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From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
TFor the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of %.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for

systems with short-wavelength density oscillations.

I. INTRODUCTION

N recent years a great deal of attention has been
given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systems (atoms, molecules, solids, etc.) the electronic
density is nonuniform.

It is then a matter of interest to see how properties
of the homogeneous gas can be utilized in theoretical
studies of inhomogeneous systems. The well-known
methods of Thomas-Fermi' and the Slater? exchange
hole are in this spirit. In the present paper we use the
formalism of Hohenberg and Kohn?® to carry this
approach further and we obtain a set of self-consistent
equations which include, in an approximate way, ex-
change and correlation effects. They require only a
knowledge of the true chemical potential, u,(%), of a
homogeneous interacting electron gas as a function of
the density ».

We derive two alternative sets of equations
[Egs. (2.8) and (2.22)] which are analogous, respec-
tively, to the conventional Hartree and Hartree-Fock
equations, and, although they also include correlation
effects, they are no more difficult to solve.

The local effective potentials in these equations are
unique in a sense which is described in Sec. II. In par-
ticular, we find that the Slater exchange-hole potential,
besides its omission of correlation effects, is too large
by a factor of 2.

Apart from work on the correlation energy of the
homogeneous electron gas, most theoretical many-body
studies have been concerned with elementary excita-
tions and as a result there has been little recent progress
in the theory of cohesive energies, elastic constants,
etc., of real (ie., inhomogeneous) metals and alloys.
The methods proposed here offer the hope of new
progress in this latter area.
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In Secs. III and IV, we describe the necessary modifi-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.

Of course, the simple methods which are here pro-
posed in general involve errors. These are of two general
origins?: a too rapid variation of density and, for finite
systems, boundary effects. Refinements aimed at re-
ducing the first type of error are briefly discussed in
Appendix II.

II. THE GROUND STATE

A. Local Effective Potential

It has been shown? that the ground-state energy of an
interacting inhomogeneous electron gas in a static po-
tential v(r) can be written in the form

1 n(@®)n (") ,
E= /v(r)n(r) dr—l—; // —lr——r'l—dr dr —I—G[n]t R o

where 7(r) is the density and G[#] is a universal func-
tional of the density. This expression, furthermore, is a
minimum for the correct density function #(r). In this
section we propose first an approximation for G[#],
which leads to a scheme analogous to Hartree’s method
but contains the major part of the effects of exchange
and correlation.

We first write

Gn]=T[n]+Ex[n], (2.2)

where T,[n] is the kinetic energy of a system of non-
interacting electrons with density® #(r) and Ex[#] is,
by our definition, the exchange and correlation energy
of an interacting system with density »(r). For an arbi-
trary n(r), of course, one can give no simple exact ex-
pression for Ex[#]. However, if n(r) is sufficiently
slowly varying, one can show? that

Bulnl= f n(©)eln(®)) dr, 2.3)

4 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965).
5 For such a system it follows from HK that the kinetic energy
is in fact a unique functional of the density.
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where ex.(#) is the exchange and correlation energy per
electron of a uniform electron gas of density #. Our sole
approximation consists of assuming that (2.3) consti-
tutes an adequate representation of exchange and corre-
lation effects in the systems under consideration. We
shall regard e as known from theories of the homo-
geneous electron gas.®

From the stationary property of Eq. (2.1) we now
obtain, subject to the condition

f on(r) dr=

T[]
/ an<r>{¢(r>+ o +nxc(n(r>)} dr=0; (2.5)

here
p(r)=

(2.4)

the equation

) ar’, (2.6)

and
uxe(n)=d (nex.(n))/dn 2.7

is the exchange and correlation contribution to the
chemical potential of a uniform gas of density #.
Equations (2.4) and (2.5) are precisely the same as
one obtains from the theory of Ref. 3 when applied to a
system of noninteracting electrons, moving in the given
potential ¢(r)+puxc(n(r)). Therefore, for given ¢ and
u, one obtains the #(r) which satisfies these equations
simply by solving the one-particle Schrédinger equation

—2VHLo@+uxe (@) () = ei(r) , (2.8)

and setting

N
n(m=2% [¥:(n)]?,

=1

(2.9)

where N is the number of electrons.

It is physically very satisfactory that us, appears in
Eq. (2.8) as an additional effective potential so that
gradients of ug, lead to forces on the electron fluid in a
manner familiar from thermodynamics.

Equations (2.6)-(2.9) have to be solved self-consist-
ently: One begins with an assumed #(r), constructs
o(r) from (2.6) and px. from (2.7), and finds a new #(r)
from (2.8) and (2.9). The energy is given by

n(r)n(r’)
b= Z .__// ]r—’]
+ / (1) [exe (1 (1) )—pxe(n(r) )] dr.  (2.10)

" The results of our procedure are exact in two limiting
cases:

(@) Slowly varying density. This regime is character-
ized by the condition 7,/7¢&1, where 7, is the Wigner-

6 For a review see D. Pines, Elementary Excitations in Solids
(W. A. Benjamin, Inc., New York, 1963).
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Seitz radius and 7, is a typical length over which there
is an appreciable change in density. In this case, as
shown in HK, we can expand the true exchange and
correlation energy as follows:

E[n]= / exo(n)n dr
+ f ()| Va2 drt-- -, (2.10)

where ex,® is the exchange and correlation portion of
the second term in the energy expansion in powers of
the gradient operator. In this regime we may similarly
expand 7',[#] in the form

T{n]= / 75 (37%1)%3n dr

—I—/t‘”(n)]an2 dr+---. (2.12)
From HK, expecially Sec. ITI 2, we have the following
expression for the energy'

E[n]= /v(r)n(r) dr+ ( ne) drdr

=7

+ [ 00() dr+ f a® ()| Val2drt- -+, (2.13)

where
go(n)= {5 B3n*n)*’+exo(n) }

8@ ()= { x.® (0)+1@ (n)} 1. (2.15)

Since in our approximation (2.3), the |V|? term of
Eq. (2.11) is neglected, it is clear that for a gas of slowly
varying density our expression (2.10) for the energy has
errors of the order | V|2, or equivalently, of the order
1’0_2.

Surprisingly, our procedure determines the density
with greater accuracy, the errors being of order |V|*.
This is shown in Appendix I.

At this point a comparison of our procedure and that
of Slater? may be appropriate. For one thing, Slater’s
original work does not include correlation effects.” But
even the exchange correction is different from ours. To
obtain Slater’s exchange correction, one may begin by
writing the Hartree-Fock exchange operator in the form
of an equivalent potential acting on the kth wave

(2.14)
and

function

- /%*(rm,*(r o), /

[r—r'|

i (@ye(r) , (2.16)

7 Subsequent to the original paper by Slater, there have been

several attempts to add correlation corrections: S. Olszewski,

Phys. Rev. 121, 42 (1961); J. E. Robinson, F. Bassani, B. S,

Knox, and J. R. Schrieffer, Phys. Rev. Letters 9, 215 (1962),

Ww. A. Harrison, Phys. Rev 136, A1107 (1964); ’s. Lundqvist
and C. W. Ufford Phys. Rev. 139 A1l (1965).
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where the symbols r and r’ are understood to include
electron spin coordinates and integration is understood
to include summation over spin coordinates. One next
assumes that the wave functions can be approximated
by plane waves which results in

kF(r)rl . sz(r)—'kz
s L 2kEe(D)

k+kp(r)
k"‘kp(l‘)

Uxk (l‘) =—

n‘ ] . @)

where kp(t)={3n(r)}'. Finally, one averages vy
over the occupied state %, which results in

v (1) = — (3/2m){3n%n () }113. (2.18)

In our procedure (neglecting correlation) we obtain, in
place of Slater’s vx

px(r)=— (1/m){3n’n (1) }'%, (2.19)

smaller by a factor of 4. From the discussion in Appen-
dix I, it follows that while ux gives the exchange correc-
tion of the density correct to order |V|? inclusive, vx
[as indeed any other function of #(r)] leads to errors of
order | V|2 The same comment applies to any extension
of Slater’s exchange to include correlation in the self-
consistent potential.

We may note that our result is equivalent to taking,
not the average of (2.17), but rather its value at
k=kr(r); ie., the effective exchange potential for a
state at the top of the Fermi distributions. This is
physically understandable since density adjustments
come about by redistribution of the electrons near the
Fermi level.

(b) High density. This regime is characterized by the
condition 7,/a¢X1, where @, is the Bohr radius. In this
case, the entire exchange and correlation energy is
smaller than the kinetic energy by a factor of order
(rs/ao) and hence our inaccuracy in representing these
portions becomes negligible.

The reader will have noticed that while in Eq. (2.3)
we approximate the exchange and correlation energy by
the expression valid for a slowly varying density, we
made no approximation for the kinetic-energy func-
tional 7')[#] of Eq. (2.2). This procedure is responsible
for the exactness of the high-density limit, even when
the density is rapidly varying, such as in the vicinity
of an atomic nucleus.

We now make a few further remarks about our ap-
proximation. If in Eq. (2.2), we had approximated
T,[n] by its form appropriate to a system of slowly
varying density,

T.[n]— f & (3n2n)on dr (2.20)

we would have been led to the generalization of the

Thomas-Fermi method suggested by Lewis.® This

method shares with the Thomas-Fermi method two

shortcomings: (1) It leads to an infinite density near
8 H. W. Lewis, Phys. Rev. 111, 1554 (1958).
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an atomic nucleus, and (2) it does not lead to quantum
density oscillations,* such as the density fluctuations
due to atomic shell structures. By not making the re-
placement (2.20), we avoid both of these shortcomings.

Let us now qualitatively discuss the appropriateness
of our procedure for various classes of electronic
systems.

In atoms and molecules one can distinguish three
regions: (1) A region near the atomic nucleus, where
the electronic density is high and therefore, in view of
case (b) above, we expect our procedure to be satis-
factory. (2) The main “body” of the charge distribution
where the electronic density #(r) is relatively slowly
varying, so that our approximation (2.3) for e is ex-
pected to be satisfactory as discussed in case (a) above.
(3) The “surface” of atoms and the overlap regions in
molecules. Here our approximation (2.3) has no
validity and therefore we expect this region to be the
main source of error. We do not expect an accurate de-
scription of chemical binding. In large atoms, of course,
this “surface” region becomes of less importance. (The
surface is more satisfactorily handled in the nonlocal
method described under B below.)

For metals, alloys, and small-gap insulators we have,
of course, no surface problem and we expect our ap-
proximation (2.3) to give a good representation of ex-
change and correlation effects. In large-gap insulators,
however, the actual correlation energy will be con-
siderably reduced compared to that of a homogeneous
electron gas of the same density.

B. Nonlocal Effective Potential

Instead of the Hartree-type procedure discussed in
Sec. ITA it is also possible to obtain a scheme which in-

cludes exchange effects exactly. We write in place of
Eq. (2.3)

E[n]=EInl+ / n@en@®)de  (2.21)

where Ex[n] is the exchange energy of a Hartree-Fock
system of density #(r) and e () is the correlation energy
per particle of a homogeneous electron gas. Applying
this ansatz in conjunction with Eq. (2.2) and the sta-
tionary property of (2.1) leads to the following system
of equations:

=3V (1) e (1) }:i(r)

nl(r,r')
- / BT ) d = i), (2.22)

=]
where
pe=d(nes)/dn, (2.23)
mE=E B, 2

and ¢(r), #(r) are defined as before, Egs. (2.6) and (2.9).
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The energy is now

n(r)n(r’) v
= Ze'_"// ]
T
+ [ n©){eon () —oln ()} dr.  (2.25)

This procedure may be regarded as a Hartree-Fock
method corrected for correlation effects. It is no more
complicated than the uncorrected Hartree-Fock method
but, because of the nonlocal operator appearing in Eq.
(2.22), very much more complicated than the method
described in Sec. ITA. Since at least exchange effects
are now treated exactly we must expect, in general,
more accurate results than from the method of Sec. ITA.
In particular, near the surface of an atom the effective
potential now is correctly (—1/7) whereas in Sec. ITA
it approaches zero much faster. Even here, however,
correlation effects are not correctly described near the
surface.

III. FREE ENERGY; SPECIFIC HEAT

We can generalize the consideration of the ground
state to finite temperature ensembles by using the finite
temperature generalization of Eq. (2.1) given by
Mermin.® He has shown that the grand canonical po-
tential can be written in the form

/v(r)n(r) dr+4— /‘n( )n(r) dr dr’

e~
+Gn]—u / ndr, (3.1)

where G[#] is a unique functional of the density at a
given temperature 7 and u is the chemical potential. For
the correct » this quantity is a minimum.

In analogy with (2.2) we now write

G[ﬂ] = Ggl:’ﬂ:] ‘I"Fxc[n] 5

G(n]=Tn]—=S{n], (3.3)

where T',[n] and S,[#] are, respectively, the kinetic
energy and entropy of noninteracting electrons with
density #(r) at a temperature 7; and Fxo[ 7 is, by defini-
tion, the exchange and correlation contribution to the
free energy. For the latter quantity, we make the
approximation

Fy[n]= / n(r) fre (0 (x)) dr,

(3.2)
here

(3.4)

where fi.(%) is the exchange and correlation contribu-
tion to the free energy per electron of a uniform electron

® N. D. Mermin, Phys. Rev. 137, A1441 (1965).
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gas of density #; i.e.,

Jre(®)= f(n)— fo(n) , 3.5)

where f and f; are the free energies per electron of an
interacting and noninteracting gas, respectively.

0= o()+ OG[n]/n(0) tuxc(n(X))—p, (3.6)
where ¢(r) is given, as before, by Eq. (2.6) and
pxo (W)= (1 fxo(n))/dn. 3.7

Equation (3.6) is identical to the corresponding equa-
tion for a system of noninteracting electrons in the
effective potential ¢-+pux,.. Its solution is therefore de-
termined by the following system of equations:

(AT @t imets, (Y
and
BO=E WO/ ety 69)

w is determined as usual by the total number of particles
from Eq. (3.9). This value also represents our approxi-
mation for the chemical potential of the interacting
system.

Of special interest for metals and alloys is the low-
temperature heat capacity. This may be obtained by
making an expansion, in powers of 7, of the above
system of equations. An equivalent, but more con-
venient, method is as follows: From thermodynamics
and Eq. (3.1) we have

__;T(SZ-{-MN)V=—/{¢( )+ Z)}
(5, o

The integral vanishes because of the stationary property

of @, so that
S[n]z - (aG[n]/OT),.(,),V. (311)

The same argument, applied to a system of noninter-
acting electrons of density #(r), gives

S[n]=—(0G:[n]/0T)nr),v. (3.12)

Combining Eqgs. (3.11), (3.12), (3.2), and (3.4), we
obtain

S[n]=Ss[n]+/n(r) (0 fxe(#)/3T)n(ry, vdx. (3.13)

S[xn]=

For small 7 it is well known that .S is given by
Si[n]=Nin*k*rgs(u) ,

where g, is the single-particle density of states in the
effective potential ¢-Fpux. at zero temperature; further,

(@ fxe(1)/37)n(ry, v =3mR27[ g (un (1) )— go (o () )] ,
(3.15)

(3.14)
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where uy(z) and po(n) are, respectively, the chemical
potentials of an interacting and a noninteracting homo-
geneous gas of density », and g and g, are the respective
densities of states.!

It follows immediately that the low-temperature heat
capacity is given by

C,= YT, (3. 16)
where
v=%ﬁkﬂ[wgsm>+ / 16 o ()= 20 o))} dr] .
(3.17)

We shall not present a treatment, analogous to
Sec. IIB, in which exchange effects are included exactly.
The development is straightforward but leads to a well-
known divergence in the low-temperature specific heat.

IV. SPIN SUSCEPTIBILITY

To obtain a theory of the spin susceptibility of an
electron gas, we first extend the theory of HK to include
the effects of spin interaction with an external magnetic
field. The result is that if we take the field in the z
direction and write the magnetic-moment density as

m(r)=— (1/20)0[Y+* (W1 (D) —Y1* @Y1 (1) [0),  (4.1)
the ground-state energy can be written in the form
E,,,H=/{v(rjn(r)—H(r)m(r)} dr

%/fgﬂ?mchwmm®1

|r—1

4.2)
where G is a universal functional of # and m, and the

correct m(r), #(r) make (4.2) a minimum.
For small m we expand G in the form

1 ,
G=G[n]—|—£ /G(r,r’; [n]ym(t)m(r') drdr’'+- - - ; (4.3)
the linear term vanishes for a paramagnetic system in
which m=0 when H=0. From the stationary property

of (4.2) we find, for small H, that » is unchanged to first
order and that

—H(r)+ / G(r,t'; [(n])m@')dr'=0, (4.4)

where 7 is the zero-field density. We now formally
invert this equation, which gives

m(r)= f Gt ; [nDH(Y)dr' . 4.5)
For a uniform field this gives for the susceptibility

19
x[n]=;a—H— / m(r) dr= / G,y ; [n])drdr. (4.6)

10 J. M. Luttinger, Phys. Rev, 119, 1153 (1960).
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So far everything is formal and exact. We now write,
in the spirit of the previous sections,

G or'; [n]) =G (o, [n])+Gx (0, [n]) . (4.7)

The second term we approximate as for a slowly
varying gas, which gives

1
XJ=x [+~ f X)) =X (@) dr, (43)

where
Xo[n]= (1/2c)*(N/V) X gs(w) , 4.9)

and X(n), Xo(n) are, respectively, the susceptibilities for
uniform systems with and without interactions.

APPENDIX I: GRADIENT EXPANSION OF
THE DENSITY

In this Appendix we show that for a system of slowly
varying density our procedure gives the density
correct to order |V|? inclusive. When dealing with such
a system we may proceed in two entirely equivalent
ways: (1) We can solve the self-consistent equations,
Egs. (2.8) and (2.9), for #(r), and (2) we can go back
to the underlying variational principle (2.5), make a
gradient expansion and determine #(r) directly. We
shall here follow the second route to estimate the errors
in n(r).

From (2.5) and the expansion (2.12) of T\ [#], we
obtain

p= o (0)+un(n)—1®’ (n) | Vr|2— 2D (n)V?n4-0 (V)
(A1.1)

where p is the chemical potential [cf. HK, Eq. (68)].
Note however that because of our approximation of
keeping only the first term in (2.11), some other contri-
butions of order |V|? are missing in (A1.1).

To solve (Al.1), let us write the external charge

density as
next ()= fo(x/70) , (A1.2)

where 79— (slow spatial variation), and try the
ansatz

n(t)=no(0)+n(r) ,
no(r)= fo(t/r0) (A1.4)

exactly neutralizes the external charge and #, is assumed
to approach zero as o — . Neglecting, for the moment,
the terms of order |V|? in (Al.1) and substituting
(A1.3) into (Al.1), we obtain

(A1.3)
where

1’1/1(1")
k= ] /| '+ (o) +n1 (D p (n0)+0 (n22) .
r—r
(A1.5)
Now define
R=1/r, (AL.6)
and write

ni(r)=f1(R) . (ALT)
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With this notation, (A1.5) becomes

u=re I_Ijzi_RI%IdRI_!_#h(f o(R))
+/1(R)ui’ (fe(R))+0(f2) . (ALS)
We may now write
[iR)=(1/r?) 1 R)+ (1/r) LD R)+-- -+, (AL9)
and
p=pO+ (/P4 (AL10)

The first term of Eq. (A1.9) is correctly determined by
Eq. (A1.8) and not affected either by the inclusion of
terms of order V2 in (A1.5) or by the terms of order f2
in (A1.8). Hence, in spite of the errors of order V2 in
(A1.1), the density given by our procedure is correct to
order 1/7¢* or |V|?% inclusive. Equation (A1.8) shows
that this curious result stems from the infinite range of
the Coulomb interaction.

APPENDIX II: EFFECT OF RAPID DENSITY
OSCILLATION ON EXCHANGE AND
CORRELATION

In Eq. (2.3), we approximated EyJ[#] by the first
term in the gradient expansion. In actual physical
systems, there are quantum density oscillations* whose
effects on exchange and correlation are not included in
the approximation (2.3). Now we put forward a correc-
tion to (2.3) to include such effects.

In HK, the gradient expression for the energy func-
tional is partially summed such that it is also correct
for a system of almost constant density! even when the
density fluctuations are of short wavelength!:

6= f 200 () dr—% f K(—'; n(®)

X{n(@)—n{')}?dr dr,

where K (r—1’; n) is determined by the polarizability
of a homogeneous electron gas at density #, and
r=3(r+1’). To the same approximation,

(A2.1)

1
Euln]= f Heh()) dr— / Kule—t'; n(®))

X{n(@®)—n@))2drdd (A2.2)

where K. is the difference between K of the interacting
homogeneous gas and that of the noninteracting gas at
the same density. We believe that for an infinite system,

1 The second term of HK, Eq. (83) is in error; it should be
——% [K(r’; #(@)){n(x+3r')—nx—4ir')}2 dr'.

The kernel K has the same meaning as in HK.
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such as a metal or an alloy, the second term on the
right-hand side of (A2.2) accounts adequately for the
effect of rapid density change on exchange and
correlation.

This E[n] again leads to a set of Hartree-type
equations like Eq. (2.8), with an addition to the effec-
tive potential given by

: / 0K (r'; ))/d
—5 { xc(l' ,n(r ) n(r)}
X{n(r-+30)—n(r—3r')}2 dr
—Z/Kxc(r—“l‘,; n(f)){n(r)_n(r’)} dr,. (A2,3)

Note that in the random-phase approximation Ky,
vanishes. Hence, in a calculation which includes the
effective potential (A2.3), we need reliable estimates of
K., calculated beyond the random-phase approxima-
tion, which are not available at present.

The addition of (A2.3) to the effective potential ob-
viously makes the solution of the self-consistent equa-
tions much more difficult. However, assuming that the
modification of #(r) produced by this term is small, one
may calculate #(r) and E first without including it, and
then, because of the stationary property, Eq. (2.5),
one can obtain the correction to the energy by evaluat-
ing the second term in (A2.2) with the unmodified
density.

Nole added in proof. We should like to point out that
it is possible, formally, to replace the many-electron
problem by an exactly equivalent set of self-consistent
one-electron equations. This is accomplished quite
simply by using the expression (2.2) [without the ap-
proximation (2.3)] in the energy variational principle.
This leads to a set of equations, analogous to Egs.
(2.4)-(2.9), but with ux(n) replaced by an effective
one-particle potential v, defined formally as

Uxe(1)=0Exe[n]/0n(x).

Of course, an explicit form of vx, can be obtained only
if the functional Ey[n], which includes all many-body
effects, is known. This effective potential will reproduce
the exact density and the exact total energy is then
given by

N 1 n(®)n(r’) ,
E—Zl: 61;—--2‘ // Wdr dr +Ex0[n]

- / U0 (1) 2(x) dr.

Of course, if we make the approximation (2.3) for Ey,
the above exact formulation reverts to the approximate
theory of Sec. II.



