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Self-Consistent Equations Including Exchange and Correlation Effects*
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From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of -';.) Electronic systems at finite temperatures and in
magnetic lelds are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.

I. INTRODUCTION

'N recent years a great deal of attention has been
- - given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systeins (atoms, inolecules, solids, etc.) the electronic
density is nonuniform.

It is then a matter of interest to see how properties
of the homogeneous gas can be utilized in theoretical
studies of inhomogeneous systems. The well-known
methods of Thomas-Fermi' and the Slater' exchange
hole are in this spirit. In the present paper we use the
formalism of Hohenberg and Kohn' to carry this
approach further and we obtain a set of self-consistent
equations which include, in an approximate way, ex-
change and correlation effects. They' require only a
knowledge of the true chemical potential, tie(e), of a
homogeneous interacting electron gas as a function of
the density n.

We derive two alternative sets of equations
[Eqs. (2.8) and (2.22)) which are analogous, respec-
tively, to the conventional Hartree and Hartree-Fock.
equations, and, although they also include correlation
effects, they are no more difficult to solve.

The local effective potentials in these equations are
unique in a sense which is described in Sec. II. In par-
ticular, we And that the Slater exchange-hole potential,
besides its omission of correlation effects, is too large
by a factor of —,'.

Apart from work. on the correlation energy of the
homogeneous electron gas, most theoretical many-body
studies have been concerned with elementary excita-
tions and as a result there has been little recent progress
in the theory of cohesive energies, elastic constants,
etc. , of real (i.e., inhomogeneous) metals and alloys.
The methods proposed here offer the hope of new
progress in this latter area.

~ Supported in part by the U. S. Ofhce of Naval Research.'L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).' J. C. Slater, Phys. Rev. 81, 385 (1951).' P. Hohenberg and W. Kohn, Phys. Rev. 136, 3864 (1964l;
referred to hereafter as HK.

In Secs. III and IV, we describe the necessary Inodid-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.

Of course, the simple methods which are here pro-
posed in general involve errors. These are of two general
origins4: a too rapid variation of density and, for 6nite
systems, boundary effects. Refinements aimed at re-
ducing the 6rst type of error are brieQy discussed in
Appendix II.

II. THE GROUND STATE

A. Local Effective Potential

It has been shown' that the ground-state energy of an
interacting inhomogeneous electron gas in a static po-
tential n(r) can be written in the form

1 e(r)e(r')
Z= tt(r)e(r) dr+ — dr dr'+G[e),

r r'[—
i:,, (2.1)

where e(r) is the density and G[e) is a universal func-
tional of the density. This expression, furthermore, is a
minimum for the correct density function e(r). In this
section we propose first an approximation for G[e),
which leads to a scheme analogous to Hartree's method
but contains the major part of the effects of exchange
and correlation.

We first write

G[e)=T.[e)yZ, [e), (2.2)

where T,[e) is the kinetic energy of a system of non-
interacting electrons with density e(r) and F,[e) is,
by our definition, the exchange and. correlation energy
of an interacting system with density e(r). For an arbi-
trary e(r), of course, one can give no simple exact ex-
pression for E,[e). However, if e(r) is sufliciently
slowly varying, one can show' that

F,[e)= e(r)e, (e(r)) dr, (2.3)

4 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965).
~ For such a system it follows from HK that the kinetic energy

is in fact a unique functional of the density.
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SELF —CONSISTENT EQUATIONS A 1135

where the symbols r and r' are understood to include
electron spin coordinates and integration is understood
to include summation over spin coordinates. One next
assumes that the wave functions can be approximated
by plane waves which results in

()
(2.17)

k —kr(r)

kr(r) — krs(r) k—s k+kr r
1+ ln

2kkr (r)
w„i, (r)=—

where kr(r)—= {3s rt(r)}Us. Finally, one averages v &

over the occupied state k, which results in

n„(r) = —(3/2') {3s'I(r)}'" (2.18)

In our procedure (neglecting correlation) we obtain, in
place of Slater's v„

t *()=—( /~){ ~'I()}'" (2 )

smaller by a factor of —', . From the discussion in Appen-
dix I, it follows that while p gives the exchange correc-
tion of the density correct to order

~
V~', inclusive, s

t as indeed any other function of e(r)] leads to errors of
order

~
V ~'. The same comment applies to any extension

of Slater's exchange to include correlation in the self-
consistent potential.

We may note that our result is equivalent to taking,
not the average of (2.17), but rather its value at
k=kr(r); i.e., the effective exchange potential for a
state at the top of the Fermi distributions. This is
physically understandable since density adjustments
come about by redistribution of the electrons near the
Fermi level.

(b) High dertsity. This regime is characterized by the
condition r,/a, ((1,where as is the Bohr radius. In this
case, the entire exchange and correlation energy is
smaller than the kinetic energy by a factor of order
(r,/as) and hence our inaccuracy in representing these
portions becomes negligible.

The reader will have noticed that while in Eq. (2.3)
we approximate the exchange and. correlation energy by
the expression valid for a slowly varying density, we
made no approximation for the kinetic-energy func-
tional T,Lnj of Eq. (2.2). This procedure is responsible
for the exactness of the high-density limit, even when
the density is rapidly varying, such as in the vicinity
of an atomic nucleus.

We now Inake a few further remarks about our ap-
proxirnation. If in Eq. (2.2), we had approximated
T,LN) by its form appropriate to a system of slowly
varying density,

B. Nonlocal Effective Potential

Instead of the Hartree-type procedure discussed in
Sec. IIA it is also possible to obtain a scheme which in-
cludes exchange effects exactly. We write in place of
Eq. (2.3)

F,PN)=E Lrtj+ rt(r)e, (e(r)) dr (2.21)

where Z LNj is the exchange energy of a Hartree-Fock
system of density I(r) and e, (m) is the correlation energy
per particle of a homogeneous electron gas. Applying
this ansatz in conjunction with Eq. (2.2) and the sta-
tionary property of (2.1) leads to the following system
of equations:

Ni(r, r')

, 4'(r') d~= e'4'(r), (2 22)
lr —r'I(2.20)

where
T,Lm| ~ —,', (3x'I)'t'rt dr,

an atomic nucleus, and (2) it does not lead to quantum
density oscillations, 4 such as the density fluctuations
due to atomic shell structures. By not making the re-
placement (2.20), we avoid both of these shortcomings.

Let us now qualitatively discuss the appropriateness
of our procedure for various classes of electronic
systems.

In atoms and molecules one can distinguish three
regions: (1) A region near the atomic nucleus, where
the electronic density is high and therefore, in view of
case (h) above, we expect our procedure to be satis-
factory. (2) The main "body" of the charge distribution
where the electronic density n(r) is relatively sjowly
varying, so that our approximation (2.3) for e„, is ex-
pected to be satisfactory as discussed in case (a) above.
(3) The "surface" of atoms and the overlap regions in
mole cules. Here our approximation (2.3) has no
validity and therefore we expect this region to be the
main source of error. We do not expect an accurate de-
scription of chemical binding. In large atoms, of course,
this "surface" region becomes of less importance. (The
surface is more satisfactorily handled in the nonlocal
method described under 8 below. )

For metals, alloys, and small-gap insulators we have,
of course, no surface problem and we expect our ap-
proximation (2.3) to give a good representation of ex-
change and correlation effects. In large-gap insulators,
however, the actual correlation energy will be con-
siderably reduced compared to that of a homogeneous
electron gas of the same density.

we would have been led to the generalization of the
Thomas-Fermi method suggested by Lewis. This
method shares with the Thomas-Fermi method two
shortcomings: (1) It leads to an in6nite density near

' H. W. Lewis, Phys. Rev. 111, 1554 (1958).

p.=d (rte.)/dN,
I

I (r r )=Z It't(r)A*(r )
j~1

(2.23)

(2.24)

and p(r), rt (r) are defined as before, Eqs. (2.6) and (2.9).
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With this notation, (A1.5) becomes

W. KOHN AND L. J. SHAM

such as a metal or an alloy, the second term on the
right-hand side of (A2.2) accounts adequately for the
eGect of rapid density change on exchange and
correlation.

This F,fng again leads to a set of Hartree-type
equations like Eq. (2.8), with an addition to the effec-
tive potential given by

fi(R')
dR'+I s(fs(R) )

[R—R'[

+fr(R)s.'(fs(R))+o(fr') (A1 8)

We may now write

fi(R)=(1/ro')fi"'(R)+(1/re')fi"&(R)+, (A1.9) (&If y.1

2

p =p"'+ (1/ro') p"'+ (A1.10) X{e(r+sr') —N(r —rsr') }sdr'

The 6rst term of Eq. (A1.9) is correctly determined by
Eq. (A1.8) and. not affected either by the inclusion of
terms of order V' in (A1.5) or by the terms of order fir
in (A1.8). Hence, in spite of the errors of order 7' in
(A1.1), the density given by our procedure is correct to
order 1/rs' or ~V'~', inclusive. Equation (A1.8) shows
that this curious result stems from the infinite range of
the Coulomb interaction.

APPENDIX II: EFFECT OF RAPID DENSITY
OSCILLATION ON EXCHANGE AND

CORRELATION

In Eq. (2.3), we approximated E„,Lej by the erst
term in the gradient expansion. In actual physical
systems, there are quantum density oscillations' whose
effects on exchange and correlation are not included in
the approximation (2.3). Now we put forward a correc-
tion to (2.3) to include such effects.

In HK, the gradient expression for the energy func-
tional is partially summed such that it is also correct
for a system of almost constant density' even when the
density Quctuations are of short wavelength":

l
GLriJ= gs(N(r)) dr E—(r——r'; n(r))

2

X(rs(r) —e(r'))'dr dr', (A2.1)

where &(r—r', m) is determined by the polarizability
of a homogeneous electron gas at density n, and
r= sr(r+r'). To the same aPProximation,

p,Lrig= m(r)e„, (N(r)) dr —— Z„,(r—r', rs(r))
2

—2 E,(r—r', rr(r) )(e(r)—rr(r')) dr'. (A2.3)

Note that in the random-phase approximation E„,
vanishes. Hence, in a calculation which includes the
eRective potential (A2.3), we need reliable estimates of
E„„calculated beyond the random-phase approxima-
tion, which are not available at present.

The addition of (A2.3) to the effective potential ob-
viously makes the solution of the self-consistent equa-
tions much more di%cult. However, assuming that the
modification of m(r) produced by this term is small, one
may calculate n (r) and Z first without including it, and
then, because of the stationary property, Eq. (2.5),
one can obtain the correction to the energy by evaluat-
ing the second term in (A2.2) with the unmodified
density.

cVo&e added irr Proof We shou. ld like to point out that
it is possible, formally, to replace the many-electron
problem by an exactly equivalent set of self-consistent
one-electron equations. This is accomplished quite
simply by using the expression (2.2) Lwithout the ap-
proximation (2.3)$ in the energy variational principle.
This leads to a set of equations, analogous to Eqs.
(2.4)—(2.9), but with p, (ri) replaced by an effective
one-particle potential v „dined formally as

v„,(r)—=5E„,Leg/Bn (r) .

Of course, an explicit form of v, can be obtained only
if the functional E„,LNj, which includes all many-body
effects, is known. This effective potential will reproduce
the exact density and the exact total energy is then
given by

X(e(r)—e(r')) s dr dr' (A2.2)
r——

i
where K„,is the di6'erence between K of the interacting
homogeneous gas and that of the noninteracting gas at
the same density. We believe that for an infinite system,

N(r) e(r')
dr dr'+E, tierj

t„(r) N(r) dr.

"The second term of HK, Eq. (83) is in error; it should be

E(r'; e r))(e r+ x') —e(r —~~r'))'dx'.

@he kernel E has the same meaning as in HK.

Of course, if we make the approximation (2.3) for E„,
the above exact formulation reverts to the approximate
theory of Sec. II.


