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It is apparent from the equations for the reduced matrix
elements that

h’y= 8uB, (AlO)

where up is the Bohr magneton and g is a constant
usually between £ and 2.

Note added in proof. The conditions which were placed
onI' and X in the integral formulation which is given by
Eq. (3) are more restrictive than necessary. C. P. Yang
and C. V. Heer have shown that an integral solution of
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Eq. (2) exists if a part of I' commutes with Ho. Then
Eq. (2) has the integral solution

o()= / T asTH)

XLV /in—=3T0p—p(V/ihA-3T1) I} 0T (s)

where 7'(s)=exp[— (}To—i#1Ho)s]. No restrictions
are placed on A and Ty, and T'y>0 is sufficient.
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A method is outlined for calculating nonrelativistic eigenvalues and wave functions for a two-electron
P state of odd parity, and for evaluating the mass polarization and all of the relativistic corrections, apart
from the radiative terms. Calculations have been made for the low-lying P states of He and the 2!P state
of Li* using up to 560 terms in the expansion of the wave function. The nonrelativistic eigenvalues converge
to within an accuracy of from 107 cm™ to 1072 cm™. The values of the mass polarization and of the relativ-
istic corrections converge more rapidly than this, so that the total theoretical ionization energy is esti-
mated to be correct to within an error of not more than 1072 cm™, i.e., considerably less than the experi-
mental error, in the case of all of the states considered. The difference between the theoretical and experi-
mental term values is in no case greater than 0.1 cm™ in absolute magnitude, and is presumed to be due to
the contributions from the radiative terms, which have not been included in the calculation. The term
value obtained for the 2P state of Li* confirms the identification of the line at 9581.42 A in the Li* spectrum

as belonging to the 215-2'P transition.

I. INTRODUCTION

N this paper, we outline a method for determining
two-electron atom P-state term values in which the
contributions from the mass-polarization and all of the
relativistic corrections, apart from the Lamb shift,
have been taken into account. Computations have been
carried out for the low-lying P states of helium, and the
21P state of Lit, and in each case the results converge
to an accuracy exceeding that of the experimental
measurements. The same methods have also been used
to compute the fine-structure splitting of the 23P and
33P levels of helium, the results for which have been
published previously.!

The classical papers of Breit on the angular depend-
ence of a two-electron P-state wave function? and the
fine-structure splitting of the helium 23P level® appeared
soon after the basic work of Hylleraas on the ground
state.*% Subsequent calculations for the P state were
mainly performed with the object of determining the
fine structure of the 3P levels, and in contradistinction

(11£§)Schiff, C. L. Pekeris, and H. Lifson, Phys. Rev. 137, A1672
965).

2 G. Breit, Phys. Rev. 35, 569 (1930).

3 G. Breit, Phys. Rev. 36, 383 (1930).

4 E. A. Hylleraas, Z. Physik 48, 469 (1928).

5 E. A. Hylleraas, Z. Physik 54, 347 (1929).

to the case of the S state, no complete calculation of the
relativistic corrections for a two-electron P state has up
till now been made, no doubt in view of their greater
complexity. We shall therefore give considerable de-
tail in the following exposition.

At the time when the work to be described below was
started, the most accurate calculations for a two-electron
P state were those of Araki et al.® and of Traub and
Foley.” The latter authors were able to obtain a theoreti-
cal ionization energy within 15 cm™ of the experimental
value for the helium 23P state by optimizing the values
adopted for the screening constants for the two elec-
trons, and by including 18 terms in the expansion of the
wave function. We set out with the aim of computing
ionization energies for two-electron P states to an
accuracy which would at least match that of the most
recent experimental data®? (40.03 cm™!). The method
used to determine the nonrelativistic eigenvalues and
wave functions is an extension of that developed by one
of us for excited S states,!® the wave function being

6 G. Araki, K. Mano, and M. Ohta, Progr. Theoret. Phys.
(Kyoto) 22, 469 (1959).

7J. Traub and H. M. Foley, Phys. Rev. 116, 914 (1959).

8 G. Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958).

9 G. Herzberg and H. R. Moore, Can. J. Phys. 37, 1293 (1959).

10 C, L. Pekeris, Phys. Rev. 127, 509 (1962).
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developed into a series of perimetric coordinates.!!
With 220 terms in the expansion of the wave function,
the nonrelativistic ionization energy for the 23P state
of helium was found to converge to within about
0.2 cm™.!2 Optimizing the values of the screening con-
stants, following Traub and Foley, reduced the in-
accuracy to about 0.002 cm~! with the same number of
terms, and it was therefore decided to embark on a more
extensive program of calculation. Using up to 560 terms
in the expansion of the wave function, eigenvalues were
obtained for the 2'P, 23P, 3P, 3P, 41P, and 43P states
of helium and the 21P state of Li*, the results converging
to within an accuracy of 10~ to 10~2 cm™. For each of
these states, we have also, for the first time, computed
the values of all of the relativistic corrections apart from
the radiative terms. These corrections converge more
rapidly than the nonrelativistic eigenvalues, and the
total theoretical ionization energy is thus subject to an
inaccuracy of not more than 10~2 cm™, i.e. less than
that of experiment, for all of the states considered. The
difference between the theoretical and experimental
term values is in no case greater than 0.1 cm™, and is
presumably due to the contributions from the radiative
terms. Nonrelativistic eigenvalues and wave functions
of the same order of accuracy have recently been ob-
tained for the 23P state of helium by Schwartz,'® who
has used them to compute the fine-structure splitting
of this level. With his choice of base functions, Schwartz’s
nonrelativistic eigenvalues are more accurate than those
obtained by the present authors using a given number of
terms in the expansion.

The computations on the 2'P state of Li* were per-
formed in order to check the previously assumed term
value for this level, in view of the uncertainty in the
position of the 215-2'P line in the Li+ spectrum. To-
gether with the 215 term value computed by one of us,™
the results confirm the identification of the line at about
9581 A as belonging to the 215—2'P transition.!®

The methods used for solving the nonrelativistic
equation are discussed in Sec. II of this paper, and the
evaluation of the mass polarization and relativistic cor-
rections is described in Sec. III. In Sec. IV, the numeri-
cal results are tabulated and discussed. The appendices
contain an outline of the methods used to reduce some
of the sixfold integrals occurring in the calculation, in-
cluding some explicit formulas for the evaluation of the
resulting threefold integrals.

II. THE NONRELATIVISTIC EIGENVALUES
A. The Variational Equations

The nonrelativistic Schrodinger equation for a two-
electron atom, assuming an infinitely heavy nucleus,

11 C, L. Pekeris, Phys. Rev. 112, 1649 (1958).
(112 C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057
962).
13 C, Schwartz, Phys. Rev. 134, A1181 (1964).
14 C, L. Pekeris, Phys. Rev. 126, 143 (1962).
15T, G. Toresson and B. Edlén, Arkiv Fysik 23, 117 (1963).
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is
zZ Z 1
V12¢+V22¢+2(E+*+——“)¢=0, (1)

71 7o 73

where 7; and 7, are the distances of the electrons from
the nucleus, 73 is the interelectron distance, Z is the
nuclear charge, and Vi? and V,? are the Laplacian
operators with respect to the coordinates of the two
electrons. Lengths and the energy are expressed in
atomic units. The equation may also be written
symbolically

(Fe—E}=0, 0)
where 3C is the Hamiltonian operator, and we solve this
equation by using the equivalent variational form

5 / Y(3e— E)dr=0. A3)

The integration is taken over the six-dimensional space
of the two electrons, and we will describe the set of
coordinates used in some detail, as they will also be
employed in computing the relativistic corrections
(see Appendix A).

The most suitable set of coordinates to describe our
system is one in which the shape of the triangle formed
by the nucleus and the two electrons is specified by the
variables 71, 75, and 7; defined above, while the orienta-
tion of this triangle in space is given in terms of three
Eulerian angles. Since the Hamiltonian is invariant
with respect to rotation about any axis through the
nucleus, the dependence of the wave function on the
Eulerian angles may be determined uniquely. Any
integral similar to that occurring in Eq. (3) may there-
fore easily be reduced to a threefold integral over the
variables 71, 72, and 3.

The angular dependence of a two-electron P-state
wave function has been considered in detail by Breit?
and by Eriksson,'¢ and we shall use Breit’s form for the
wave function. Following Hylleraas,* Breit uses the
Eulerian angles ¢, ¢’ and ¢, which are simply related to
the spherical polar coordinates (r1,01,¢1) and (72,02,¢2) of
the two electrons. The angles 6’ and ¢’ are equal re-
spectively to 6; and ¢;, and hence describe the position
of the line joining electron 1 to the nucleus, while ¢ is
the angle between the azimuthal plane through this
line and the ri, r; plane, as shown in Fig. 1. Hylleraas
also introduces the angle 6 included between r; and r.,
and gives relations between the two sets of angles
(01,61,02,02) and (0,0',¢',¢). Recently, Bhatia and
Temkin'? have given a comprehensive treatment of the
angular dependence of a two-electron state of arbitrary
angular momentum, using a more symmetric choice of

(1;0435 Eriksson, Nova Acta Regiae Soc. Sci. Upsaliensis 11, No. 9
(1;7 62) K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050
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F16. 1. Angular coordinates for a two-electron atom.

Eulerian angles which have simple properties under
interchange of the two electrons.

We are only interested in those P states which may be
considered asymptotically as combinations of single
electron 1s and np states, as the so-called “doubly
excited” states have much higher energies, and lie in
the continuum. We shall only, therefore, consider P
states of odd parity, and following Breit? we write the
wave function in the form

Y= F(ri,rs,0) cosfi==F(r1,7s,0) cosbs. 4)

The plus and minus signs refer to para and ortho states,
respectively, and F(ri,rs,0)=F(rs,1,0). In order to
introduce the asymptotic behavior of the wave function
explicitly, we write F(r1,75,0) =71~ 1712 (r1,7,0), where
L(r1,75,0) tends to a constant as electron 1, the “p”
electron, or electron 2, the “s” electron, tend to the
nucleus.

We now follow the standard procedure. The wave
functiony is expanded in a suitable set of basis functions,
that is, we write

N
L(r1,7,0) =M(ryrers)="2. Dimi(rirers). ©)

=1

We then substitute for ¢ in the variational integral, and
apply the variation conditions (3) to obtain a set of
homogeneous linear equations in the D;

N
2 DiSy=0, j=1,2,---,N. (6)

=1

The eigenvalues are those values of the energy E for
which the determinant of coefficients det|.S;;| vanishes,
and for which the equations have therefore a nontrivial
solution for the vector of unknowns D;.
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B. Choice of Basis Functions

In order to avoid the inconvenient limits of integra-
tion resulting from the triangle condition satisfied by
71, 72, and 73, we introduce the perimetric coordinates!®

u=E(ritrs—ry), v=nlretry—ry),

w={(r1+rs—rs), @)

and
%/=5(72+1’3'—7’1), T)/=71(7’1+7’3—72), w=w, (8)

where {= £+9. All of these coordinates range from zero
to infinity, and the permutation 7, = 7, is accomplished
by the interchange of # and #’ etc. In terms of these
coordinates, the quantities appearing in the exponents
in the wave function are equal to &1+ nre= 2 (u-+v-+w)
and &ryt+nri=3(u'4v'+w’), respectively.

In the case of the .S state, the basis functions chosen
were the products of Laguerre functions!®

Filbmn)=[eb 0240 L) (o) L)
ie‘%("'+”'+w')Ll(u/)Lm(’Ul)Ln(wl)] . (9)

However, part of the advantage afforded by the or-
thogonality properties of the Laguerre functions would
be lost in the case of the P state, because of its lower
symmetry. For the P state, therefore, we used a
Hylleraas type expansion, writing

N
F(ry,re,0)=r1e 3ot 3™ Dl mn)uv™on.  (10)

=1

In the computation, all of the basis functions for which
the sum /4 is less than or equal to a given number
 were included in the expansion, corresponding to the
value N =3§(Q+1)(Q+2)(Q-+3).

In the first method adopted, the parameters £ and 7
were given the values §=(—2E—Z2)!2 y=Z7 in order
that the wave function should have the correct asymp-
toticbehaviorasoneor the other of the two electrons goes
to infinity. We shall refer to this scheme as “method C”,
because of its analogy to a similar scheme used for two-
electron S states.!® Using the C scheme, the eigenvalue
was found to converge rather slowly as the number of
terms in the expansion was increased. We therefore de-
cided to attempt to improve the result by allowing the
parameters £ and 9 to vary, and determining the values
of these parameters for which the energy E is a mini-
mum, using a given number of terms in the expansion.
We shall refer to this new scheme as “method D.” The
optimization with respect to £ and 7 did indeed lead to a
considerable improvement in the results, and the eigen-
values obtained using both methods are described in
Sec. IV.

C. Determination of the Eigenvalue

The determinant det|Sy;| was evaluated by Gaussian
elimination, and the eigenvalue obtained by an itera-
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tion procedure. Double precision arithmetic was used
throughout the calculation, and the eigenvalue usually
converged to within almost full double precision accu-
racy in four or five iterations, provided that the initial
trial values of E were chosen sufficiently carefully. In
the case of the D scheme, the elements of the matrix of
coefficients S;; are linear in the energy E. We were thus
able to use the Rayleigh quotient procedure for the
iteration once the eigenvalue had been located approxi-
mately, with a consequent reduction in the number of
iterations needed.

III. THE MASS POLARIZATION AND
RELATIVISTIC CORRECTIONS

A. Mass Polarization Correction

Our computations so far have been based on the non-
relativistic Schrédinger equation (1), in which we have
assumed the mass of the nucleus to be infinite. The eigen-
value has therefore first to be corrected to take into
account the finite mass of the nucleus and the conse-
quent nuclear motion. An elementary correction is to
use a Rydberg constant R, appropriate for the atom in

question,
M m
R~ < 1— —)Rw ,
m—+M M

where m and M are the masses of an electron and of the
nucleus respectively. A second correction, the so-called
mass polarization correction, is given by,

Rﬂl:

m

em= ____ni /¢(V1.V2)¢d7=—-— /Vn&'Vgl]/dT, (11)
M M

where V is the gradient operator. Using their sym-
metric Eulerian angles, Bhatia and Temkin have re-
cently!? extended their treatment!” of the nonrelativistic
Schrédinger equation (1) for two-electron states of
arbitrary angular momentum by including the mass
polarization term 2(m/M)(Vi- V)¢ directly in this
equation from the beginning. We shall, however, evalu-
ate ey from Eq. (11) and add it to the eigenvalue
of Eq. (1).

B. The Relativistic Corrections

As mentioned in the introduction, the eigenvalue of
Eq. (1) has also to be corrected in order to take rela-
tivistic effects into account. The corrections to order o?
have been listed by Bethe and Salpeter.? These cor-
rections take the form of the sum of the expectation
values of a number of operators, evaluated over the
state in question. In atomic units, the operators may be

18 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957),
p. 166.

19 A, K. Bhatia and A. Temkin, Phys. Rev. 137, A1335 (1965).

% See Ref. 18, p. 181.
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written as follows:

Hy=—3%o2(p1*+ 29,

a2[D1'P2 I3 (1'3'1’1)92]
-+ b

2= T

2 73 7’33

3=—

az[ {Zn xp1 13 %x(2pe—p1) }
— * 83

red 738

Zraxp; 13 %(2p1—p2)
(12)

1’23 1’33
ia? Zry 13 Zry 13
H4='—|:P1'[ f }‘H’z'{ —}:l:
4 rd 73l 798 73t

8
H5=a2|:‘———(sl- 82)6(r3)
3

1
f S1°S2—
1’33

3(s1-r22(sz-r3)}:|.

p1 and p. are the momenta of the two electrons, 6(r)
is the three-dimensional delta function, s; and s, are
the Pauli spin operators for the two electrons, and
r3=ry,—r1. A simple derivation of each of these terms,
together with an explanation of their physical signifi-
cance, has also been given by Stewart.2!

The total contribution of the relativistic effects to the
term value is given by the sum of the expectation values
of the operators Hy to Hs. It is customary to express the
energies in terms of the ionization potential J. Since, to
order o, the relativistic effects shift the level of a
single-electron atom or ion by an amount — (a2Z4/8),
the relativistic contribution to order o2 to the ionization
potential of a two-electron atom or ion is

Ey=—31a2Z'— (Hy+ Hot+ Hy+Hit-Hs).  (13)

As the operators H; and Hjy are spin-dependent, their
expectation values will depend on the value of the total
angular momentum quantum number J. We have
evaluated E; for J=1 in the case of a 3P state in view
of the term value for the 23P; state measured by
Herzberg.? The values of £ for J=0and J=2 may then
be easily deduced using our previously published! re-
sults for the fine-structure splittings (in the case of the
23P, 3%P and 43P states of helium, the J=2 levels lie
deepest). As shown in Appendix A, the expectation
values of the spin-dependent operators may be written
in the form

(H3~+Hg)=2ma2(5(r3)) (14)
for a P state, and
(Hy+Hs)=—C+(5D/3) (15)

2 A, L. Stewart, Advan. Phys. 12, 299 (1963).
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for a 3P state, where the integrals C and D are defined
in the Appendix.
Using the fact that

(Hy)=—1aXp1*) (16)
and??
(Hy)=ma*[Z(8(r1))—(8(r3)) ], 17
and writing
(H2>=E2=a2X, (18)

we have
Er=a[—3Z+5{p1")— X —7Z{8(r)) —=(8(rz))] (19)
for a 1P state, and

Ey=el[—42+1(p1)
— X —7Z{5(r)))]+C—(3D/3) (20)
for a 3P; state.
Finally, if we denote by » the nonrelativistic ioniza-
tion energy, then the calculated ionization potential
will be

Jn=v—eu+Eys. (21)

C. Evaluation of the Integrals

It will be seen that the mass polarization and rela-
tivistic corrections are obtained by evaluating integrals
of the form / (Ow)(Oxp)dr, where O; and O, may be
scalar, vector, or tensor operators compounded out of
the gradient operators Vi and Vs and the vectors ry, 1y,
13, 81, and sz, and the integration is over the space of the
two electrons. After summing over the spin coordinates,
we are left with a sixfold integral to evaluate. This
integral may be reduced to a threefold one by integrating
analytically over the angular variables ¢’, ¢’, and ¢, the
methods used differing slightly for various operators.
The principal steps in each case are outlined in Appendix
A, in which the resulting integrals over the remaining
variables 71, 72, and 73 are also listed. The resulting three-
fold integrals consist of sums of terms of the form

0 00 r1+72
/ f f 71f72‘773hY(7’1,7'2,73)
r1=0 J rg=0 J r3=|r1—r2|

X Z(r1,79,r3)e 02 drydradrs,  (22)
where
Y (ri,re,rs)=2_ BaraPira%rst
Qlitmitni
"——_P(fl,?’z,rg) (23)
61’1“61’2””87’3""
and
Z(71,72,1'3) = Z Cﬂ’lp"fgqffgtf
7
Qlitmitni
Q(71,72,1’3) . (24)

071497r,™idy 3™

2 See Ref. 18, p. 189.
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The B; and C; are constants. P(r1,7s,73) is the func-
tion M(r1,7s,73), and Q(r1,7s,73) is either the function
M (r1,ra,rs), in which case A=2¢ and u= 27, or the func-
tion M(ry,re,rs), in which case A\=p=&+9. Both
Y (r1,72,r3) and Z(r1,r2,3) are thus linear combinations of
M(r1,reyr3) and its derivatives multiplied by various
powers of 71,72, and 73, or a similar function of 7 (r1,7s,7s).
The extra factor r1/7.%3* could, of course, be incorpo-
rated into one of the functions Y (r1,79,73) or Z(r1,7s,73).
The integral has been defined in the particular form (22)
in order to correspond to the form in which it is evalu-
ated by the computer program.

Integrals of the more general form /(O 4)(Ox3)dr,
where ¥ 4 and ¢ refer to two different states of a two-
electron atom, or ion, may also be reduced to the form
(22) provided that the wave functions ¥4 and ¥ are
written in a form analogous to that assumed for the
P-state functions in the present work, i.e., they consist
of terms of the form e=¢1-12 (0’ ,¢' )2 D(L,m,m)riirs™rs™.
In this case, the functions P(r1,72,73) and Q(r1,72,73) will
be derived from the wave functions for states 4 and B
respectively, and N\ and u will be combinations of the
corresponding coefficients £4, 54, £, 75 occurring in the
exponential factors. The computational scheme was
therefore designed from the beginning to deal with the
more general case, and was also used to obtain our pre-
viously reported results for the transition probabilities
between S and P states in helium? and for computing
the fine-structure splittings of the 23P and 3%P levels
in this atom.! The main contributions to the fine-
structure splittings had previously'? been calculated by
transforming integrals of the type (22) from the (r1,72,73)
scheme to the variables #,9,w defined in equations (7)
and (8) above. However, in view of the complicated form
of the integral to be evaluated in the present computa-
tion, especially for the expectation value of p,%, it was
decided to perform the integration directly in terms of
the variables 71, 7, and 73. If we write the functions
P(ry,ra,rs) and Q(r1,re,7s) as triple series in 7y, 75, and 73,
the integral (22) may be written in the form Y C(a,b,c)
XI(a,b,c), where

0 o rit+re
I(a’bac) = / / -/ 71%72%73°
r1=0 v r9=0 v r3=|r1—ra|

XeM=wrdydyodrs,  (25)
and the coefficients C(a,b,c) are given by
717120V (r1,r0,73) 2 (r1,70,73) = > Cla,b,c)r1%sbrsc.  (26)

It will be noted that some of the integrals to be evalu-
ated contain powers of 71, 74, or 73 in the denominator.
Thus, there will be nonzero values of C(a,b,c) for which
a, b, or ¢ are less than minus one. However, it is found
in such cases that the integrand always contains a
factor which reduces the order of the singularity in such

% B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).
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a way that the integral itself is finite. For example, all
integrals with a factor of 7;2 in the denominator are
found to have a factor of 7;—7; in the numerator.

When wave functions containing a large number of
terms were used, a severe loss of accuracy was encoun-
tered in evaluating integrals of the form (22) with
A=2¢ in the case of the higher excited states. This loss
of accuracy is due to cancellation between the various
contributions to the sum Y C(a,b,c)I(a,b,c), and can be
understood as follows. Let us refer to the “outer” or
“p” electron as electron 1. If £ is very much less than 7,
then in the region of greatest probability density, r; will
be much greater than 7,, and hence r; will be almost
equal to 71. Thus the set of coordinates (r1,7s,73) is not
the most suitable with which to express the wave func-
tion in this case. The difficulty was overcome by re-
placing the variable 7; by the variable p=7;—7;. It was
indeed found that for the states with low values of &,
the coefficients of the terms with high powers of 71
in the expansion of the wave function in the (r1,7s,0)
scheme were considerably smaller than the corre-
sponding coefficients in the (r1,7,73) scheme. On evalu-
ating the integrals (22) in the (r1,72,p) scheme, the degree
of cancellation was found to be small. Of course, this
scheme has the disadvantage that powers of 73 in the
denominator can no longer be divided out, and hence a
different table of integrals has to be used for each
negative power of 7;3. The (r1,75,73) scheme was still
used, therefore, for the cases where no significant loss of
accuracy occurred. The formulas for the integrals in the
(r1,72,p) scheme analogous to the I(a,b,c) are given in
Appendix B.

IV. THE NUMERICAL RESULTS
A. Nonrelativistic Eigenvalues

The nonrelativistic energy is given by the eigenvalue
E= —¢? of the Schrodinger equation (1). E is given in
atomic units, and the corresponding ionization energy »
in units of cm™ is calculated from E by means of the

relation y=—QE+Z)R=(2e&—Z%R. (27)

(In Refs. 1 and 12, this relation appears incorrectly
with an extra factor of 2. The results listed are un-
affected.) For the Rydberg constant R, we used the
values Ryet=109 722.267 cm™! and Ryy=109 728.727
cm™?! for the helium atom and the lithium ion respec-
tively. In the C scheme, computations were carried out
for the 2P, 23P, 3' P, and 33P states of helium, and up to
N=220 terms were included in the expansion of the
wave function. The ionization energies » obtained with
N =284, 120, 165, and 220 for each of the four states have
been listed in a previous publication (see Table I of
Ref. 12) together with the results of an extrapolation to
infinite order. By comparison with the extrapolated
values, it is estimated that the values at order 220 have
converged to within an accuracy varying from about
0.2 cm™ for the 23P state to 2 cm™! for the 3%P state.
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TasLE I. Nonrelativistic ionization energy » of the 23P state
in cm™. Comparison of results from C and D schemes.

Q N C scheme D scheme
3 20 29 166.766 29 210.757
4 35 29 200.862 29 221.312
5 56 29 213.953 29 221.792
6 84 29 219.015 29 222.096
7 120 29 220.944 29 222.133
8 165 29 221.676 29 222.148
9 220 29 221,958 29 222.152

In the D scheme, the eigenvalue is maximized with
respect to the parameters £ and . In view of the inter-
est in the fine-structure splitting of the P levels, this
scheme was first applied to the 23P and 3%P states of
helium. The ionization energies obtained for the 2P
level using the C and D schemes are compared in Table
I, and it will be seen that the use of the D scheme leads
to a considerable improvement in the results. We de-
cided, therefore, to extend the D scheme computations
up to order 560, corresponding to =13. In view of the
large amount of computer time required to calculate the
value of a high order determinant, the optimization was
only carried out up to order 120 (and also partially for
order 165 in the case of the 23P state), the values of ¢
and % for higher orders being estimated by extrapola-
tion. This procedure is based on the observation that
the eigenvalue is much more sensitive to changes in the
number of terms in the expansion than to variations in
the values of £ and 7, provided that these parameters
are not allowed to vary too widely from their optimum
values. To illustrate this point, in Table IT we have
listed the eigenvalues obtained for the 23P state for
order 84 using various values of £ and % in the vicinity
of their optimal values. We have also listed the C-scheme
eigenvalue as the first entry in the table. It will be seen
that, aside from the C-scheme result, the poorest
eigenvalue listed (E=—2.1331638925 with £=0.81,
n=1.85) differs from the optimum (£= —2.1331639282
with £=0.8277, n=1.96016) by roughly 3.6X1078,
whereas the optimum eigenvalues for order S56(FE
=—2.1331625437 with £=0.7914, =2.0975) and for

TasLE II. Nonrelativistic eigénvalues for the helium 28P state
with 84 terms in the expansion using different values of the
screening constants £ and 7.

£ P — E (atomic units)
0.51604- - - (C) 2 2.1331498878
0.81 1.85 2.1331638925
0.8 1.953 2.1331638940
0.81 1.87 2.1331639002
0.81 2 2.1331639099
0.81 1.92 2.1331639116
0.82 1.995 2.1331639225
0.82 1.953 2.1331639253
0.83 1.93 2.1331639258
0.83 1.986 2.1331639265
0.8325 1.96 2.1331639270
0.8277 1.96016 2.1331639282
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TasLE III. Nonrelativistic eigenvalues for the 23P state of helium (in atomic units).

Q N £ 7 —E Q N £ 7 —E

3 20 0.725 2.066 2.133112254831
4 35 0.77428 1.89513 2.133160354235

5 56 0.7914 2.0975 2.133162543742
6 84 0.8277 1.96016 2.133163928235

7 120 0.845 2,184 2.133164094685
8 165 0.895 2.1 2.133164164111

9 220 0.91 2.1 2.133164180840
10 286 0.95 21 2.133164187632

11 364 0.98 21 2.133164189423
12 455 1.01 2.1 2.133164190275

13 560 1.04 2.1 2.133164190534

Extrapolated (odd @) 2.133164190699

Extrapolated (even @) 2.133164190610

order 120(E= —2.1331640947 with £=0.845, n=2.184)
differ from the order 84 optimum by amounts of
1.4X107% and 1.7)X1077, respectively. On the other
hand, a much larger deviation of £ from its optimal
value leads to a considerable change in the eigenvalue,
as is shown by the C-scheme result for order 84, which
differs from the D-scheme optimum for this order by
more than 1.4X1075.

TaBLE IV. Nonrelativistic eigenvalues for the 33P state
of helium (in atomic units).

e N £ —E Q N £ —E
3 20 0.4427 2.05793548553

4 35 0.45059 2.05800234939
5 56 0.505 2.05806853141

6 84 0.5135 2.05807451076
7 120 0.5465 2.05808014010

8 165 0.5556  2.05808058907
9 220 0.5756 2.05808099094

10 286 0.59 2.05808103540
11 364 0.615 2.05808107031

12 455 0.62 2.05808107688
13 560 0.65 2.05808108165
Extrapolated 2.05808108354 Extrapolated 2.05808108113
(odd @) (even Q)

The optimum 7 for the 23P state was found to be close
to the value n=_Z for all of the orders investigated, and
we therefore decided to take =2 and to optimize with
respect to £ alone in all of the subsequent calculations.
For a given state, the optimum value of £ did not appear
to vary smoothly with Q, and the corresponding eigen-
values also showed an unsmooth behavior. However, the

eigenvalues for odd values of @ alone (i.e., for orders

20, 56, 120, --) did vary smoothly, and a similar re-

mark applies to the results for even Q alone. Tabulated
in this way, the ratio of successive differences is quite
small, taking on values between 0.09 and 0.18 for the
highest orders considered. The eigenvalues have there-
fore been extrapolated, using the formula

(Ex—Eo)(E;—Ey)
2E,—Ey—E,

where Eo, E;, and E, are the values at order 220, 364,
and 560 or at 165, 286, and 455 in the cases of odd and
even {, respectively. The optimum values of the param-
eter £ were also considered for the cases of even and odd
Q separately when estimating a suitable value of this
parameter to use for the higher orders.

The eigenvalues obtained for the 23P and 33P states
of helium are listed in Tables IIT and IV together with
the optimum values of £ (and of 4 in the case of 28P).
The results for odd and even values of Q have been
tabulated separately. It will be noted that there is close
agreement between the extrapolated values derived from
consideration of the results for odd and for even Q
alone. We therefore decided to compute the eigenvalues
for the remaining states to be considered using odd
values of Q only. The ionization energies obtained for
the helium 2'P, 23P, 31P, 33P, 41P, and 43P states and
the 21P state of Li* are listed in Table V, together with
the extrapolated values, which give some indication of
the degree of convergence achieved. The final values
used for the parameter £ are listed in Table VI.

. The only other published calculation of two-electron
[P-state wave functions of a comparable accuracy

E extrapolated = E 1J1 ) (2 8)

TaBLE V. Values of the nonrelativistic ionization energy » in cm™.

Q N He 2P He 23P He 3P He 3P He 4P He 43P Li+ 2P
3 20 27 166.0159 29 210.7567 12 067.5681 12 713.6256 6788.7814 7034.0725 108 255.0048
5 56 27 176.0904 29221.7924 12 097.1563 12 742.8218 6808.7740 7077.7571 108 268.9590
7 120 27 176.6404 29 222.1327 12 101.1159 12 745.3693 6816.2016 7090.9286 108 269.5269
9 220 27 176.6829 29 222.1516 12 101.5155 12 745.5560 6817.7406 7093.0844 108 269.5666
1 364 27 176.6876 29 222.1535 12 101.5599 12 745.5734 6818.0054 7093.3632 108 269.5708
13 560 27 176.6883 29 222.1537 12 101.5663 12 745.5759 6818.0520 7093.3965 :
Extrapolated 27 176.6884 29 222.1538 12 101.5673 12 745.5763 6818.0620 7093.4011 108 269.5712
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is that of Schwartz!® for the 28P state of helium. Tasire VI. Final values adopted for the screening constant £.
Schwartz used the fixed values £=0.58 and #=2
for the screening constants of the two electrons, & He2'P He2°P He3'P He 3P He 4'P He 4P Li* 2P
and included terms with a factor of (r1479)Y2 in 20 0.696 0.725 0398 0.4427 027 027 131
the expansion of the wave function. The largest 56 0.77 0.7914 0.4752 0.505 032 0326 1.4471
number of terms used in the expansion was 439, 120 0.834 0.845 0.528 0.5465 0.363 0.374 1.578
which gave an eigenvalue of —2.133164190626, com- 300 000 oos  oor oo vass oar M0
pared to the result of —2.133164190534 for order 560 560 102 104 065 065 047 0475
obtained by the present authors. Schwartz’s extrap-
olated value is —2.13316419080, and thus lies 10710
atomic units or 2)X10~® cm™! deeper than our extrap-
olated value of —2.133164190699 for odd Q.

in Tables VII-XIII for all of the states considered, to-
gether with the corresponding values of », ex, E,
C—5D/3 (for 3P states) and E;. In converting the three
last-mentioned quantities from atomic units to cm™, we

The results obtained for the total theoretical ioniza- used the values a?Rpe+=25.842755 and o?Ry; = 5.843099,
tion energy Jum=v— exr+E are listed, in units of cm™, while ey was computed using the values 2(m/M)R

B. The Total Ionization Energy

TasLE VII. The ionization energy and the expectation values of various operators for the 2!P state of helium.
a.u. stands for atomic units.

N 56 120 220 364 560

Q 5 7 9 11 13
—E (aw.) 2.123840361561 2.123842867892 2.123843061318 2.123843082754 2.123843085800
(pf) (a..) 40.1176220 40.1171446 40.1170497 40.1170208 40.1170114
(3(r)) (a.u.) 1.27441973 1.27439914 1.27439472 1.27439326 1.27439295
(5(r5)) (a.u.) 0.00076470 0.00074386 0.00073805 0.00073626 0.00073562
—E, (cm™) 0.2377800 0.2376289 0.2375884 0.2375769 0.2375736
(2—4)Ryget (cm™) 27 176.0904 27 176.6404 27 176.6829 27 176.6876 27 176.6883
— e (cm™) —1.3855057 —1.3851637 —1.3851940 —1.3851971 —1.3851974
Es (cm™) 0.466673 0.467404 0.467624 0.467701 0.467717
T (cm™) 27 175.1716 27 175.7226 27 175.7653 27 175.7701 27 175.7708
(1/r) (au.) 1.1231776734 1.1231775004 1.1231775084 1.1231775084 1.1231775097
r) (a.u) 2.91031109 2.91064761 2.91067957 2.91068368 2.91068423
(r?) (a.u.) 15.756218 15.764634 15.765513 15.765634 15.765651
(1/rs) (au.) 0.245029588 0.245024430 0.245023940 0.245023876 0.245023869
(rs) (a.u.) 5.1375846 5.1382552 5.1383189 5.1383270 5.1383281
(rs?) (a.u.) 31.579783 31.506485 31.598234 31.598474 31.598508

TaBLE VIII. The ionization energy and the expectation values of various operators for the 23P; state of helium.
a.u. stands for atomic units.

N 56 120 220 364 560

Q 5 7 9 1 13
—E (a.u.) 2.133162543742 2.133164094685 2.133164180840 2.133164189423 2.133164190534
(p) (@) 39.6476790 39.6482921 39.6483692 39.6483732 39.6483744
(3(r) (a-u) 1.25880725 1.25884810 1.25885950 1.25886022 1.25886047
—E, (cm™) —0.40962053 —0.40992201 —0.40993580 —0.40993769 —0.40993800
C—5D/3 (cm™) 0.0664061 0.0666466 0.0666287 0.0666227 0.0666223
(2e—4)Ret (cm™?) 29 221.7924 29 222.1327 29 222.1516 29 222.1535 29 222.1537
— e (cm™) 1.9409794 1.9425442 1.9425888 1.9425883 1.9425884
Ey (cm™) —0.312826 —0.314095 —0.314739 —0.314788 —0.314803
Jin (cm™) 29 223.4206 29 223.7611 29 223.7795 29 223.7813 29 223.7815
(A/r1) (@.u.) 1.1332433490 1.1332424572 1.1332424189 1.1332424226 1.1332424224
(r) (a.u.) 2.67369487 2.67394670 2.67396023 2.67396140 2.67396161
(r?) (a.u.) 13.2053033 13.2113357 13.2116982 13.2117329 13.2117393
(1/rs) (@) 0.266648440 0.266641645 0.266641335 0.266641313 0.266641309
(rs) (a.u.) 4.69942640 4.69992513 4.69995215 4.69995450 4.69995493

) (au.) 26.630174 26.641987 26.642709 26.642778 26.642791
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TasLE IX. The ionization energy and the expectation values of various operators for the 31P state of helium.
a.u. stands for atomic units.
N 56 120 220 364 560
Q 5 7 9 11 13

—E (a.u) 2.0551262593 2.0551443030 2.0551461242 2.0551463263 2.0551463554
(p1*) (a.u.) 40.045124 40.045739 40.045548 40.045525 40.045507
(3(ry)) (a.u.) 1.2735413 1.2736525 1.2736272 1.2736286 1.2736283
(8(r3)) (a.u.) 0.0003034 0.0002685 0.0002578 0.0002543 0.0002530
—E,; (cm™) 0.079086 0.078462 0.078314 0.078279 0.078268
(2e—4)Reet (cm™) 12 097.156 12 101.116 12 101.516 12 101.560 12 101.566
—ex (cm™) —0.435292 —0.437431 —0.437668 —0.437678 —0.437668
E; (cm™) 0.177618 0.171907 0.173448 0.173375 0.173380
Jn (cm™) 12 096.899 12 100.850 12 101,251 12 101.296 12 101.302
{1/r1) (a.u.) 1.054967915 1.054972233 1.054972258 1.054972329 1.054972346
(r1) (a.u.) 6.672466 6.678473 6.679421 6.679530 6.679544
(re) (a.u.) 91.5447 91.8202 91.8662 91.8719 91.8727
(1/r3) (a.u.) 0.109623830 0.109601343 0.109597107 0.109596723 0.109596687
(rs) (a.u.) 12.623871 12.635868 12.637764 12.637983 12.638011
(r%) (a.u.) 183.1286 183.6810 183.7731 183.7846 183.7862

TasLE X. The ionization energy and the expectation values of various operators for the 33P; state of helium.
a.u. stands for atomic units.

N 56 120 220 364 560

Q 5 7 9 1 13
—E (aw) 2.0580685314 2.0580801401 2.0580809909 2.0580810703 2.0580810816
(pit) (a.u) 39.914966 39.912202 39.912275 39.912301 39.912310
(6(r) (a.u) 1.2693069 1.2601112 1.2691154 1.2691193 1.2601211
Z By (e —0.1196723 —0.1207475 —0.1208676 —0.1208816 ~0.1208828
C—5D/3 (cm™) 0.016343 0.017461 0.017656 0.017680 0.017677
Qé—4) Ryt (coa™) 12 742.822 12 745.369 12 745.556 12 745.573 12 745.576
Z e (em™) 0.544743 0.551844 0.552520 0.552588 0.552601
Ey (cm™) —0.06300 —0.05640 —0.05668 —0.05688 —0.05699
Tin (con™) 12 743.304 12 745.865 12 746.052 12 746.069 12 746.072
1/n) @u.) 1.058043836 1.058024390 1.058022753 1.058022786 1.058022785
) (@) 6.3160668 6.3206196 6.3210987 6.3211210 6.3211269
) (@) 81.88872 82.08559 82.10822 82.10050 82.10982
(1/rs) (@.u) 0.115968200 0.115932519 0.115929096 0.115929018 0.115028087
(ra) (a.u) 11.921071 11.930186 11.931144 11.931189 11.931201
) (@) 163.85846 164.25411 164.29952 164.30209 164.30274

Tasre XI. The ionization energy and the expectation values of various operators for the 4!P state of helium.
a.u. stands for atomic units.

N 56 120 220 364 560

Q 5 7 9 11 13
—E (au) 2.031027312 2031061159 2.031068173 2.031069379 2.031069591
(o) (au.) 40.02201 40.02231 40.02122 40.02131 40.02127
(6(ry) (a-w) 1.273252 1.273493 1.273382 1.273409 1.273405
(5(s)) (a.u.) 0.0001569 0.0001316 0.0001198 0.0001149 0.0001129
—E; (conY) 0.034160 0.034169 0.034145 0.034122 0.034110
(2é—4)Ruet (cm™)  6808.774 6816.202 6817.741 6818.005 6818.052
— exr (cm™) —0.182383 —0.186699 —0.187862 —0.188132 —0.188165
Ey (cm™) 0.09182 0.07588 0.08124 0.07975 0.07997
T (cm™) 6808.683 6816.091 6817.634 6817.897 6817.944
/r) (@) 1.0309996 1.0309985 1.0310004 1.0310005 1.0310004
(ry (a) 11.93075 11.94160 11.94592 11.94721 11.94759
(r2) (aw.) 302.649 303.572 303.923 304.026 304.057
(1/rs) (a.u.) 0.06185719 0.06186554 0.06186428 0.06186266 0.06186191
(rs) (aw) 23.12776 23.14932 23.15794 23.16050 23.16126
o) (a) 605.332 607.171 607.872 608.078 608.139
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TaBLE XII. The ionization energy and the expectation values of various operators for the 43P, state of helium.
a.u. stands for atomic units.

N 56 120 220 364 560

Q 5 7 9 11 13
—E (au.) 2.032253057 2.032313079 2032322903 2.032324173 2032324325
(pr*) () 39.965632 39.964963 39.966209 39.966295 39.966317
(6(r)) (@) 1.2715848 1.2714621 1.2715479 1.2715397 1.2715387
—E; (cm™) —0.045035 —0.049133 —0.050123 —0.050322 —0.050352
C—5D/3 (cm™) 0.004626 0.006378 0.006963 0.007141 0.007179
(2&—4)Rpet (cm™)  7077.757 7090.929 7093.084 7093.363 7093.397
—ear (em™) 0.199044 0.221029 0.226298 0.227170 0.227279
Ey (cm™) —0.01932 —0.01461 —0.01767 —0.01684 —0.01669
T (cm™) 7077.937 7091.135 7093.293 7093.574 7093.607
(1/r) (@.u.) 1.0322673 1.0322926 1.0322889 1.0322888 1.0322886
{r) (a.u.) 11.42893 11.45556 11.46652 11.46823 11.46858
() (a.u.) 277.073 278.994 279.769 279.899 279.926
(1/r3) (a.u.) 0.06460254 0.06454418 0.06451133 0.06450670 0.06450572
(rs) (a.u.) 22.12820 22.18138 22.20326 22.20669 22.20738
) (au.) 554.199 558.034 559,581 550.841 550.895

TaBLE XIII. The ionization energy and the expectation values of various operators for the 21P state of the Li* ion.
a.u. stands for atomic units.

56 120 220 364
Q 5 7 9 11

—E (au.) 4.9933482870 4.9933508749 4.9933510558 4.9933510746
(p1%) (au.) 204.14771 204.14637 204.14604 204.14504
(3(ry)) (a.u.) 430659110 430657103 430657111 430657134
(5(rs)) (a.u.) 0.0099987 0.0098816 0.0098520 0.0098429
—E; (em™) 2.22345 2.22272 2.22257 2.22254
(2e—9)Ryy7 (cm™) 108 268.9590 108 269.5269 108 269.5666 108 269.5708
—ear (cm™) —4.3111022 —4.3110606 —4.3110638 —4.3110642
Ey (cm™) 5.63407 5.63593 5.63591 5.63587
T (cm™) 108 270.2820 108 270.8518 108 270.8914 108 270.8956
(1/r1) (a.u) 1.746578823 1.746579487 1.746579531 1.746579541
(r) (au.) 1.52187696 1.52192741 1.52193161 1.52193201
{r) (au.) 4,0408638 40415579 40416206 4.0416271
(1/rs) (a.u.) 0.492779764 0.492775482 0.492775131 0.492775102
{rs) (aw.) 2.5923595 2.5924596 2.5924679 2.5924687
) (@) 8.072704 8.074071 8.074195 8.074208

TaBLE XIV. Two-electron P-state ionization energies, comparison between theory and experiment. » is the nonrelativistic ionization
energy in cm™?, and Jy, the total theoretical ionization energy including the mass polarization and relativistic corrections. The results
tabulated are for N =560 in the case of helium, and N =364 in the case of Li*. Jexp is the experimental value.

He 2P He 23P, He 3'P He 33P; He 4P He 43P, Lit+ 2tp
v 27 176.69 29222.15 12 101.57 12 745.58 6818.05 7093.40 108 269.57
Jin 27175.77 29223.78 12 101.30 12 746.07 6817.94 7093.61 108 270.90
Jexp 27 175.81= 29 223.862 12 101.33» 12 746.13> 6817.990 7093.67¢ 108 270.814
Jexp—Jtn -+0.04 -+0.08 -+0.03 -+0.06 -+0.05 +0.06 —0.09

a Reference 8.
b Reference 24. i .
o See Ref. 24. We have assumed that the term value listed by Martin corresponds to the J =1 level.

d Reference 9.

=30.08387 for He* and 2(m/M)R=17.163109 for Li?. the rate of convergence in cm™), and to enable the
None of these constants are known to such an accuracy, original values in atomic units to be recovered if de-
and the results are only quoted in Tables VII-XIII to sired. The values of these constants are, however,
the number of significant figures given in order to exhibit known sufficiently accurately to enable E; and ey to be
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computed in cm™! to at least four places after the
decimal point in all cases, an accuracy sufficient for the
present calculations. The tables also contain the values
of —E=¢ and the expectation values of p14, 8(rv),
5(xs), 1/r1, 71, 71%, 1/73, 73, and 75? in atomic units. It will
be seen that at N=560 (or N=364 in the case of
Lit), Ja has converged to within an accuracy of
10~%-10~2 cm™!, and is thus in all cases subject to an
estimated uncertainty less than that of experiment.
The results are compared with those of experiment in
Table XIV,%* in which we have listed » and Jw for the
highest value of NV in the case of each of the states con-
sidered, together with the experimental value Jexp.
The difference Jex,— Jin is presumably accounted for by
the contributions from the radiative terms, and is less
than 0.1 cm™ in absolute magnitude in all cases.

There have been no calculations of the relativistic
corrections for a two-electron P state with which we
may compare the results presently described, apart from
Schwartz’s calculation!® of the fine-structure splitting
of the helium 23P level. The splitting is obtained by
evaluating (H3+H;) [see Eq. (A33)], and our results
have been compared with those of Schwartz in a pre-
vious publication,! in which the excellent agreement be-
tween the results of the two calculationsis demonstrated.
Our results for the mass polarization correction e agree
well with the values of 1.3874 and —1.9443 cm™! ob-
tained for the 2'P and 2°P states of helium by Araki
et al.,?® and also with the values of 1.383 and —1.942
cm~! which may be derived from the results of recent
calculations by Machacek ef al.?® for these two
states.

Our result for the Li* ion confirms the identification
of the line at 9581.42 A as belonging to the 21.5-2'P
transition.!® Combining our value of Ju=108270.89
cm™! for the 2'P level with the theoretical ionization
energy of 118 704.88 cm~! obtained by one of us for the
215 level,'* we obtain the value 10 433.99 cm™! for the
215-2'P transition. This is in excellent agreement with
Toresson and Edlén’s experimental value of 10 434.01
+0.10 cm™1.15
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PEKERIS, AND RABINOWITZ

APPENDIX A: INTEGRATION OVER
THE ANGULAR VARIABLES

I. Mass Polarization

We have to evaluate SV Vaydr. We write
F(r1,rs,0)=71G(r1,72,0). Then the wave function (4)
may be written in the form y=2:G=42,G, so that

V= Zlle:i:szlé—!—Gﬁ, (A1)

where 2 is the unit vector in the z direction. Vg may be
expressed similarly, and thus

/V1¢'V2¢dT=/{2212V1G'V2G

_oG N _0G
+22,G— (GG-I— 221G+ -+ 212sV1G- VzG
921 021

+2122V1é' VzG) }dT 5 (AZ)

where we have made use of the fact that certain terms
give equal contributions when integrated, because of
the symmetry of the region of integration with respect
to the two electrons. We now transform the derivatives
into the 71, 74, 0, 8, ¢’, ¢ scheme, using the equations

cosfy=cosb’ cosf—sinf’ sinf cosp, (A3)
] df sinb’ cosg o f
—f(r1,79,0) = cos/ ——+— —, (A4)
21 o7y 71 06

where 9 /971 denotes the derivative with 7, and 6 held
constant, and df/06 similarly. Since G is a function of
r1, 72 and 6 only, the scalar products occurring in (A2)
will be independent of the angular variables ¢, ¢, ¢,
and we can thus integrate immediately over these
variables to obtain

872
/V1¢'V2¢d’r=—3— /{21’12V1G'V2G

G rysind_8G _ G
+ 274 cos§G—-—2 G;(i_:h |:3GG+ 21G—-r1r9

67‘1 71 61’1

X COSB(V]G' V26+ V1G' VzG) ] }dV , (AS)

where dV =71ry? sin0dridrod0=r1rorsdridradrs. By taking
suitable axes in the 7y, 75, 6 plane, one can easily show
that the scalar product of the gradients of any two
functions of 71, 75, and 6 alone may be written

V1f(1’1,1’2,0) : V2g(71:7270)

af g 1 ofag
- (_~ A __) cost
61’1 61’2 Y17e a0 o6

_.(1 e ag-l-—l——?i—f’—g) sinf. (A6)

7o 31’1 a6

71 00 Ors
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If we substitute G(r1,r2,0) =e¢"12M (r1,75,75) and transform from (r1,7,0) to (r1,72,73), the integral may finally
be written, after some algebra, in the form

8n?
fVu[/‘ Voydr= —3—- /{1’121’3t3M1M2— (r1%rotoaM 17138 M o 2013ror s M 3) M 5
ML —nri®ratsM 1+ (r1rsts— Eri2rsts) Mo (Sr12rots - nridti— rarets) M=+ (Enri2rsts— nrarsts) M ]}
27 ~ ~ ~ - -
X 6—2571—2”72d71d72d7‘3:|:—3— /{Ml(fslazMz— 21’2t213M3) +M2(73t32M1— 27111f3M3) - 4717212f3(1’3)_1M3 M3

+M[(87’121’27’3— 28r3132) M 1— 2 3t M o+ (417 otot26r1tat s+ 2 otal s ) M 5
+(127’17’273—8£7’12721’3+5273132+ﬂ273t32)M:|}8—<H m (rr+ T”dhd?’gdﬁ’g , (A7)

where My denotes 0M/dr1, and so on, and 1= —r2+r2-+732, te=r12—ra+73% and f3=7r1>+72—r3% We have ex-
pressed the integral in this form, as a sum of integrals of the type (22), in view of the fact that an interpretive
programming scheme has been developed for evaluating integrals of this type on the computer.

I (1%
We have

1
<P14>=/(V12¢)2d7=5 /[(Vlszy‘l-(vzw)ﬂdf (A8)

From the wave equation (1), it follows that
(Vi) 4 (Vo) = —2Va%- Vo +A[E— VW2, (A9)
where V=—_27/r1—Z/rs+1/73, so that

—(p1h)= /Vﬁp- V22l//d1"—2/(E—' V)2dr=1—2J. (A10)

The evaluation of J is very simple. Again writing ¢ = z:G+2,G and integrating over the variables ', ¢, ¢ we obtain
the result

1672 Z* Z* 1 2EZ 2EZ 2E 27* 27 27 _
]2_3_ {E?—}——;—F—;—% —+ f ——t —-———}(712G2j:rlrgGGc050)dV, (A11)

it r? rg? 71 7o Y3 rife Firz  Tor3

which is then converted into the 71, 7, 73 scheme. To evaluate I, we note that

V12¢=Z1V12G:t22V126+ 2(0G/dz1) (A12)
and V% similarly, so that

G _ B G G _dG
I= / {2212V126'V22G+4Z1_V22G]dT:i:-/- {2122(V12G‘V22G+V12G'V22G)+4— ——+422V22G'— dT‘ (A13)
921 021 039 021
Using (A3), (A4), and the relation

df (cosh’ sinf+sinb’ cosb cosep) 9 f
—f(r1,72,0) = (cosf’ cosf—siné’ sinf cose) -,
0z 079 72 a6

(A14)

and making use of the fact that Vi2f(r1,75,6) and V,2f(r1,72,6) are independent of @', ¢/, and ¢, we may integrate
over these angles to obtain the result

1672 oG 472 dG  8rp sinf IG*
]=-—§" {7’12V12G+27’1——‘} Vzg(l‘dV:{:—’g ./ {[21’172 COS@V120+ 81’2 cosf—-— '—H—JVQEG
a

ar1 orn 71

9G G 8 cosf 3G G 16 sinf 4G 9G
+8 cosb— —_ —— —- 27175 cOsOV2G - V22G}dV. (A15)
(91’1 67’2 7179 06 06 7o 67’1 a6
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Writing G(r1,r2,0) = e~ 417 172} (r1,r5,73) and going over to 71, s, 3 making use of the relation

62Ml to M l62M126]11 2 oM

VM (r1,r0,r3) = | —

+—— (A16)

1 1
0r12 rwr3dridry Or?  ry Ory vz O

and a similar relation for Vi 2M (71,72,73) we obtain the final result

—(p)=1-2J=

2
/[(73)‘1{1'131'3M11+ (dri®r3—28r3rs) Ma~+r13rsM ss+ 72 ta M 1s+ (273 rite— Er2ta) M5

+(E2r:3r3—4ErPrs) M} {rorsM s+ 11 M o5+ rors M 35+ (273— 297 973) M o+ (272 — nir) M s+ (9% 273 — 2qr3) M}

Fr1(rors) Y —2 By %9%r s — 2 2% %15 — 2 22132 — 21 P — A Z Er 1o r s — AZEr Yror 4 Erir oy

472
— 47270132471 1o s+ 4711 ror s} M* Je 2122 dy drodr s —3—— /[(73)_1{717353M11+ totsM1s+r1rstsM 53

+ (673ts— 287 17sts) Mo+ (67183— 811752 — Elals) Ms+ (871 sts— 657 sts) M } {rors Mgt t1 Mos+ro73 M 3

+ (275—2&r9r3) Mo+ (2r,— &) M+ (E%r973—28r3) M}'*‘ (rs) Y rorsts M oot+trts M og—+7o73ts M3

+ (273t3— 2nrorsts) Mot (27 9ts— niats) M s+ (nrorsts— 2qrsls) M} {1’17’3M11+12M13+7’17’3M33+ (2r3—2qr1rs) bA

+(21’1—7752)M3+ (1121’11’3—- 2177’3) M} +{473l3M1— 81’1t1M3'—4S1’3t3M} {Mz— EM} “‘87’17’21,‘2(7’3)—1M3M3

+ (7’17’27’3)-1{ — 4E27’127’227’3213— 4-227’227’32t3— 4Z21’12732t3‘—47121’22[3— SZE717'221’32t3— 8ZE1’121’27'32l3+8E7127’227’313

— 821w or s 82117 st 82112 oy sts) M Je= &0t dyidpodrs. (A7)

Again, we have written this integral in a form corresponding as closely as possible to that represented in the com-

puter program.

kb
1

n

Il E,

The complicated nature of the angular dependence of the operator H; necessitated the development of a general
method for integrating over the angular variables. We shall outline the method in some detail, in view of its
possible usefulness in other cases. Instead of, as heretofore, writing down the operators using the set of variables
(71,01,¢1,72,02,¢2) and then transforming into the set (r1,7s,73,0",¢’,¢), we shall write the operators directly in terms of
the latter set of coordinates. It will be remembered that 7y, 7, and 7; define the shape of the triangle formed by the
nucleus and the two electrons, and ', ¢, and ¢ are the Eulerian angles describing the orientation of this triangle

F1G. 2. The coordinate system
used in computing E,.

with respect to a set of space axes %, ¥, z (see Fig. 1).
In order to evaluate the scalar products, it is easiest to
resolve the various vectors into components in the ry,
r, plane and perpendicular to it. We therefore take a
set of rectangular Cartesian coordinates with unit vec-
tors k along 1, j perpendicular to the ri, r; plane, and i
in this plane in such a way that 1, j, k form a right-
handed orthogonal set, as shown in Fig. 2. This set may
be brought into coincidence with the space axes x, y
and z by successive rotations of —¢ about the k axis,
—0’ about the (new) j axis, and —¢’ about the (new)
k axis again. Thus it is easily shown that the compo-



STATES OF He AND Li* A1117

nents of 1, j and k with respect to the space axes x, y and z are

i=(cosb’ cos¢ cos¢’—sing sing’, cosd’ cose sing’+sing cosg’, —sind’ cosg) ,
3= (—cosb’ sing cos¢’—cos¢ sing’, —cosf’ sing sing’+ cos¢ cos¢’, sinf’ sing) , (A18)

k= (sin6’ cos¢’, siné’ sing’, cosf’).

The vectors which will be needed in the calculation may be expressed in terms of their components along the i,
j, and k axes as follows:

n= {0:0;71} )
re= {72 sind,0,7; cosf} ,

r3={rssinf, 0, 7, cosf—r1},

{cosd; i} 1 sing 8 cotf'sing 9 7ysind 9
1= 1
r1 80’ rising’ 9¢’ no 0 rs Ors

sing 9 ' cosp 9 (cotf+cotd cosp) 8 9 I(n—-rg cosf) 6}

T T T
71 96’ 71 sing’ 8(1)/ 71 6¢> (91'1 73 67’3
and
d 7rysinf 9 1 9 d (rocosf—ry) 9
Vo= [sine 1 —, —, cosf— ———l . (A19)
7 rs Orz rysinf d¢ e 73 a3

We note that the gradients of any function of 71, 75, and 7; alone lie in the ry, 1, plane, as we should expect. It will be
seen that the expressions for the various components of the vectors contain terms involving cosf and sinf. These
have just been inserted as a shorthand notation for the corresponding functions of 71, 75, 73 [e.g., cosf has been
written for (r12+4-752—r35%)/(2r1rs)]. It is useful to retain them throughout part of the subsequent development,
rather than to perform the tedious algebra which would result if the variable 6 were to be eliminated completely at
this stage. Expressions involving 6 do not, of course, commute with the operation of diffierentiation with respect to
71, 72, OF 73, and the following relations are useful in this connection

6 12 6 ll 6 —7¥3
— cosf= , — cosf= , — cosf= ,
ary 2ri%r, ors 2r1r9? 73 7172
(A20)
d iy cotd 0 t1 cotf (V] 73 cotf
—sinf=— , —sinf=————, —sinf= ,
ary 2ri%ry ory 2r179? Jr; r1rs
where 9/dr; denotes differentiation with respect to 71 keeping 7y, 73, 0, ¢’, and ¢ constant, and so on.
We note that E;=02X, where
1 ViV, r3(l‘3'Vz)'V1 - Va I'3(I'3'V2)
X=~< f >= (F cosfy==F coslp) {——+———— - ViF cosfidr. (A21)
2 73 733 73 1’33

Writing F(r1,rs,0)=H(r1,72,75) and using the formulas (A19), we see that the vector V(F cos;) may be written

)
71 71

sinf’ cos¢ siné’ sing
V1(F C0501)= COSB'V1H+H { —_ , }

7o sinf cosd’ dH H sinf’ cos¢p H sind’ sing dH (r1—r, cosb) oH
‘-— , , cosf’'— cosﬁ’»——} . (A22)
73 ars 71 71 ar1 73 73

Similarly, the operator V,/r;413(r;- V3)/73* may be written

(Brs*+ry2—r1?) d 2rysind o 1 d (2732 cosb—ri7asin2) 9 2(rycosf—r1) 9
sinf—-+ _— 1 —} . (A23)
2738 07y rs?2  Orz rorzsind d¢ 733 972 732 I3

Thus, taking the scalar product of (A23) and (A22) and making use of the relations (A20), and the fact that
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9i/d¢p=j, 3j/9¢= —1, and dk/d¢=0, we have, after some algebra, the result
2 cosf  rirg sin20\ 92H  2(ry cosf—r1) 9:H
il

{Va/rs+13(rs: V3)/733} - V1F cosi= cosf’ { < |
73 738 / 071079 732 dr10rs

T —1t. (A24)

37’2 7’17’32 673

2(r1cosb—ry) 0*H 2 0*H 2 0H riry COSO—rs2—ry®\  OH 2rysing 0H
+ }—f—sina’ cos¢p { ( ) sing
732 (97'261’3 3 61’32 7’32 (97’3 1’17’33

Multiplying the scalar product (A24) by H cosf’-=H cos#’ cosFH sind’ sinf cos¢ and integrating, we have, after
substituting for cosf and sinf in terms of 7y, 7o, and 73, the result

X=— = - ———:lHdV

07107y 7173 Or10r3  7ors? Oredrs 73 Ory? 732 Or3

82 /[{ 123 1’17’2| 7% } 0:H to 0*H tn 0*H 2 02H 2 o0H

+
rivers 135 Arirers®

4 — 1

472 /[{ 132 i3 133 ]62H tots 02H tits 02H 213 92H
3

T
1’121’221’3 7’33 41’127221’33 31’137’2 1’121’21’32 37’107’3 1’11'227’3261’2373 Yi¥ol3 ('97'32

47, 213 132 0H 2 I3 i3? l1ts? 0H" _
+{ } g{ . }——]HdV. (A25)

+
1’17’32 1’11’21’32 7’137’27’32 37’3 Y173 717’33 21’131’227'3 47’137’221’33 67’2

If we write H(ry,79,73) =r1e 812} (r1,72,73), we have finally
27?

X = / L)~ {r* M o—nr® Mt (r1— Er®) Mot (pri®— mr) M { (217732 202%r5"— 3rsP i 1o — 202" ) M }
—4r1(rs) M {r1retaM 1sF 112 M o5+ 27 12 o s M a3+ (ror s+ 3r12ra— 1o — Erarate— nra?y) M s) Je=2r=2mm2drydrodrs

7r2
i; /[(73)_2{M12—ﬂM1— EM o+ EnM )
X (1147 524 1227524 37554 671292752 — 5112758 — Sror gtk 18— ridrg2— 112yt 1) I }

+4(73)h1{ — 2r1rorstsM 33— ololsM 13— 71t 1t sM o3+ (§rotots—tnritats—+4r1rors®— 47131'2)M3}M

+2(73) "2 M — M)} { (213732 — 7175 — 61179272 — 7151 2013092 — 1o *) M } Je= &t it ey dodyry . (A26)
IV. The Spin-Dependent Operators H; and H;
In the case of a singlet state, the total spin S is zero, hence the expectation value of Hj is zero. Since (s1°82)= —$,
the expectation value of the first term in Hj is just 27a2(8(r3)). Also, it can easily be shown that
(S1'r3)(82'1'3) 1,1
<———-—-—>= ——<— , (A27)
73® 4 \r3t

so that the expectation value of the remainder of H; is zero. Thus, for a singlet state, the expectation value of
H;+Hj is equal to 2ma®(8(r3)).

Breit? has solved the secular equation and determined the expectation values of H3 and Hj for 3P states in order
to determine their fine structure splitting. For the /=0, J=1 and J=2 levels, the expectation values of H; are
—2C, —C, and C, respectively, where

C=%aZCz—3C.] (A28)
in atomic units, and
8r [ 1 B oF _oF
Cz=— ——[ZF(F-—F cos())—l—sint‘)(F———F——-)jldV,
3 71 a0 a0
82 1 5 oF _oF
C,=—— ——[ZF (F—F cosf)+71sin%0 (F——F———) (A29)
3 73 61’2 672

72 _ oF  oF
+— [ (14-cos20) FF— 2F? cosf-+sinf cosd (F———F—) } :IdV .
71 a0 a6
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We have introduced the extra factor 872/3 into Breit’s formula because of a difference in the choice of normaliza-
tion. Breit uses the function ¢=(3/8x2)1/2(F cosfi—F cosb,), for which J (F2+4F2—2FF cosf)dV =1, whereas we
have used ¢=F cosfy— F cosfs, for which this integral is equal to 3/8x2.

We now consider Hs. For a triplet state, (§(r3)) is zero. The expectation value of s;-s, is equal to % for all values

of J, so that
S1°S a? /1
az ——.—>=—_‘<_>.
1’33 4 1’33

There remains the term — 3(s1-13)(s2-13)/73% in Hys. Breit has shown that the expectation value of this operator for
the 7=0, J=1 and J=2 levels is equal to D'—3D, D'+ 2D and D’ respectively, where the integrals D and D’ are

2m2a?
D=—— /(73)”5{[4712+ (6 CoS20— 2)7y2— 87175 oSO F2+[ (6-+2 cos20)r1rs— 812 cosd JFF}dV
5
and
2m2a?
D'=—— /(ra)_5{ [27124 (4— 2 cos20)ry2— 4717y cosO JF2+[ (6 cos?0— 2)riry—4dr1® cos8 JEF}dV .  (A30)
5
Since
1 872 1 -
——>=——- f —(2F?—2FF cos6)dV , (A31)
7’33 3 7’33
it may easily be shown that
D'+3aX1/rs¥)=—4D, (432)

so that the expectation value of Hj is equal to —10D/3, 5D/3 and —D/3 for the J=0, J=1, and J=2 levels,
respectively.
Thus, finally we have that
(Hy+Hs)=—2C—10D/3, for J=0,

— C+ 5D/3, for J=1, (A33)
C— D/3, for J=2.
If we write F(r1,r,0) =716 1120 (r1,79,73), the formulas (A29) and (A30) may be written

1672
Cy= 3 /72,3M26—2€n"2’1’2d1’1dr2d1’3

272 -
+— / (1’17’2)_2M{ (41’157’22'— 41’121’25—713t32+7’23132)M3— (27’137’313—1- 21’231’3t3)M} e~ (&) (rrt ”)dfldfgdf;; ,
3

872

Co=—vo / (73)2(rPro—rrdtrirers?) M2e= 2 212dy 1 dy ody s

3

27? -
+'—3'— (1’1721’33)—1M{ (47127’221’33+ 4171’147237’3— 17717221’31‘32— 421’147237’3-}" 27’17’2273132)M
d - (41’131’247’3'— 7’11’227’3t32)M1+ (7’127'27’31532“‘ 41’14’1’231’3)M2}6_(£+") (71+'2)d1’1d1’2d7’3

an

2a?
D=— T /(73)_4(37’1572"}— 31’17’25'— 6713723+ 27131’21'32'— 671723732+ 37’11’2734)M>26—2E“_Zmzdrldfgdf’s

T _
— ’*E— /(7’3)”%"‘ 3r1579— 3717’25+ 671393+ 4713727'32+7’11’2734)MM8'“(£+”) (”+72)d1’1d1’2d1’3 . (A34)

APPENDIX B: CALCULATION OF THE THREE-DIMENSIONAL
INTEGRALS IN THE (ry,r;0) SCHEME

As explained in Sec. III, after integrating over the angular variables, we are left with the evaluation of three-
dimensional integrals over the variables (r1,7s,73) or (r1,75,0). We shall list below the formulas developed for evalu-
ating the (r1,72,0) integrals, as they might be of some interest. Their derivation will be outlined in a forthcoming
publication.
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The integrals are evaluated with the aid of certain auxiliary quantities which are computed by means of the fol-
lowing recurrence relations, all of which are stable when used in the manner indicated.

p (r+9)!
K(p,)==K(p—1,9)+——, ,q=>0.
#)="K@=1,0) N pq2
q (p+9)!
H(P,Q)=—H(P,q—1)+——, , 2>0.
I p(N\-p)rHedt Pz
b c (a+b+¢)!
AV((I,I),C)=—-1V((1, b— 1a C)+—]\7(0«, b’ 6—1)+[1+<_— 1)c+1_—]_——————a a, b7 C> 0.
M 2 u(\p)ototetl
L(a,b+1,¢)=2L(a+1,b,c)+L(a, b, c+1), a,b,c20.
alc! @ c—H'\ 1 A \?
L(a,o,c)= Z( ( > ) a, C>0
(@40 020)% o\ & J(ad-c+it1) W+ 2
(B1)
0(a+1,b,¢)=3[0(a,b+1,6)+0(a, b, c+1)], a,b,¢20.
blc! =1 sc+1\ 1 /3INtu\?
0(0,b,c)= > ( ) (2 M) , b,c20.
(b0 10 M+t 5 \ i 0=\t
Mi(a,b+1,c)=2M:(a+1,b,¢c)+Mi(a, b, c+1), a,b,c20.
alc!
M(a,o,c)= , a,c20.
(a4c+1) u (A 2p) o+
My(a+1,b,¢)=3[M:(a,b+1,c)+Mya, b, c+1)7, a,b,c20.
ble! I AN A
Ms(0,b,0)= Z( >< ) , b,¢0.
210+ DN GNP i=0\ i S\ Au
The formulas for the integrals are then as follows:
Jo(a,b,c)= / r1%Midr, / roPe "2 dry / pcdp
0 0 r1—ra2l—r1
r [1+(—=1)]
= N(a, b, c+1)+————K(a,b+c+1), a,b,c20 (B2)
(c+1) c+1
and for the case b=—1,
1 [1+(=1)°]
Jo(d, '_17 C)z F(a3C)JI K(a;c); a, 6207 (B3)
(c+1) c+1
where
Fla) (a+c+1)! » <a+c+i+1\ (=Mw?  allc+1)! = <a+i> (—N/2u)°
a,0)=——"—"— —
'uu+c+2 i=0 i /(d+1+1) 2a+1#a+c+2 i=0 7 (a+c+2+i)

'(—-l)c(a-}—c—l-l)! w fa4-c+it+1\ [ a @\ 1 =2 \!
T2a=+1(%>\—hu)“+°‘*2 §0< i ) [J§)<j/(c+i+j+2)}<>\+2ﬂ>'
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© © 72 pcdp b
Ji(a,b,0)= / r1%Midry / rode™ 2 dyy / =-Ji(a,b—1,¢)
0 0 |

r1—rgl—71 (P+”l) K
(a—}—i)
al(b+c)! = 1 u—A\* al(o+c)!  o1/b+c+i\ 1 A\
> 1w A rervwrl G i e )
pottror? iz (a4-b+c+140)\ u MO U7 Lagan i i (a—1) N\ +u

(a+d+0)!

"

L(a,b 1)°O(a,b,c)+ sl ! : ) (B
{ (d, ,C)—}-(— ) (d, ’C) T ()\_i_'u)a+b+c+1 n<2M+)\ },

© 0 ) pc(rl2_r22)dp
Ja(a,b,c)= / rl"e““ldh/ rgbe““’zdn/ —————=c[J1(a+2, b, c—1)—Ji(a, b+2,c—1)]
0 0 iri—ral—r1  (p+71)?

2K(a,b+c+1), ceven
—M(a+1,b,c)—M(a,b+1, c)+H(a,b+c+1)—H(a+1, b4c)+ { (BS)
—2K(a+1,b4+c), codd,
where M (a,b,c) = (a+b+c+1) [ M1(a,b,c)+ (—1)°M2(a,b,c)].

Inverse powers of 73 greater than two appear only in the computation of the fine structure integral D, and it is
convenient in this case to define the following integral:

© ] re 3(1,12,__’,22)2 2(,12___3’,22)
Jp(abe)= / r1%Mdry / robe 2 dy, / p”dp{ } }
0 0 (p+7’1)4 (P+7’1)2

ir1—ra|—r1

_c(c— 1)

[Ja(a+2,b, c—2)—Ts(a, b+2, c—2) 4+ 2c[J1(a+2, b, c—1)—3T1(a, b+2, c—1)]

+3N(a+1,b,¢)+5N(a, b+1, ) —2eN(a+2, b, c—1)—cN(a+1, b+ 1, c— 1)—2cN(a, b2, c—1)
v {(26—6)(a+1)1(b+c) I/ het2ybtetl = ¢ odd

(B6)
—cK(a+2,b+c—1)+(2c—6)H(a+1, b+c)+(10—c)K (a, b+c+1), ¢ even.



