,)'+ .+Lp(N '+I '))(3N )'&'—'&. (10)

2f

The first term is for all of the 2' ' paths involving only R, and R„matrix elements. In the second term the paths
contain one sp —

pp
—sp link, of which there are l—1, etc. (If several such links are involved, one must divide by

the appropriate factorial to avoid counting a given sequence of intermediate states twice. ) To perform the direc-
tional average, the factors (I,'+I„')'' are expanded by means of the binominal theorem,

(l—1)!
{&1+ii(u.R)"

I p+i)) =s3" 2 {(N.'+~w')'-'~. ")
&=P i!(l 1—i)—!

(l—1)! l—' (l i)!—
r3sl p {N.'&i—' '&N„sjg,"j

'=P i!(l 1—i)—! P Pj!(l i j)—!—
(l 1)! l—i (l —i)—

32l Q
2 r pi!(2i+-1) l'-p j!(l—i—j)!(2l 2i 2j—+1—)(2j+1)

using, e.g. , {I,")=1/(2i+1).
Substitution of Eqs. (8) and (11) into Eq. (2) and integration over p finally yields

thy'
&p+ IC'lp+)= —» &I —

I

&m)

dv (l—2)!(—1)'(6A )'&' "—f(v) hp+l Z
(2l)! kmpvi

l 1(l—i) l i— — Pmax

XE
l-P i!(2i+1) P'-P j!(l—i —j)!(2l—2i—2j+1)(2j+1) p

(12)

pmin= &/mv= )(
y (13)

i.e., the impact parameter for which the relative angular
momentum quantum number is 1. Summing the (first
10) terms corresponding to the lower limit and neglect-

"H. R. Griem and K. Y. Shen, Phys. Rev. 122, 1490 (1961).

A natural choice of p;„is suggested by quantum-
mechanical considerations, ""namely

ing terms of higher order than (p;„/p, )' from the
upper limit one then obtains

t hy' dv

&p~, I
@

I p~,)= —12v ilail
—

I f(v)
Em~ v

2-
X lnl —0.967+1.90I

I
. (14)

kpmin Epmaxj
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(If the lower cutoff were made at X/v2 or X@2 the value
0.05 oro t e racf h b ket would increase or decrease y

ions"" the003 ectively. ) In the earlier calculations», respec
nd tominimum impac pt parameter was chosen to correspo

I {(~IU(" —")—11~)}I
=1,y~~ld~~g p-=4v'(-. ) /~~

for Lyman-n, according to q. ~

so-called strong collision term in the expression for C

1 ted. Comparison with Eq. (14) shows that
thistermcanbeaccountedforbyadding n( +—, —
=0.215 to ln(p, /p ). Such a constant term is usually
negligi ew en p, i' 'bl h is of the order of the Debye radius.

e er, is oftenFor asymptotic wing formulas, however, p, „
is o en

smaller than the Debye radius because only collisions
be completed in times contributing

to the Fourier integral representing the line s ape.
11' '

term was therefore reintroduced'
a smoothand its value estimated by requiring a smoo

transition from quasistatic to impact approximation
re imes. or yF Lyman-n this interpolation procedure

that the assumption of completed co
' '

'fied in the calculation of higher order termsjusti e in e
because these are only important at

'
pt small im act

parameters. )

4 CORRECTIONS TO IMPACT BROADENING

Of the various approximations lead' g q.adin to E . (14),
the re lacement o ef th complete interaction by the

dipole term accor ing o q.
p

d' t E . (6) is most critical. There-

fore a quadrupole term should be added, i.e.,

V(z) = V&(t)+V,(t)

It2
=—Iv+v(~ —&)Il '([v+v(& —&)j R

([v+v(t 4)] R)',
)

I o+ v(&—
&o)

I

'

On integration, this becomes

Izz' t (R o)
v(i)d~=-

mp. ) p /

Rv',— tR

p k p

Avera ed over angles associated wit, gh and v the

i
'

h . Also the quadrupole terminte ral clearly vanis es. so,l g 'b t to second and higher order intherefore only contn u es o

V(i). With Eqs. (8) and (11) follows now

{(P+ I&(",—")—1IP= &}

(17)

2V .2
V 2V 2using {p,'}={i)'}=-';, {p,'p„'}={pz)„=z) z)„

etc. , and taking matrix elements. The two additional
terms in the bracket represent second-order quadrupole
and fourth-order dipole corrections, respectively, to the
leading term from the second-order dipole interaction,

According to Eq. (7) the I-matrix element becomes,
truncating the p integral at p,o,

1 zzzz)p~

(P+i I
c'I P+i&= —12~»l — f(~—

k zzz z) 12

To account for p &p,„here a strong-collision term
—Ev~ip ' was added to the integral with p„defined by
I {(P+ilU(" —"&—1I P+i&} I

=1, i e,

pto =
—y/2"..

'
' " .')'—",(.,".,

)'

Iz/6 14 zzzz)(zo
' 191+—

rev 3 A 30
(19)

when the second-order dipole result p„=b(+6)/zzzz)
=(/6)p;„is employed under the square root. This
procedure yields

(p+il c
I &+i&

v ln

ln 6

(zo ' 19( Pz—14 +—
I

(20)
pvvvsK 10 (zzzz)pvvvgx

u»ng p~=(+6)p; under the logarithm and in the
quadrupole and fourth-order correction terms. The
constant term in the bracket is now 1.03 as compare
to 0.967 in Eq. (14), which may be considered an indica-
tion for the accuracy with which higher order terms
(e.g. , sixth-order dipole terms) are accounted for by
this modified cutoG procedure.

In the calculations below, this constant will be re-
p ace yd b 1 and the associated error be estimated as
~0.05. The error due to neglecting higher multipo e
interactions will be assessed from the ratio of quadrupole
and dipole contributions, assuming the error to be o» the
order of the quadrupole term multiplied with this ratio.
Furthermore, the uncertainties stemming from t e
classical path approximation, which necessitated the

t 6 should be of the order of the contributionprnin cu 0, s ou
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caused by classical charged particle impacts within

p;„,i.e., of the order Ãmp;„', corresponding to an
uncertainty of 0.08 in the above constant. LThis esti-
mate is probably too high, judged by varying the lower
cutoff impact parameter as discussed below Eq. (14).$
Errors due to deviations from straight paths ought to be
still smaller because the p+i states possess no permanent
dipole moments so that typical interaction energies are
estimated by the quadrupole interaction as V = 10asse'/ps
=asze'(mv/0)' =mv'(hv/e'). The ratio of interaction and
thermal energies is thus of the order hv/e' or typically
about 0.1. As the results are quite insensitive to per-
turber energy (temperature), and because the effects
from curvatures in perturber paths tend to be cancelled
by changes in the duration of the collisions, "no signifi-
cant uncertainties are expected from this source. Also
so-called back reactions'" should be negligible (except,
perhaps for the asymmetry), because perturber energies
are considerably larger than changes in photon
energies.

Another approximation was the neglect of the ex-
ponentials in Eq. (5), i.e., of the quasistatic splitting,
which is of the order ha&=15easFs/A=40(A/m)iV'I'.
This is to be compared with v/p„=nsvs/5+6 so that the
parameter z„=Acop„/v is typically z„=100(h/mv)'1V'I',
which is usually about 0.01. Since even for s values as
large as 0.4 corrections' "due to the splitting between
interacting levels stay below 4%, the quasistatic split-
ting should be negligible for most distant (weak) colli-
sions as well. " In principle, one should in addition
correct for interactions with states of diferent principal
quantum number, mainly m= 3.Here the parameter s„is
estimated by s„=E&(1/2' —1/3') (g6)/mv' =3Err/niv'
which is normally much larger than 10. (Eir is the ioniza-
tion energy of hydrogen. ) Under such conditions, the
contribution to the width is completely negligible, "as
it then decreases exponentially with z . Also shifts
caused by this interaction would not be significant. For
similar reasons impact broadening of the lower (ground)
state may safely be neglected.

Except for uncertainties from higher multipole (than
quadrupole) interactions and the difTiculties connected
with the choice of p, , the matrix element of the impact

' M. Baranger, Atomic aed Molecllar Processes, edited by D. R.
Bates (Academic Press Inc. , New York, 1962), Chap. 13." N ote added irl, proof. Calculations of electron impact broaden-
ing of hydrogen lines'4 recently have been criticized PH. Van
Regemorter, Compt. Rend. 259, 397'9 (1964l ]because the splitting
Aced of the levels by quasistatic ion fields was neglected. Inclusion
of this e6ect results in another maximum impact parameter, "e.g.,
for Eq. (14), at p =v /Ace, which could be effective if it were
smaller than the Lewis cutoG" at p „=v/co. However, on the
line wings the frequency separation co from the line center is of
necessity much larger than the linewidth. Since the latter is of the
order of the average quasistatic splitting, one has co)&5~, and the
Lewis cutoB impact parameter is considerably smaller (and thus
relevant) than the maximum impact parameter proposed by
Van Regemorter. This fact invalidates his explanation of the dis-
crepancies between theory4 and experiment which were observed"
on the wings of Balmer lines from levels with large principal
quantum numbers.

broadening operator as calculated above should there-
fore have an accuracy corresponding to about 10%
variation in the constant accompanying the logarithm
in Eq. (20). Since the value of the bracketed term in
this equation is almost always twice the magnitude of
this constant, and since impact broadening contributes
never much more than half the total wing intensity, the
final error from this uncertainty in the impact broaden-
ing calculations is probably less than 3% in almost all
cases. (See also Sec. 7.)

p ..=min)v/~~, p&' (kT/4w. ve')»——'. (21)

At a given frequency separation, the Lewis cutoff is thus
to be used for small velocities and the Debye cutoff for
large velocities.

For the velocity integration a new variable is intro-
duced, namely,

y = -', (mv'/k T) (22)

in terms of which the switch between the two expres-
sions for p,„,must come at

/max=
ns(u' 1 h(u ' 9

. (23)
gree' 32s-as'iV Eir 512v.as'iV k X

The impact approximation will of course only be appli-
cable if the velocity exceeds some minimum value below
which the quasistatic approximation should be used.
The transition must be made when the characteristic
frequency v/p of a given collision is of the order of the
quasistatic splitting

~

Ao&
~

= 3h/mp' for one of the shifted
components of Lyman-n. The corresponding minimum

S. FINAL CALCULATION OF THE
IMPACT BROADENING

To calculate the impact broadening from Eqs. (4) and
(20), the velocity integration must be performed and the
maximum impact parameter be determined. The value
of the latter is only critical in the logarithm, i.e., in the
second-order dipole interaction contribution. AVhen

Debye shielding is the dominant mechanism for reducing
the eGects of distant collisions, and when the shielding
is as for slowly moving charges, then p, , can be shown"
to be 1.123 times the Debye radius obtained for shield-
ing by electrons only. However, as already pointed out
in Sec. 2, at large separations from the line center the
use of unshielded Coulomb 6elds in the interaction
energies given by Eqs. (6) or (15) is not as critical as
the assumption of completed collisions, which led to
Eq. (7) and all subsequent expressions for the impact
broadening operator. Actually, only collisions completed
in times of the order (o&)

' can contribute in the Fourier
integral representing the line shape. Now the eGective
duration of a collision is about p/v, and p must accord-
ingly stay below v/or, as was first demonstrated by
Lewis. "Appropriate conditions for p,„,are therefore
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' i)=3)p/mpmi)and the Parameter svalue o yf '
thus estimated to be

)y-'"=
2kT 8kT X

(24)

)(p) (=) (2S)

p sed in terms o co=co.
dxwell distn ution o

l d y distributionusing (y) = f(v)di)/dy, the norma ize
function is

t'

(168)i i 4 (miioi)~

the zero splitting «u "using Eq. (24) Comp
d e&p i' by a fa,ctor

~ F (17 is re ucethe dipole «rm» q
f all practical cases~M—"which is;

o contribution complete y(d) (30 W~ ma~ g . '
the quadrupol~is justices usingnegligible indeed .

7) the C, matrix elementterm in Eq. (27), and with Eq.
now becomes

dmin

~p-"f(y) dy
0

hap
~ 29= —2 (168)'~' NAR, (y;„,

„Ic'I p„&=—2~NThe fraction of electronns contributing on t the quasistatic (p~i
ents is thereforeshifted Stark componen sbroadening of the s i e

AR,(y;„)= f(y)dy
0

4

-=i (2n+3)~)&
EI2 1 3

3/m.
(30)

. The impactg- 0
broadening from y&y;„follows rom q .

( ) as approximate y

=-24~

pw =„'=(168)'I'()Mp/mi))'~', (27)

mi ht also give rise to sommeim act'g
e unshifted componen,

h h th ofe
'

m licated t rougthe situation is comp
'

Beets which separatee the interactingth quasistatic e-
levels an ud th s reduce the contri u ion

h h li
1 tlo t o h

alculation, assume
he uasistatic va ue apo

that the qua ru
der these conCh-im act broadening un er e

(17), hng
(Weisskopf) impact parameter wou

ip* ~C" ~p ) E (Al)'I'

(p„lc'Ip„& Ir&)
(31)

t ex eriments' " and under all fore-For the two past experiments a re

dtheimpactbroadeningo t euns ian e'
s ma thus be neglecte .

d
' dC- ti 1 tWith Eqs. (20)—(25) the desire -m

finally becomes

~ =2. The ratio of these contributions isusing (L ])=
3/2therefore with AR, =4y;„

m')) ' '
= —12ir —

I
Ã dy ——

i k7'& 2 „,„y 2 „... y

1914 kT
min + ymin& ymin+ (1+ymin)e min '

mm
3 I:a ) 32a

ymin

s it therefore suffices to

1 " e" 1-

1 calculations i

e~ 1 "
t ~ 14kT2m 'I' 0 ' " e" 1 "ei)

= —12ir —N dy —— —;„e(1+iic I &+i&=— (32b)

I ed throughout because,„=i)/&u was emp oye
fourth-

lso for the ast wo
6 h d 1 dhese terms stem from th ppeu ercuto sin e

for

'm ortant here. T ese er
e ne ative) qua rupo e

a ver
r i o

'
rms respective y.1 Th 't d oft

e thelast termis, w e
t, O.i.

r di ole interaction terms, p

1 constant term of about
h benegl ct dfo the0 ~ and may

slowly increas
h 1 f 1useFor actua

0.1 in the value of. the squuare bracketer than the uncertainty of ~ . in
'

ional errors any larger t an
cu

'th t incurring ad itiona
th receding section.due to the various causes
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6. ASYMPTOTIC WING FORMULAS AND
ASYMMETRIES

The calculation of the impact broadening of the l= 1,
m= ~1 levels is sufhcient for the present purpose, be-
cause in the asymptotic formula Eq. (4) impact and

quasistatic broadening are completely separated so that
the elm representation can be used for the impact
broadening. Accordingly, here only 2p~i and 2pp need
be considered as upper states. Since these states are
distinguished from each other simply by a rotation, their
diagonal C-matrix elements must be the same for iso-

tropic distributions in perturber phase space. (All off-

diagonal matrix elements vanish in this representation. )
The impact broadening term is thus obtained by sub-

stituting Eq. (32b) into Eq. (4), normalizing Q d p d p

to 1. For the quasistatic term, parabolic wave functions
are required, and it must be remembered that only 6 of
the total intensity is in a given shifted component whose
s-matrix element is &3ap. The asymptotic line shape

becomes in the indicated manner

v3m
t

hq'I'
L(&p)-

I

—
I

iV(1+DR,)
I ~i

'» &mi
24 hap E~) '~'

x[" )
v'prl ppl' m kT&

(
SV3

cVI 1+DR.+ -ap
I"' m

mZ
x i j)—=I.~R, (33)

AkT

with AR, as given by Eq. (26). Here LIr is the asymp-
totic Holtsmark result for I yman-n and R therefore the
ratio of actual asymptotic wing intensity to the asymp-
totic Holtsmark formula for ion broadening. To facili-
tate comparison with experiment, 8 is best expressed
in terms of the relative wavelength separation L&/X
from the center of the line, namely

9 E~)'~' AX "'/ 3 3 ) 6%2 Err)'~' AX 'I'
R= 1+

I
1—-y- -+—y--' I+

4%2m kTi, X k 5 14 i m'IP kTi

e ~ 1 e & 14kT
dy —— dy+ — (1—-', y;„'+-',y; ')+—,', —=1+DR,+DR;, (34)

ymin P 2 ymax y

S~(A'A) LJi(l pi I)
ddt

2n.cl ~XI ) dLJr hX 2vrc (
i d~ X ~'k ~i

16%2pr X '~'
p 1 hX

ap'&VI 1+- +
3X DX k 2

(35)

using

~= 2prc[(y+ gy)-' —y-') = —(2~cgy/y') (1—Py/yy )

using expansions for AR,(y;„)and the quadrupole term
in the impact contribution which are sufliciently accu-
rate for y;„&0.5.

The asymptotic Holtsmark result in terms of AX

follows from S(hX) =L(co) Id&a/dhXI as

actions lead to an increase of the red component as do
the usually more important quadratic Stark effect and
changes in the dipole matrix elements. The quasistatic
broadening of the unshifted component acts in the same
sense and is also estimated in Appendix B.

Further factors inQuencing the asymmetry are the
slowly varying functions of the frequency which were
ignored in the definition'" of the line shape, namely
the fourth power of the actual frequency pip+ pp and the
Boltzmann factors (for emission) or just the actual
frequency (for absorption). These factors probably
affect the impact broadening as well (which still remains
to be shown) so that Eq. (33) should in case of emission
be multiplied by

cpp+ pi) AM co App

A, =
I

exp — =1+4——,(36a,)
pip kT o)p kT

and assuming that L( pi) =L(+pp). (The term —involv-
ing dLIr/da& was first introduced by Boldt and Cooper. "
In case of impact broadening it just cancels the term
from de/di&. ) Besides the asymmetry coming in through
this transformation, there are many other causes of
asymmetry. To assess them, higher order interactions
must be considered also in the quasistatic theory. This
is done in Appendix 3 whose principal result is con-
tained in Eq. (B9). According to it, quadrupole inter-

or in case of absorption by

CO=1+-
%0

(36l )

According to Eq. (35) transformation to wavelength
units introduces another asymmetry into the quasistatic
terms, and together with the correction terms from
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Eq. (B9) follows finally

HANS R. GRI EM

S(Al )- a03N 1+DR,+DR;+hR„
3X ' AX

37 ~~
(1—hR, )+——(1+hR, )

4

1——,'(~~/l )(16/3—EH/kr)

1—AX/X
(37)

where the upper expression in braces is for emission, and
the lower for absorption. The quantities AR, and AR;
can be obtained from Eqs. (26) and (34), while AR„is
estimated in Appendix B from the quasistatic shift of
the unshifted component due to quadrupole interactions
and quadratic Stark eGect. Numerical results of these
calculations are presented in Fig. 2 and suggest to
replace AR„by

(38a)aR„=-,'(SX/X), for az&O

(38b)for BX(0.aR„=O,

7'. DISCUSSION AND COMPARISON
WITH EXPERIMENT

Before applying Eq. (37), which summarizes the re-
sults of the present calculations, to the line wings of
Lyman-u the validity of this asymptotic formula must
be verified along the lines of Appendix A. If necessary
a correction factor 1+(AS/S) must be applied to Eq.
(37), using Eq. (A10) with R from Eq. (34).This correc-

tion is only important for relatively small separations
from the line center, where AR;, i.e., the impact broaden-
ing term, is much larger than AR„AR„andthe other
terms responsible for the asymmetry. This justifies the
principal assumption made in Appendix A to calculate
this correction, namely that the broadening was only
due to quasistatic interactions with ions through the
linear Stark eGect and to electron impacts. Another
assumption is always made implicitly, namely that
broadening mechanisms not involving singly charged
particles as perturbers and also Doppler effects are
negligible.

The correction terms in Eq. (37) which describe
asymmetries through quadrupole interactions, quadratic
Stark effects and changes in the dipole moments con-
tribute usually less than 10%%uo to the first bracket in this
equation. Since they all stem from the quasistatic part,
higher order terms not accounted for in these calcula-
tions should not a6ect the profile significantly. To esti-
mate remaining theoretical errors it is therefore suffi-
cient to estimate errors from uncertainties in the elec-
tron impact contribution AR;, or, rather, those from the
sum of ~; and AR„because errors originating in the
somewhat arbitrary choice of the parameter y;„in
Eq. (24) compensate each other partially. Accounting
for uncertainties in the parameters y;„,y, , the ~0.1
uncertainty in the constant accompanying the expo-
nential integrals in Eq. (34) as discussed in Sec. 4, and
assuming that higher multipole interactions would add
a certain fraction of the quadrupole term which is of
the order of the ratio of quadrupole and dipole con-
tributions, the error in R is estimated as

6v2/Sir 'i' AX 'i' 2 -Ay;„
y--'"(1—y- -+2y--') —~ "-'

~»'kkr ymin

Ay 1 14kT
++ie wmr ~—+ (1—ly--'+ 3y- -')

y,„10 3E~ +min

dy, (39)
ym,

using Eq. (34). The relative error in the wing intensity Fig. 3 with the experimental data. To illustrate the
is then given by AR/R, a reasonable choice of the rela- relative importance of electron impact broadening
tive uncertainties in the cutoff parameters being &-,. (AR;), this contribution is also given separately. Quite
(Note also that higher multipole interactions will clearly, it is the most important correction, implying
always increase the broadening. ) that completely quasistatic calculations cannot be

Two experiments are available for comparison with trusted. The other corrections, AR, and (AR„), are too
the calculated wing profiles. In one experiment" the smalltobe shown on thisgraph. The tot l, Ra(corrected
absorption coeKcient was measured absolutely in a for deviations from the asymptotic formula), does not
stablized arc on both wings of the line. Because of the at all agree with the measurements, unless one assumes
observed asymmetry of the wing intensities, averages a systematic experimental error of about a factor 1.25.
were taken and the data then presented in terms of the (This exceeds the estimated experimental error of 10%%uo

asymptotic Holtsmark result. The measured quantity which was obtained assuming individual systematic
therefore corresponds according to Eq. (37) to errors to be completely independent. However, if all

'
systematic errors should be in the same direction, a

,
25'Po reduction of the measured values would be con-

corrected for deviations from the asymptotic formula sistent with the individual errors given in Ref. 10.)
using Eq. (A10), if necessary. This 8 is compared in. With a correspon. 'ding upward correction applied to the
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measurements, agreement is obtained at intermediate
wavelengths, when theoretical errors are estimated as
indicated earlier in this section, remaining experimental
errors as about +5% and errors in the correction from
Eq. (A10) as &20%.

However, at small wavelength separations measured
points still lie considerably lower than expected and at
large distances the measured wing absorption coeKcient
is defmitely larger than predicted theoretically. Alter-
natively, if the 1.25 correction factor were not applied
to the measurements, these would be much too
low near the line center. In any event, the decay of the
experimental profile is significantly slower than is
calculated. A possible explanation is that van der Waals
broadening by argon atoms (which are the main con-
stituents of the arc plasma) is no longer negligible on
the far wings. It would give a contribution proportional
to hX '~' and might therefore be important for large AX.

Following standard procedures, this correction is esti-
mated to amount to no more than 5% in the symme-
trized profile. However, interatomic distances corre-
sponding to AX& 10 A are such that the sum of per-
turbed and perturbing atom radii is comparable or even
smaller. This fact invalidates these estimates but sug-
gests that effects due to atom-atom interactions might
actually be larger.

One first suspects that these interactions would
enhance the red wing relative to the blue wing. This is
not necessarily true, though, because at small distances
interactions would be repulsive and therefore result in
contributions on the blue wing. Directly measured
(instead of such asymmetries in intensities at points
&

~
hX

~

from the line center) were the mean wavelengths
EXs (measured from the "unperturbed" line) of points of
equal intensities on the two wings as function of their

020

O.I5-

O. lO—

0.05

- QOI O.OI 0.02 O.KI
aX

0.04

FIG. 2. Correction ~R„to the asymptotic Holtsmark result from
quasistatic ion broadening of the unshifted component and the
approximation DR„=—,'6),/X.

distance 2AXi from each other. The quantity AXs is
accordingly defined by

S(~SX+aX ~)—=S(—]Sr —~X,(). (41)

From Eqs. (37) and (38) it follows then for the case of
absorption

-p1—aR, pal, q'~'

&2zi
46 37AR, ) AXi AXdS

(+ +
4R 4R 1 it Sdhit

(42)

The first term in the square bracket stems from quad-

3.0 I s 1 I I l l 1 1 l I

2.5-

FIG. 3. Comparison oi measured (Ref.
10) (multiplied by 1.25) and calculated
profiles, both relative to the asymptotic
Holtsmark result, at iV=8.4X10" cm '
and 2'=12200'K. Also shown are the a
results of complete profile calculations
(Ref. 1) (recalculated with the new
4-matrix elements and using the distribu-
tion functions of Ref. 22), the profile not
corrected for deviations from asymptotic
formulas, the impact broadening con- I,O

tribution, and the theoretical error
estimates.
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0.6

~ ~ ~ EXPERIMENTAL

THEORETICAL

p.y-

0.2-

FIG. 4. Comparison of measured asymmetry (Ref. 10) {shift
DX2 in mean wavelength of points of equal intensity on both wings
of the line from unperturbed line center as function of their mean
separation AX1 from the line center), and the present calculations.

rupole interactions and is usually the smaller of the two
terms at wavelengths where theasymmetry is noticeable.
In the second term, quadratic Stark e8ect, changes of
the dipole moments, ion broadening of the unshifted
component and transformation to wavelength incre-
ments contribute (7/4)(1+DR, )/R, 7(1+DR,)/R, 9/4R
and rs(1+DR,) to the coeKcient of A) t/X, with —1

coming from the wavelength factor in the absorption
co scient.

As seen from Fig. 4, agreement between measured and
calculated asymmetries is almost satisfactory in view of
the scatter of the measured points and the uncertainties
associated with the calculations. However, measured

(red) asymmetries are mostly above the calculated
values, which might be due to some additional broaden-

ing mechanism favoring the red wing. As likely there is a
small systematic error in the wavelength measurements.
These were referred to the center of the absorption line

which may well be shifted to the blue by quadrupole
effects on the unshifted component. A blue shift of only
0.05 A, resulting in the same upward shift of all measured

points on Fig. 4, wouM account for much of the dis-

agreement.
A previous analysis" of the asymmetry achieved only

qualitative agreement, not only because the corrections
to the dipole moments used" diGered from those de-

duced here but also because a X4 dependence was as-
sumed rather than the X dependence appropriate for
absorption. Moreover, the transformation to wave-

"Nguyen-Hoe, H. W. Drawin, and L. Herman, J. Quant.
Spectroscopy and Rad. Transf. 4, 847 (1964).

"Nguyen-Hoe, E. Banerjea, H. W. Drawin, and L. Herman,
Report EUR-CEA-FC-251, CEN, Fontenay-Aux-Roses, 1964
(unpublished).

lengths, the contribution from the unshifted component
and the fact that only about half of the wing intensity
can be calculated with the quasistatic approximation,
were ignored. For these reasons and because the varia-
tion of the Boltzmann factors was not included, this
analysis is not applicable for emission either.

The other experiment' ' was performed with a high-
pressure electric shock tube, using helium as the carrier
gas. Because of de.culties with impurity lines on the
blue wing and the limited number of shots for a given
tube, only the red wing was measured. Also, the experi-
mentally obtained line profile was presented on a rela-
tive intensity scale, since measurements of the emis-
sivity' yielded absolute emission coefficients limited in
accuracy to about a factor of 2 (due chiefly to uncer-
tainties in the measured temperature). These absolute
measurements were therefore reported' only as results
consistent with theory. 4

As in the arc experiment, an intensity range of 3
orders of magnitude was covered, even though in terms
of AX/Fe measurements were performed nearer to the
line center. To compare with theory, the asymptotic
formula Eq. (40) must therefore be corrected according
to Eq. (A10) out to the farthest point. For

~
AX~ &3 A

this correction becomes too large in this case (& 15%)
to be reliable. Here comparison must be made with
complete profile calculations. ' In principle, asymmetry
corrections should be included as well, following Eq. (37)
(for emission). This correction amounts to +13/~ for
the outermost point measured (AX= 15 A), but is prob-
ably mostly canceled by the reduction in the photo-
electric yield" of the gold cathode used in the detecting
system. "Neglecting, therefore, theoretical and experi-
mental asymmetry corrections, experiment and theory
are compared in Fig. 5, again using Eq. (39) for a theo-
retical error estimate, assuming a &20'Po error in Eq.
(A10), and applying a suitable normalization factor to
the measured values.

Though the scatter is large, the shapes of calculated
and an appropriately smoothed (hypothetical) measured
curve would agree quite closely. This also holds for
points near the ends of the measured range, in contrast
to the situation in the arc experiment. If any significant
disagreement should exist, it is rather in the opposite
sense now, that is the experimental profile seems to
decay somewhat faster. Because of the scatter in the
experimental points, such conclusions are rather tenta-
tive and should be supported by additional experiments,
preferably on an absolute scale or, equivalently, over
a suKciently large part of the profile that it can be
normalized directly. The best carrier gas would be
helium with its small van der baal's constant and
atomic radius.

The theoretical error estimates /see Figs. 3 and 5 and
the discussion preceding Eq. (39)$ suggest that absolute

so W. C. Walker, O. P. Rustgi, and G. L. Weissler, J. Opt. Soc.
Am. 49, 4"l1 (1959)."R.Lincke and T. D. Wilkerson, Rev. Sci. Instr. 38, 911 (1962).
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5.0

FIG. 5. Comparison of measured (Refs.
8, 9) and calculated pro61es, both relative
to the asymptotic Holtsmark result, at
N=3.3X10" cm ' and T=20 500'K.
Also shown are the results of complete
pro61e calculations (Ref. I) (recalculated
with the new C-matrix elements and using
the distribution functions of Ref. 22), the
pro61e not corrected for deviations from
asymptotic formulas, the impact broaden«
ing contribution, and the theoretical error
estimates.
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absorption or emission coefFicients of Lyman-e can be
calculated to &10%over at least three orders of magni-
tude in intensity and including the asymmetry of the
two wings, as long as only charged particles are re-
sponsible for the broadening. Extension of similar
calculations to other hydrogen lines, mainly to those of
the Balmer series, would certainly be very desirable but
also constitute a rather formidable task. For the time
being it must therefore suKce to conjecture from the
+10% agreement between previously proposed wing
formulas4 and the present calculations (for the condi-
tions of the two experiments' ") that these earlier wing
formulas should be quite reliable for other hydrogen
lines as well. Large errors ()20%) are expected only
when the Lewis cutofPs is ignored, when asymptotic
formulas are invalid as such, when Debye shielding is
important, or when there is serious overlap with lines
of di6'erent principal quantum number.

Figures 3 and 5 also show that calculated intensities
exceed twice the Holtsmark value by about 10% on the
far wings. This excess is mainly due to electron impact
broadening through quadrupole interactions. A similar
eGcct may well occur for all other hydrogen lines. The
magnitude of the electron impact broadening contribu-
tion as indicated on these figures exemplifies further
how premature it is to conclude from experiments giving
the electron contribution as about equal to the quasi-
static ion broadening that also the electrons are acting
quasistaticly. More refined experimental techniques
would be needed to test such a contention, e.g., pre-
cision measurements of the asymmetry which is diGerent
in the impact or quasistatic approximations. On the
theoretical side, it would be of some interest to improve
the accuracy and range of the complete prohle calcula-

tions to study the transition region to the validity regime
of asymptotic wing formulas. (At present it appears
possible that some of the discontinuity between the
curves in Figs. 3 and 5 is due to integration errors for
the outmost points of the complete profiles. )

APPENDIX A

and
w =—Re((np I C., I

rrp))

c= l(e/i's )((npls. —s, lop))l

from Eq. (2). For statistically independent charges,
W(F) is according to Holtsmark'4

W(F) = sin(Pg) exp( —r)'I')ifdrl (A2)
~F0

where Fp is the normal field strength, Fp= (4pr/3)'~'eX, 'I',
and p the relative 6eld strength, p= F/Fp. IntroducUlg

To estimate higher order terms in the asymptotic
expansion of Eq. (1) which lead to Eq. (4) and all sub-
sequent wing formulas, consider the (imaginary) case
of a line with only two (symmetrically broadened and
shifted) Stark components. According to Eq. (1) and
assuming C & has only diagonal matrix elements, its
normalized line shape is

w ( " W(F)dF
1.(co) =—

l

2pr k p (pp CF)'+w'—

W(F)dF'
(A1)

p (~+CF)s+ws~
with
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y=w/Fo, 8=M/Fp, annd l(8)=FoL(~) this reduced profile
becomes with sin(Prt) = —i Im exp(iP~i)

7
t(S) = Im

2m' . (~-Ce)'+v'

X

exp(ipse

rt—'t') qdrt, (A3)

1
t(6) = Im(&+i~)

2m C'

exp i(8+i') rt'I' —gdrt. (A4)

the second term of Eq. (A1) is replaced by

over P can e onb d ne by contour integration, closing e
paath in the upper P plane,

Besides this correction to the asy p totic formul~
corrections in the uasistatic contribution ue to Debye

ions must beshie ing y eiu b lectrons and ion-ion corre ations mus
considered. The 6eld strength from the nearest ionion is
now

F= (e/r') $1+(r/pi&) 5 exp( —r/pi&)

=(% )$1—(1/2)(r/pii)'+

where p& is t e e ye rh D b e radius accounting for shielding
~=N =2K.both ions and electrons of densities E;=by bot ions an

Detailed calculations of 6eld streng isth distribution
functions" suggest t a isth t this choice of p~ actually results
in a slig t over-correc io .1' n — rrection. ) With co=CF follows

~= (C%')L1—(1/2)(rip~)'+
= (c / ') L -(c / ~p~')5,

~ ~ ~

in the correctionh h 6 t approximation is use in th
term. The quasistatic relation L„.(~) = (r)

~
r/ a&

4n.r'1V,
~
dr/d~ I then yields

If exp( —p p is ex'expanded the remaining integration
can be performed term by term, using

exp( —wt) t*dt =s!w- t'+'&,

sce
L,(~) 2m 1V.- 1—

[~ f

st2 4~p

A7, and (AS) the relative correction to the
o E. (4), fin11asymptotic wing formula, i.e., to q. , i

estimated to be

AL((u) 1 32 2)'t' C 't' 5 y

L((o) It. 5 ~) 8 2 8 48FppD

5Ce

This is equivalent to a result 6rst yfound b Kolb."
Further expansion in terms o. y, g'ives

15[c[3&2
t(6) = ~ ~ ~

35(,~x 1+
/

—/+
2 8 S

r to the usual2= 1+3/t being the correction factor to
as m toticHoltsmark result, whichisgivenby q. (E. 34)'

1 f r the electron impact broadening.and accounts main y or e
AI. I(The quantity't hR tends to be negligible when /

is important. )
To facilitate application to experiments, i is

ex ress t e a oveh b result in terms of the wavelength—X'/2 c from the center of the line.separation 6'A =coX wc rom
For Lyman-a

(A6) $C=3h/me w= uFO=48m' 'uo(h/ )1—10~ —
~

+"
x (Ea/k T) it'N in(pg)'/p;„') 5

The square brackets approacch 1 on the line wings, and
m (rt =0) therefore corresponds to the impact

p d t the quasistatic term in Eq. 4 . The t ir
=2g

'
then a 6rst-order correctioterm (e=~g is e

f the quasistatic theory. Calling theas ptotic form o e
/- re-uasistatic anu impacd

' t broadening terms l„an /;,
erd lecting corrections of order (y/ )spectively, an neg ec

and terms mm&3 the pro6le can be written as

-32t2~»' C»' 5 y—
~(~) =(~.+~;)(~+ —

l —,l

+-- 1+-
i

(A7)

the correction now becomes

hS(h) ) )485
up'1V

s(a)) E z s), i

X~ 1+ 1.1S»
E. j8E~

where Eir is again the ionization energy of hydrogen and

& Q, Mozer and M. Saranger, P ys. Rev. 118 626 (1960).
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as the Bohr radius. The impact width was estimated
from Eqs. (28)—(30) of Ref. 1, using the value (n I

r r,
I
rr)

= 18ap2 which is appropriate for the shifted components.
The use of these relations is justified in this connection,
because deviations from the asymptotic formula are
only important at relatively small separations from the
line center where the upper limit for the relevant values
of impact parameters is indeed well estimated by the
Debye radius pD' accounting for electron shielding only
(see Sec. 5) and where collisions within p; '=4k/me
are negligible. Neglecting oG-diagonal matrix elements
of the electron impact broadening operator C,~ should
also not cause significant errors, as these terms are only
important if the quasistatic splitting for a given ion
field is not much larger than the C,s matrix elements,
which for Lyman-n only happens very near to the line
center.

Equation (A10) can be used to estimate corrections
necessitated by the only approximate validity of the
asymptotic wing formula Eq. (4), provided these cor-
rections are small. Usually it turns out that corrections
connected with the impact term (containing the loga-
rithm) and the Debye shielding (the negative term) of
the quasistatic fields are about equally important, and
that they are both of the same order as the correction
to the original asymptotic Holtsmark formula as given
by the first factor in Eq. (A10).

APPENDIX B

To estimate asymmetries of quasistaticly broadened
lines ordinarily subject to linear Stark effect, the pertur-
bation theory must be carried to second order in the
dipole interaction, and in addition quadrupole interac-
tions must be considered to 6rst order. Therefore the
strengths of the shifted components are now affected by
the perturbation, and there is also a contribution from
the unshifted component to the quasistatic broadening.

The appropriate interaction Hamiltonian is from
Eq. (15), choosing the line connecting atom and per-
turber as s axis,

Ig 3 ap
U(r) =a R,+-—(R,'—-',R')

mr2. 2 r

where the plus or minus signs apply to electrons and
ions as perturbers, respectively. Standard perturbation
theory yields for the quasistatic shift

3 up
&oi(r) =a (2ss+2ps

I
R,+-—(R,'—-', R')

2mr2 2r
O' R, lnl)(nllR,

I 2sp&2pe) (B2)mr', t E2—Z„
to second order in the dipole interaction and first order

in the quadrupole interaction. ( I 2ps) and
I
2ss) designate

the wave functions
I
210) and

I
200).) Upon taking

matrix elements and summation over intermediate
states (n/2, l=0, 1, 2), including the continuum, this
results in

3ls as (as)'
aoi„(r)= 1a2—281 —

I

mr' r 'E r)
(B3a)

3A
—

as (as)'
M (r)= — 1+2—+28I

mr' r kr)
(B3b)

I
&.e I

'- ((2~o~2Po)

(2sp
I
R

I npp)(npp-z'
nsr2 n E2—E

mr2 n

n'ps)(n'ppIR
I
1sp) '

, (B4)

if only the dipole interaction. with ions is included. Using
E„=—e'/2asn' and treating the terms involving sums
over intermediate states as small quantities this can be
written as

Id-sl - l(2PoIR. I1 o) I'

4 (ao)'( (2s IR Inp)(np IRI 1s)

V3 ( r J 5 a (1/2 —1/e )(2p I
R

I
1s)

(2s I
R

I
n'p)(e'p

I
R

I
1s))+p' (B5)

(1—1/e")(2plRI is) &

where R, matrix elements have been replaced by those
for R taken between radial wave functions. These radial
matrix elements were calculated by Gordon, ""and

2' G. Wentzel, Z. Physik 38, 518 (1926).
~ J. Wailer, Z. Physik 38, 635 (1926).
~5 W. Gordon, Ann. Physik 2, 1031 (1929).
"See also Eq. (63-4) in H. A. Bethe and E. E. Salpeter,

Qguntgm Mechanics of One- and Two-Electron Systems (Academic
Press Inc. , New York, 1957).

for "blue" and "red" components. (The quadratic-
Stark-effect coeKcient, i.e., the second-order dipole
term, was first evaluated by WentzeP' and Wailer. ")

In a consistent perturbation theory, the changes in
the absolute values squared of the dipole moments enter-
ing the quasistatic term in Eq. (4) must also be con-
sidered, i.e.,
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with them Eq. (85) becomes

)ay ') pN' —3n+2 "
p Sq

I d-s I

'-
I (2PO IR* I »0) I

' 1+16I —
I I

1+2"(v'10)2 I
I'I I'—l(~' —1)-'(~'—4)-'

-3 ke'+3N+ 2 k 5)

+2'(+10)
"expL —2x—'I'(tan 'gx+tan '2+x))

(86)
(1+x)'(1+4x)'(1+Sx/5) '

(To extend the summation over intermediate states
lying in the continuum, the sum over e can be written
as an integral involving the variable x= —1/e' between
the limits x=0 and x~~.) Summing and integrating
numerically follows

the upper and lower signs applying to blue and red
wings, respectively. For electrons the term 2

~
h~/6E~

~

'I'
has the opposite sign, as it stems from the first-order
quadrupole interaction. From Eqs. (33) and (BS) the
total wing proij. le is thus approximately

)d s)'~(2po)R, [iso)('L1+56(ao/r)'7 (87)
L((u) L~(o)) R+DR w2 (1—DR,)

V3n- (h)'I'
L(~)

~

—
I

S 1+DR„+2
f

cu ['12 knz) 6E~

where according to Eq. (82), e.g. , the plus sign ss
associated with the red component. The contributions
to the correction term from bound states e&3 and con-
tinuum states are 5S and 13%, respectively, with 29%
from n=2. (This result differs considerably from a
recently published value" even if the X' factor variation
included in Ref. 19 were accounted for. With the present
result, the correction for this combined quantity is only
half as large and of opposite sign. )

Using Eqs. (83) and (87) the quasistatic broaden-
ing of the shifted components can now be computed
beyond the usual first-order dipole approximation from
L(~) (d s(r)~'47rAr'~dr/d~~. Inverting the various
power series, normalizing and adding a correction AE„
for the quasistatic ion broadening of the unshifted com-
ponent through quadrupole and quadratic Stark e6'ects
one then obtains for broadening by ions

%70 (1+AR,), (89)
6~a

d (x)= 12(—)
—156~ —

) =—( ) . (810)

With S„(AX)= ~347rlVr'~ dr/ddt~ and dividing by the
Holtsmark result from Eq. (37) this yields

1 (r ' a)4 ao ' ' AX '~'
~R.(~~)=

~

— 4S —
~

—S32—
2'I'ka r i r

(811)

with hR, from Eq. (26) and neglecting &2' against 70.
It remains to calculate the contribution AE„from the

unshifted component. The quasistatic shift of this
component through first-order quadrupole interactions
and quadratic Stark eGect is

AM

~(70~&) (BS) where r is still to be determined from Eq. (810).This
6EJI must be done numerically.


