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It is apparent from the equations for the reduced matrix
elements that

Ap=gpg ~ (A10)

where tts is the Bohr magneton and g is a constant
usually between —,

' and 2.
Pote added irt proof Th.e conditions which were placed

on F and X in the integral formulation which is given by
Ecl. (3) are more restrictive than necessary. C. P. Yang
and C. V. Beer have shown that an integral solution of

Etl. (2) exists if a part of l' commutes with Ho. Then
Eq. (2) has the integral solution

p(t) = ds T+(s)

X (h+L(V/'t't —-', 1' )p —p(&/'Pt+-, '& )$) ( —.)T ( ),
where T(s) = expL —(—', I'o—iPt 'JIo)sf. No restrictions
are placed on X and FI, and Fo)0 is sufhcient.
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A method is outlined for calculating nonrelativistic eigenvalues and wave functions for a two-electron
P state of odd parity, and for evaluating the mass polarization and all of the relativistic corrections, apart
from the radiative terms. Calculations have been made for the low-lying P states of He and the 2'P state
of Li+ using up to 560 terms in the expansion of the wave function. The nonrelativistic eigenvalues converge
to within an accuracy of from 10 cm ' to 10 ' cm '. The values of the mass polarization and of the relativ-
istic corrections converge more rapidly than this, so that the total theoretical ionization energy is esti-
mated to be correct to within an error of not more than 10 2 cm ', i.e., considerably less than the experi-
mental error, in the case of all of the states considered. The difference between the theoretical and experi-
mental term values is in no case greater than 0.1 cm in absolute magnitude, and is presumed to be due to
the contributions from the radiative terms, which have not been included in the calculation. The term
value obtained for the 2'P state of Li+ confirms the identification of the line at 9581.42 A in the Li+ spectrum
as belonging to the 2'S-2'P transition.

I. INTRODUCTION

N this paper, we outline a method for determining
~ - two-electron atom P-state term values in which the
contributions from the mass-polarization and all of the
relativistic corrections, apart from the Lamb shift,
have been taken into account. Computations have been
carried out for the low-lying P states of helium, and the
2'P state of Li+, and in each case the results converge
to an accuracy exceeding that of the experimental
measurements. The same methods have also been used
to compute the 6ne-structure splitting of the 2'P and
3'P levels of helium, the results for which have been
published previously. '

The classical papers of Breit on the angular depend-
ence of a two-electron P-state wave function' and the
fine-structure splitting of the helium 2'P level' appeared
soon after the basic work of Hylleraas on the ground
state. Subsequent calculations for the P state were
mainly performed with the object of determining the
fine structure of the 'P levels, and in contradistinction

to the case of the 5 state, no complete calculation of the
relativistic corrections for a two-electron P state has up
till now been made, no doubt in view of their greater
complexity. We shall therefore give considerable de-
tail in the following exposition.

At the time when the work to be described below was
started, the most accurate calculations for a two-electron
P state were those of Araki et al. ' and of Traub and
Foley. ' The latter authors were able to obtain a theoreti-
cal ionization energy within 15 cm ' of the experimental
value for the helium 2'P state by optimizing the values
adopted for the screening constants for the two elec-
trons, and by including 18 terms in the expansion of the
wave function. We set out with the aim of computing
ionization energies for two-electron P states to an
accuracy which would at least match that of the most
recent experimental data' ' (&0.03 cm '). The method
used to determine the nonrelativistic eigenvalues and
wave functions is an extension of that developed by one
of us for excited S states, ' the wave function being

~ B.SchiB, C. L, Pekeris, and H. Lifson, Phys. Rev. 137, A1672
(1965).

~ G. Breit, Phys. Rev. 35, 569 (1930).
3 G. Breit, Phys. Rev. 36, 383 (1930).
4 E. A. Hylleraas, Z. Physik 48, 469 (1928).' E. A. Hylleraas, Z. Physik 54, 347 (1929).

'G. Araki, K. Mano, and M. Ohta, Progr. Theoret. Phys.
(Kyoto) 22, 469 (1959).' J. Traub and H. M. Foley, Phys. Rev. 116, 914 (1959).

G. Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958).
e G. Herzberg and H. R. Moore, Can. J. Phys. 37, 1293 (1959).
'0 C. L. Pekeris, Phys. Rev. 127, 509 (1962).
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developed into a series of perimetric coordinates. "
With 220 terms in the expansion of the wave function,
the nonrelativistic ionization energy for the 2'P state
of helium was found to converge to within about
0.2 cm '."Optimizing the values of th:.,e screening con-
stants, following Traub and Foley, reduced the in-

accuracy to about 0.002 cm ' with the same number of
terms, and it was therefore decided to embark on a more
extensive program of calculation. Using up to 560 terms
in the expansion of the wave function, eigenvalues were
obtained for the 2'P, 2'P, 3'P, 3'P, O'P, and O'P states
of helium and the 2'P' state of Li+, the results converging
to within an accuracy of 10 4 to 10 ' cm '. For each of
these states, we have also, for the erst time, computed
the values of all of the relativistic corrections apart from
the radiative terms. These corrections converge more

rapidly than the nonrelativistic eigenvalues, and the
total theoretical ionization energy is thus subject to an
inaccuracy of not more than 10 ' cm ', i.e. less than
that of experiment, for all of the states considered. The
difI'erence between the theoretical and experimental
term values is in no case greater than 0.1 cm ', and is

presumably due to the contributions from the radiative
terms. Nonrelativistic eigenvalues and wave functions
of the same order of accuracy have recently been ob-
tained for the 2'P state of helium by Schwartz, "who

has used them to compute the fine-structure splitting
of this level. With his choice of base functions, Schwartz s
nonrelativistic eigenvalues are more accurate than those
obtained by the present authors using a given number of
terms in the expansion.

The computations on the 2'P state of Li+ were per-
formed in order to check the previously assumed term
value for this level, in view of the uncertainty in the
position of the 2'5—2'P line in the Li+ spectrum. To-
gether with the 2'5 term value computed by one of us,"
the results confirm the identification of the line at about
9581 A as belonging to the 2'S—2'P transition. "

The methods used for solving the nonrelativistic
equation are discussed in Sec. II of this paper, and the
evaluation of the mass polarization and relativistic cor-
rections is described in Sec. III. In Sec. IV, the numeri-
cal results are tabulated and discussed. The appendices
contain an outline of the methods used to reduce some
of the sixfold integrals occurring in the calculation, in-

cluding some explicit formulas for the evaluation of the
resulting threefold integrals.

II. THE NONRELATIVISTIC EIGENVALUES

A. The Variational Equations

The nonrelativistic Schrodinger equation for a two-

electron atom, assuming an infinitely heavy nucleus,

"C.L. Pekeris, Phys. Rev. 112, 1649 (1958)."C. L. Pekeris, B. Schi8, and H. Lifson, Phys. Rev. 126, 1057
(1962).

+ C. Schwartz, Phys. Rev. 134, A1181 (1964).
"C.L. Pekeris, Phys. Rev. 126, 143 (1962)."T. G. Toresson and B. Kdlen, Arkiv Fysik 23, 117 (1963).
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where K is the Hamiltonian operator, and we solve this
equation by using the equivalent variational form

8 P(X—E)i/dr =0. (3)

The integration is taken over the six-dimensional space
of the two electrons, and we will describe the set of
coordinates used in some detail, as they will also be
employed in computing the relativistic corrections
(see Appendix A).

The most suitable set of coordinates to describe our
system is one in which the shape of the triangle formed
by the nucleus and the two electrons is speciied by the
variables r~, r2, and r3 dehned above, while the orienta-
tion of this triangle in space is given in terms of three
Eulerian angles. Since the Hamiltonian is invariant
with respect to rotation about any axis through the
nucleus, the dependence of the wave function on the
Eulerian angles may be determined uniquely. Any
integral similar to that occurring in Eq. (3) may there-
fore easily be reduced to a threefold integral over the
variables r~, r2, and ra.

The angular dependence of a two-electron P-state
wave function has been considered in detail by Sreit'
and by Eriksson, "and we shall use Breit's form for the
wave function. Following Hylleraas, 4 Breit uses the
Eulerian angles O', P' and P, which are simply related to
the spherical polar coordinates (rr, 8r,pr) and (rs, 8s,&s) of
the two electrons. The angles 8' and p' are equal re-
spectively to 8& and P&, and hence describe the position
of the line joining electron 1 to the nucleus, while p is
the angle between the azimuthal plane through this
line and the r&, r2 plane, as shown in Fig. 1. Hylleraas
also introduces the angle 0 included between r~ and r2,
and gives relations between the two sets of angles
(8r,gr, 8,,gs) and (8,8',P',P). Recently, Bhatia and
Temkin' have given a comprehensive treatment of the
angular dependence of a two-electron state of arbitrary
angular momentum, using a more symmetric choice of

~6 A. Eriksson, Nova Acta Regiae Soc. Sci. Upsaliensis ll, No. 9
(1940).

» A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050
(1964).

where r~ and r2 are the distances of the electrons from
the nucleus, r3 is the interelectron distance, Z is the
nuclear charge, and V~' and V'~' are the Laplacian
operators with respect to the coordinates of the two
electrons. Lengths and the energy are expressed in
atomic units. The equation may also be written
symbolically

(2)
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tion procedure. Double precision arithmetic was used
throughout the calculation, and the eigenvalue usually
converged to within almost full double precision accu-
racy in four or Ave iterations, provided that the initial
trial values of E were chosen suKciently carefully. In
the case of the D scheme, the elements of the matrix of
coefBcients 5@are linear in the energy E. We were thus
able to use the Rayleigh quotient procedure for the
iteration once the eigenvalue had been located approxi-
mately, with a consequent reduction in the number of
iterations needed.

written as follows:

&i= —an'(Pi'+Ps')

n' pi'ps rs'(rs'pi)ps
Hs +2- r3 r33

r33
'Sy

Zr, ~p, r, x(2p,—p,)

Zri &yi rs x(2ys —yi)H3=—
2 — r13

III. THE MASS POLAMZATION AND
RELATIVISTIC CORRECTIONS

A. Mass Polarization Correction

/CD

H4= -- py

r2'

Zry I'3

+—+ps
rate f33

r3'

ZX'g I'3

rQ

(12)

Our computations so far have been based on the non-
relativistic Schrodinger equation (1), in which we have
assumed the mass of the nucleus to be infinite. The eigen-
value has therefore first to be corrected to take into
account the fihite mass of the nucleus and the conse-
quent nuclear motion. An elementary correction is to
use a Rydberg constant R~ appropriate for the atom in
question,

3II ( m

i
1——R„,

m+M i 3II
Rqv =

where m and 3f are the masses of an electron and of the
nucleus respectively. A second correction, the so-called
mass polarization correction, is given by, '

P(Vi Vs)/dr= Vrf Vg—fdic) (11)
3E 3f

where V is the gradient operator. Using their sym-
metric Eulerian angles, Bhatia and Temkin have re-
cently" extended their treatment' of the nonrelativistic
Schrodinger equation (1) for two-electron states of
arbitrary angular momentum by including the mass
polarization term 2(m/M)(Vi Vs)P directly in this
equation from the beginning. We shall, however, evalu-
ate esr from Eq. (11) and add it to the eigenvalue
of Eq. (1).

B. The Relativistic Corrections

As mentioned in the introduction, the eigenvalue of
Eq. (1) has also to be corrected in order to take rela-
tivistic effects into account. The corrections to order n'
have been listed by Bethe and Salpeter. "These cor-
rections take the form of the sum of the expectation
values of a number of operators, evaluated over the
state in question. In atomic units, the operators may be

Sm
Ps=n' —(si ss)b(rs)

3

+—sl' ss-
rs'

3(si rs)(ss rs)—
r3'

pi and ps are the momenta of the two electrons, g(r)
is the three-dimensional delta function, s~ and s2 are
the Pauli spin operators for the two electrons, and
r3=r~ —r~. A simple derivation of each of these terms,
together with an explanation of their physical signifi-
cance, has also been given by Stewart. "

The total contribution of the relativistic effects to the
term value is given by the sum of the expectation values
of the operators Ht to IIs. It is customary to express the
energies in terms of the ionization potential J. Since, to
order a', the relativistic effects shift the level of a
single-electron atom or ion by an amount —(n'Z4/g),
the relativistic contribution to order n' to the ionization
potential of a two-electron atom or ion is

&J= —sn'Z4 —(&t+&s+&s+&4+&4). (13)

As the operators H3 and H5 are spin-dependent, their
expectation values will depend on the value of the total
angular momentum quantum number J. We have
evaluated Eg for J= 1 in the case of a 'P' state in view
of the term value for the 2'P~ state measured by
Herzberg. 'The values of E& for J=oand J=2may then
be easily deduced using our previously published' re-
sults for the fine-structure splittings (in the case of the
2'P, 3'P and O'P states of helium, the J=2 levels lie
deepest). As shown in Appendix A, the expectation
values of the spin-dependent operators may be written
in the form

(as+ a,)= 2wns(~(r, ))

"H. A. Bethe and E. E. Sa1peter, Qgantgm Nechanjcs of One
arid Ttoo Electrors Atoms (Acad-emic Press Inc. , New York, 1957),
p. 166.

9 A. K. Bhatia and A. Temkin, Phys. Rev. 137, A1335 (1965),
~ See Ref. 18, p. 181.

for a 'P state, and

(Vs+Vs) = C+(5D/3)—
"A. 1.. Stewart& Advan. Phys. 12, 299 (1963).

(15)
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(H2) =E2 ——a2X, (18)
we have

&J=us[—sZ4+4(pi') —X—2rZ(b(ri)) —2r(5(rs))$ (19)

for a 'I' state, and

z,= '[—',z+-,'(p, ')
—X—1rZ(b(ri))]+C —(5D/3) (20)

for a 'P~ state.
Finally, if we denote by v the nonrelativistic ioniza-

tion energy, then the calculated ionization potential
will be

~a = 1' eSr+~Z (21)

C. Evaluation of the Integrals

It will be seen that the mass polarization and rela-
tivistic corrections are obtained by evaluating integrals
of the form j'(01$)(0@5)dr, where 01 and 02 may be
scalar, vector, or tensor operators compounded out of
the gradient operators V~ and V2 and the vectors r~, r2,

r3, si, and s2, and the integration is over the space of tbe
two electrons. After summing over the spin coordinates,
we are left with a sixfold integral to evaluate. This
integral may be reduced to a threefold one by integrating
analytically over the angular variables O', P', and @, the
methods used differing slightly for various operators.
The principal steps in each case are outlined in Appendix

A, in which the resulting integrals over tbe remaining
variables rj, r2, and r3 are also listed. The resulting three-
fold integrals consist of sums of terms of the form

r1+r2

ry=0 r2 0 r3= [r1—r2)

ri r2 r3 I (rl r2 r3)

XZ(ri, rs,rs)e ""&"dridrsdr3, (22)
where

I'(ri, r„rs)=p B,~p'r2r3"

and

gl j+rwj+ns

X— P (ri, rs, r3) (23)
ar~"ar~ 'ar3n'

Z(ri, rs, rs) =p C1rp~r2 ~r3'~

"See Ref. 18, p. 189.

glg+mg+ng

Q(ri, rs, rs) . (24)
t9f'y &BE'2 O'F3

for a 3P1 state, where the integrals C and D are defined
in the Appendix.

Using the fact that

(16)
and

(17)

and writing

The B; and C, are constants. P(ri, rs, r3) is the func-
tion 3f(ri,rs, rs), and Q(ri, rs, rs) is either the function
M(ri, rs, rs), in which case X=2) and p=2g, or the func-
tion M'(ri, r»rs), in which case X=p, = (+g. Both
I'(ri, rs, rs) and Z(ri, rs, rs) are thus linear combinations of
M(ri, rs, rs) and its derivatives multiplied by various
powers of ri, r2, and rs, or a similar function of M'(ri, rs, rs).
The extra factor rjfr2gr3" could, of course, be incorpo-
rated into one of the functions Y(ri,rs, rs) or Z(ri, rs,rs).
The integral has been defined in the particular form (22)
in order to correspond to the form in which it is evalu-
ated by the computer program.

Integrals of the more general form j'(01/~) (Ogle)dr,
where f~ and fe refer to two different states of a two-
electron atom, or ion, may also be reduced to the form
(22) provided that the wave functions P~ and Pe are
written in a form analogous to that assumed for the
P-state functions in the present work, i.e., they consist
of terms of the form e &"' ""f(e',@',p)QD(l, ns, n)ri'r2 rs".
In this case, the functions P(ri, rs, rs) and Q(ri, rs, r3) will
be derived from the wave functions for states A and 8
respectively, and ) and p will be combinations of the
corresponding coeflicients $g, rI~, (e, rie occurring in the
exponential factors. The computational scheme was
therefore designed from the beginning to deal with the
more general case, and was also used to obtain our pre-
viously reported results for the transition probabilities
between 5 and P states in helium" and for computing
the fine-structure splittings of the 2'P and 3'P levels
in this atom. The main contributions to the 6ne-
structure splittings had previously" been calculated by
transforming integrals of the type (22) from the (ri,rs, r3)
scheme to the variables N, v,2e defined in equations (7)
and (8) above. However, in view of the complicated form
of the integral to be evaluated in the present computa-
tion, especially for the expectation value of pi', it was
decided to perform the integration directly in terms of
the variables r~, r2, and r3. If we write the functions
P(ri, rs, rs) and Q(ri, rs, r3) as triple series in ri, r2, and rs,
the integral (22) may be written in the form QC(a, b,c)
XI(a,b,c), where

I(a,b,c) =
1=0

rl+r2

2=0 r3=]r1—r2)

rl r2'r3'

23 B. Schiff siid C. L. Pekeris, Phys. Rev. 134, A638 (1964).

Xe 1" ""'dridrsdrs, (25)

and the coefficients C(a,b,c) are given by

rirrsvrs" 7(ri, rs, r3)Z(ri, rs, r3) =QC( ', a, b)rcri2 r3'. (26)

It will be noted that some of the integrals to be evalu-
ated contain powers of r~, r2, or r3 in the denominator.
Thus, there will be nonzero values of C(a,b,c) for which
a, b, or c are less than minus one. However, it is found
in such cases that the integrand always contains a
factor which reduces the order of the singularity in such
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a way that the integral itself is finite. For example, all
integrals with a factor of r32 in the denominator are
found to have a factor of r j—r2 in the numerator.

When wave functions containing a large number of
terms were used, a severe loss of accuracy was encoun-
tered in evaluating integrals of the form (22) with
X= 2c in the case of the higher excited states. This loss
of accuracy is due to cancellation between the various
contributions to the sum QC(a, b,c)I(cl,,b,c), and can be
understood as follows. Let us refer to the "outer" or
"p" electron as electron 1.If $ is very much less than p,
then in the region of greatest probability density, r& will

be much greater than r2, and hence r3 will be almost
equal to r~. Thus the set of coordinates (r~,rs, rs) is not
the most suitable with which to express the wave func-
tion in this case. The difhculty was overcome by re-
placing the variable r3 by the variable p=r3 —rj. It was
indeed found that for the states with low values of $,
the coeKcients of the terms with high powers of ry

in the expansion of the wave function in the (rq, rs,p)
scheme were considerably smaller than the corre-
sponding coeKcients in the (r~,rs,rs) scheme. On evalu-
ating the integrals (22) in the (rq, rs,p) scheme, the degree
of cancellation was found to be small. Of course, this
scheme has the disadvantage that powers of r3 in the
denominator can no longer be divided out, and hence a
different table of integrals has to be used for each
negative power of rs. The (r~,rs, rs) scheme was still
used, therefore, for the cases where no significant loss of
accuracy occurred. The formulas for the integrals in the
(r&,rs,p) scheme analogous to the I(u, b,c) are given in
Appendix B.

IV. THE NUMERICAL RESULTS

A. Nonrelativistic Eigenvalues

The nonrelativistic energy is given by the eigenvalue
E= —ss of the Schrodinger equation (1).E is given in
atomic units, and the corresponding ionization energy v

in units of cm ' is calculated from E by means of the

p= (2E+Z')R= (2—s' —Z')R (27)

(In Refs. 1 and 12, this relation appears incorrectly
with an extra factor of 2. The results listed are un-
affected. ) For the Rydberg constant R, we used the
values RH, 4=109 722.267 cm ' and RL;7=109 728.727
cm ' for the helium atom and the lithium ion respec-
tively. In the C scheme, computations were carried out
for the 2'P, 2'P, 3'P, and 3'P states of helium, and up to
N=220 terms were included in the expansion of the
wave function. The ionization energies v obtained with
N= 84, 120, 165, and 220 for each of the four states have
been listed in a previous publication (see Table I of
Ref. 12) together with the results of an extrapolation to
infinite order. By comparison with the extrapolated
values, it is estimated that the values at order 220 have
converged to within an accuracy varying from about
0.2 cm ' for the 2'P state to 2 cm ' for the 3'P state.

Tax,z I. Nonrelativistic ionization energy v of the 2'P state
in cm '. Comparison of results from C and D schemes.

20
35
56
84

120
165
220

C scheme

29 166.766
29 200.862
29 213.953
29 219.015
29 220.944
29 221.676
29 221.958

D scheme

29 210.757
29 221.312
29 221.792
29 222.096
29 222.133
29 222.148
29 222.152

TAN&.E II. Nonrelativistic eigenvalues for the helium 2'P state
with 84 terms in the expansion using different values of the
screening constants ( and g.

0.51604 (C)
0.81
0.8
0.81
0.81
0.81
0.82
0.82
0.83
0.83
0.8325
0.8277

2
1.85
1.953
1.87
2
1.92
1.995
1.953
1.93
1.986
1.96
1.96016

—E(atomic units)

2.1331498878
2.1331638925
2.1331638940
2.1331639002
2.1331639099
2.1331639116
2.1331639225
2.1331639253
2.1331639258
2.1331639265
2.1331639270
2.1331639282

In the D scheme, the eigenvalue is maximized with
respect to the parameters $ and rj. In view of the inter-
est in the fine-structure splitting of the 'P levels, this
scheme was first applied to the 2'P and 3'P states of
helium. The ionization energies obtained for the 2'P
level using the C and D schemes are compared in Table
I, and it will be seen that the use of the D scheme leads
to a considerable improvement in the results. We de-
cided, therefore, to extend the D scheme computations
up to order 560, corresponding to 0= 13. In view of the
large amount of computer time required to calculate the
value of a high order determinant, the optimization was
only carried out up to order 120 (and also partially for
order 165 in the case of the 2'P state), the values of $
and p for higher orders being estimated by extrapola-
tion. This procedure is based on the observation that
the eigenvalue is much more sensitive to changes in the
number of terms in the expansion than to variations in
the values of & and g, provided that these parameters
are not allowed to vary too widely from their optimum
values. To illustrate this point, in Table II we have
listed the eigenvalues obtained for the 2'P state for
order 84 using various values of ( and q in the vicinity
of their optimal values. We have also listed the C-scheme
eigenvalue as the first entry in the table. It will be seen
that, aside from the C-scheme result, the poorest
eigenvalue listed (E= —2.1331638925 with (=0.81,
g= 1.85) differs from the optimum (E=—2.1331639282
with )=0.82/7, p= 1.96016) by roughly 3.6&&10 '
whereas the optimum eigenvalues for order 56(E
= —2.1331625437 with )=0.7914, =r)2. 907)5and for
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TAnLE III. Nonrelativistic eigenvalues for the 2'I' state of helium (in atomic units).

20 0.725 2.066 2.133112254831
35 0.77428 1.89513 2.133160354235

5 56 0.7914 2.0975 2.133162543742

9 220

ii 364

13 560

0.91

0.98

1.04

7 120 0.845 2.184

2.1

2.1

2.1

2.133164094685

2.133164180840

2.133164189423

2.133164190534

10 286

12 455

0.95

1.01

84 0.8277

8 165 0.895 2.1

2.1

2.1

2.133164164111

2.133164187632

2.133164190275

1.96016 2.133163928235

Extrapolated (odd 0) 2.133164190699 Extrapolated (even 0) 2.133164190610

TABLE IV. Nonrelativistic eigenvalues for the 3'5' state
of helium (in atomic units).

3 20 0.4427 2.05793548553
4 35 0.45059 2.05800234939

5 56 0.505 2.05806853141
6 84 0.5135 2.05807451076

7 120 0.5465 2.05808014010
8 165 O.SSS6 2.05808058907

9 220 0.5756 2.05808099094
10 286 0.59 2.05808103540

11 364 0.615 2.05808107031
12 45S. 0.62 2.05808107688

13 560 0.65 2.05808108165

Extrapolated
(odd Q)

2.05808108354 Extrapolated
(even 0)

2.05808108113

The optimum r) for the 2'P state was found to be close
to the value r) =Z for all of the orders investigated, and
we therefore decided to take g=. Z and to optimize with
respect to P alone in all of the subsequent calculations.
For a given state, the optimum value of P did not appear
to vary smoothly with 0, and the corresponding eigen-
values also showed an unsmooth behavior. However, the
eigenvalues for odd values of 0 alone (i.e., for orders
20, 56, 120, ) did vary smoothly, and a similar re-'

order 120(E=—2.1331640947 with $= 0.845, r) = 2.184)
difFer from the order 84 optimum by amounts of
1.4X10 ' and 1.7&(10, respectively. On the other
hand, a much larger deviation of g from its optimal
value leads to a considerable change in the eigenvalue,
as is shown by the C-scheme result for order 84, which
diQ'ers from the D-scheme optimum for this order by
more than 1.4&10 '.

mark applies to the results for even 0 alone. Tabulated
in this way, the ratio of successive differences is quite
small, taking on values between 0.09 and 0.18 for the
highest orders considered. The eigenvalues have there-
fore been extrapolated, u'sing the formula

(Et Ee)(Es Et)
Eextrapolated =Et+

281—EP—E2
(28)

where Ee, Et, and Es are the values at order 220, 364,
and 560 or at 165, 286, and 455 in the cases of odd and
even 0, respectively. The optimum values of the param-
eter P were also considered for the cases of even and odd
0 separately when estimating a suitable value of this
parameter to use for the higher orders.

The eigenvalues obtained for the 2'P' and 3'P states
of helium are listed in Tables III and IV together with
the optimum values of $ (and of t) in the case of 2'P).
The results for odd and even values of 0 have been
tabulated separately. It will be noted that there is close
agreement between the extrapolated values derived from
consideration of the results for odd and for even 0
alone. %e therefore decided to compute the eigenvalues
for the remaining states to be considered using odd
values of 0 only. The ionization energies obtained for
the helium 2'P, 2'P 3'P 3'P 4'P, and 4'P states and
the 2'P state of Li+ are listed in Table V, together with
the extrapolated values, which give some indication of
the degree of convergence achieved. The Anal values
used for the parameter $ are listed in Table VI.

The only other published calculation of two-electron
P-state wave functions of a comparable accuracy

TABLE V. Values of the nonrelativistic ionization energy y in cm

3
5
7
9

11
13

20
56

120
220
364
560

He 2'E

27 166.0159
27 176.0904
27 176.6404
27 176.6829
27 176.6876
27 176.6883

He 238

29 210.7567
29 221.7924
29 222.1327
29 222.1516
29 222.1535
29 222.1537

He 3'P

12 067.5681
12 097.1563
12 101.1159
12 101.5155
12 10i.5599
12 101.5663

He 3'E

12 713.6256
12 742.8218
12 745.3693
12 745.5560
12 745.5734
12 745.5759

He 4'8

6788.7814
6808.7740
6816.2016
6817.7406
6818.0054
6818.0520

He 4~P

7034.0725
7077.7571
7090.9286
7093.0844
7093.3632
7093.3965

Li+ 2''
108 255.0048
108 268.9590
108 269.5269
108 269.5666
108 269.5708

Extrapolated 27 176.6884 29 222.1538 12 101.5673 12 745.5763 6818.0620 7093.4011 108 269.5712
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is that of Schwartz" for the 2'P state of helium.
Schwartz used the 6xed values )=0.58 and g=2
for the screening constants of the two electrons,
and included terms with a factor of (rq+r2)'I' in
the expansion of the wave function. The largest
number of terms used in the expansion was 439,
which gave an eigenvalue of —2.133164190626, com-
pared to the result of —2.133164190534 for order 560
obtained by the present authors. Schwartz's extrap-
olated value is —2.13316419080, and thus lies 10 "
atomic units or 2&&10 ' cm-' deeper than our extrap-
olated value of —2.133164190699for odd Q.

3. The Total Ionization Energy

The results obtained for the total theoretical ioniza-
tion energy J&z——r —e~+Ez are listed, in units of cm ',

TABLE VI. Final values adopted for the screening constant $.

Ã He 2'P He 2'P He 3'P He 3'P He 4' He 4'P Li+2~P

20 0.696
56 0.77

120 0.834
220 0.90
364 0.96
560 1.02

0.725
0.7914
0.845
0.91
0.98
1.04

0.398
0.4752
0.528
0.57
0.61
0.65

0.4427
0.505
0.5465
0.5756
0.615
0.65

0.27 0.27 1.31
0.32 0.326 1.4471
0.363 0.374 1.578
0.40 0.406 1.70
0.435 0.44 1.835
0.47 0.475

in Tables UII—XIII for all of the states considered, to-
gether with the corresponding values of p, ~~, E2,
C SD/3 (fo—r 'P states) and E~. In converting the three
last-mentioned quantities from atomic units to cm—', we
used the values n'EH, 4 ——5.842755 and o.'RL;7 ——5.843099y
while a~ was computed using the values 2(m/3f)R

TA&LE VII. The ionization energy and the expectation values of various operators for the 2 P state of helium.
a.u. stands for atomic units.

—L (a.u. )
(P,') (a.u. )
(S(r,)) (a.u. )
(S (r~)) (a.u.)
—Z, (cm-~)
(2g' —4)RH, 4 (cm ')
—q~ (cm ')
Eg (cm ')
Jg, (cm ')
(t/r, ) (a.u.)
(r~) (a u )
(»P) (a.u. )
(t/rg) (a.u.)
(r,) (a.u. )
(»32) (a.u. )

56
5

2.123840361561
40.1176220
1.27441973
0.00076470
0.2377800

27 176.0904
—1.3855057

0.466673
27 175.1/16

1.1231776734
2.91031109

15.756218
0.245029588
5.1375846

31.579783

120
7

2.123842867892
40.1171446
1.27439914
0.00074386
0.2376289

27 176.6404
—1.3851637

0.467404
27 175.7226

1.1231775004
2.91064761

15.764634
0.245024430
5.1382552

31.596485

220
9

2.123843061318
40.1170497
1.27439472
0.00073805
0.2375884

27 176.6829
—1.3851940

0.467624
27 175.7653

1.1231775084
2.91067957

15.765513
0.245023940
5.1383189

31.598234

364
11

2.123843082754
40.1170208

1.27439326
0.00073626
0.2375769

27 176.6876
—1.3851971

0.467701
27 175.7701

1.12317/5084
2.91068368

15.765634
0.245023876
5.1383270

31.598474

560
13

2.123843085800
40.1170114
1.27439295
0.00073562
0.2375736

27 176.6883
—1.3851974

0.467717
27 175.7708

1.1231775097
2.91068423

15.765651
0.245023869
5.1383281

31.598508

TABLE VIII. The ionization energy and the expectation values of various operators for the 2 P& state of helium.
a.u. stands for atomic units.

E(a.u.)—
(Pg') (a.u.)
( (r,S}) (a.u.)—Z, (cm-1)
C—SD/3 (cm ')
(2P—4)RH, 4 (cm )
—g~ (cm 1)

A'g (cm ')
Jta (cm ')
(t/» ) (a.u.)
(rg) (a.u. )
(rP) (a.u.)
(1/»8) (a.u.)
(rg) (a.u.)
(ra~) (a.u.)

2.133162543742
39.6476790
1.25880725

—0.40962053
0.0664061

29 221.7924
1.9409794

—0.312826
29 223.4206

1.1332433490
2.67369487

13.2053933
0.266648440
4.69942640

26.630174

120

2.133164094685
39.6482921
1.25884810

—0.40992201
0.0666466

29 222.1327
1.9425442

—0.314095
29 223.7611

1.1332424572
2.67394670

13.2113357
0.266641645
4.69992513

26.641987

220
9

2.133164180840
39.6483692
1.25885950

—0.40993580
0.0666287

29 222.1516
1.9425888

—0.314739
29 223.7795

1.1332424189
2.67396023

13.2116982
0.266641335
4.69995215

26.642709

364
11

2.133164189423
39.6483732

1.25886022
—0.40993769

0.0666227
29 222.1535

1.9425883
—0.314788

29 223.7813
1.1332424226
2.67396140

13.2117329
0.266641313
4.69995450

26.642778

560
13

2.133164190534
39.6483744

1.25886047
—0.40993800

0.0666223
29 222.1537

1.9425884
—0.314803

29 223.7815
1.1332424224
2.6/396161

13.2117393
0.266641309
4.69995493

26.642791
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TABLE $X. The ionization energy and the expectation values of various operators for the 3 P state of helium.
a.u. stands for atomic units.

R(a.u—.)
(Pi') (au)
(b(ri)) (a.u.)
(S(r,)) (a.u.)—Z, (cm-)
(2e' —4)Ru. 4 (cm ')
—g~ (cm ')
Eg (cm ')
Jt,h (cm )
(1/rg) (a.u. )
(rg) (a.u.)
(rP) (a.u. )
(|/rr) (a.u.)
(r,) (a.u.)
(rr') (a.u.)

56
5

2.0551262593
40.045124

1.2735413
0.0003034
0.079086

12 097.156
—0.435292

0.177618
12 096.899

1.054967915
6.672466

91.5447
0.109623830

12.623871
183.1286

120
7

2.0551443030
40.045739

1.2736525
0.0002685
0.078462

12 101.116
—0.437431

0.171907
12 100.850

1.054972233
6.678473

91.8202
0.109601343

12.635868
183.6810

220
9

2.0551461242
40.045548
1.2736272
0.0002578
0.078314

12 101.516
—0.437668

0.173448
12 101.251

1.054972258
6.679421

91.8662
0.109597107

12.637764
183.7731

364
11

2.0551463263
40.045525

1.2736286
0.0002543
0.078279

12 101.560
-0.437678

0.173375
12 101.296

1.054972329
6.679530

91.8719
0.109596723

12.637983
183.7846

560
13

2.0551463554
40.045507
1.2736283
0.0002530
0.078268

12 101.566
—0.437668

0.173380
12 101.302

1.054972346
6.679544

91.8727
0.109596687

12.638011
183.7862

TA'BLE X. The ionization energy and the expectation values of various operators for the 3 P& state of helium.
a.u. stands for atomic units.

—R (a.u.)
(p, ) (a.u.)
(b(ri)) (a.u.)—R, (cm ')
C—5D/3 (cm i)
(2P—4)Ru, 4 (cm ')

(cm )
E (cm ')
Jt,q (cm )
(1/r&) (a.u.)
(ri) (a.u.)
(rP) (a.u.)
(1/rq) (a.u.)
(rr) (a.u.)
(rrr) (a.u.)

56
5

2.0580685314
39.914966
1.2693069

—0.1196723
0.016343

12 742.822
0.544743

—0.06300
12 743.304

1.058043836
6.3160668

81.88872
0.115968200

11.921071
163.85846

120
7

2.0580801401
39.912292
1.2691112

—0.1207475
0.017461

12 745.369
0.551844

—0.05640
12 745.865

1.058024390
6.3206196

82.08559
0.115932519

11.930186
164.2S411

220
9

2.0580809909
39.912275
1.2691154

—0.1208676
0.017656

12 745.556
0.552520

—0.05668
12 746.052

1.058022753
6.3210987

82.10822
0.115929096

11.931144
164.29952

364
11

2.0580810703
39.912301
1.2691193

—0.1208816
0.017680

12 745.573
0.552588

—0.05688
12 746.069

1.058022786
6.3211210

82.10950
0.115929018

11.931189
164.30209

560
13

2.0580810816
39.912310
1.2691211

—0.1208828
0.017677

12 745.576
0.552601

—0.05699
12 746.072

1.058022785
6.3211269

82.10982
0.115928987

11.931201
164.30274

TABLE XI. The ionization energy and the expectation values of various operators for the 4 P state of helium.
a.u. stands for atomic units.

R(a.u.)—
(p, ) (a.u.)
(S(r,)) (a.u.)
Q (ra)) (a.u.)
—E, (cm-i)
(2,&—4)RH, 4 (cm ')
—83E (CI11 )
Er (cm )
Jgh (cm ')
(1/r|) (a.u.)
(r|) (a.u.)
(rP) (a.u. )
(1/rr) (a.u.)
(r,) (a.u.)
(rr') (a.u.)

56
5

2.031027312
40.02201

1.273252
0.0001569
0.034160

6808.774
—0.182383

0.09182
6808.683

1.0309996
11.93075

302.649
0.06185719

23.12776
605.332

120
7

2.031061159
40.02231

1.273493
0.0001316
0.034169

6816.202
—0.186699

0.07588
6816.091

1.0309985
11.94160

303.572
0.06186554

23.14932
607.171

220
9

2.031068173
40.02122

1.273382
0.0001198
0.034145

6817.741
—0.187862

0.08124
6817.634

1.0310004
11.94592

303.923
0.06186428

23.15794
607.872

2.031069379
40.02131

1.273409
0.0001149
0.034122

6818.00S
—0.188132

0.07975
6817.897

1.0310005
11.94721

304.026
0.06186266

23.16050
608.078

560
13

2.031069591
40.02127
1.273405
0.0001129
0.034110

6818.052
—0.188165

0.07997
6817.944

1.0310004
11.94759

304.057
0.06186191

23.16126
608.139
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TABLE XII. The ionization energy and the expectation values of various operators for the 4 P1 state of helium.
a.u. stands for atomic units.

—E (a.u.)
&p~') (au)
(B(r~)& (a.u.)
—E2 (cm ')
C—SD/3 (cm ')
(2e' —4)RH, 4 (cm ')
—e~ (cm ')
Eg (cm ')
Jt,h (cm ')
(1/rg) (a.u.)
(r&) (a.u.)
(rP) (a.u.)
(1/ra) (a.u.)
(rg) (a.u.)
(rs') (a.u.)

2.032253057
39.965632

1.2715848
—0.045035

0.004626
7077.757

0.199044
—0.01932

7077.937
1.0322673

11.42893
277.073

0.06460254
22.12820

554.199

120
7

2.032313079
39.964963
1.2714621

—0.049133
0.006378

7090.929
0.221029

—0.01461
7091.135

1.0322926
11.45556

278.994
0.06454418

22.18138
558.034

220
9

2.032322903
39.966209
1.2715479

—0.050123
0.006963

7093.084
0.226298

—0.01767
7093.293

1.0322889
11.46652

279.769
0.06451133

22.20326
559.581

364
11

2.032324173
39.966295
1.2715397

—0.050322
0.007141

7093.363
0.227170

—0.01684
7093.574

1.0322888
11.46823

279.899
0.06450670

22.20669
559.841

560
13

2.032324325
39.966317
1.2715387

—0.050352
0.007179

7093.397
0.227279

—0.01669
7093.607

1.0322886
11.46858

279.926
0.06450572

22.20738
559.895

TABLE XIII. The ionization energy and the expectation values of various operators for the 2'P state of the Li+ ion.
a.u. stands for atomic units.

—E (a.u.)
&p,4) (a.u.)
(S(r,)) (a.u.)
(S(r,)) (a.u.)
—Em (cm ')
(2e' —9)RLp (cm ')
—g~ (cm ')

(cm 1)

Jg, (cm ')
&1/r, ) (a.u.)
(r&) (a.u.)
(rP) (a.u.)
(1/ra) (a.u.)
(rg) (a.u.)
&rsm) (a.u.)

4.9933482870
204.14771

4.30659110
0.0099987
2.22345

108 268.9590
—4.3111022

5.63407
108 270.2820

1.746578823
1.52187696
4.0408638
0.492779764
2.5923595
8.072704

120
7

4.9933508749
204.14637

4.30657103
0.0098816
2.22272

108 269.5269
—4.3110606

5.63593
108 270.8518

1.746579487
1.52192741
4.0415579
0.492775482
2.5924596
8.074071

220
9

4.9933510558
204.14604

4.30657111
0.0098520
2.22257

108 269.5666
—4.3110638

5.63591
108 270.8914

1.746579531
1.52193161
4.0416206
0.492775131
2.5924679
8.074195

364
11

4.9933510746
204.14594

4.30657134
0.0098429
2.22254

108 269.5708
—4.3110642

5.63587
108 270.8956

1.746579541
1.52193201
4.0416271
0.492775102
2.5924687
8.074208

TABLE XIV. Two-electron P-state ionization energies, comparison between theory and experiment. v is the nonrelativistic ionization
energy in cm, and J&h the total theoretical ionization energy including the mass polarization and relativistic corrections. The results
tabulated are for %=560 in the case of helium, and X=364 in the case of Li+. J, p is the experimental value.

v

Jt,h
J'exp

J'exp J'th

He 2'P

27 176.69
27 175.77
27 175.81~

+0.04

He 2'Pg

29 222.15
29 223.78
29 223.86'
+0.08

He 3'P

12 101.57
12 101.30
12 101.33&

+0.03

He 33Pg

12 745.58
12 746.07
12 746.13b

+0.06

He 4'P

6818.05
6817.94
6817.99b

+0.05

He 43P1

7093.40
7093.61
7093 67c

+0.06

Li+ 2'P

108 269.57
108 270.90
108 270.81~

—0.09

+ Reference 8.
b Reference 24.
0 See Ref. 24. We have assumed that the term value listed by Martin corresponds to the J= j. level.
d Reference 9.

=30.08387 for He4 and 2(rw/M)R= 17.163109 for Li7.
None of these constants are known to such an accuracy,
and th.e results are only quoted in Tables VII—XIII to
the number of significant figures given in order to exhibit

the rate of convergence in cm ', and to enable the
original values in atomic units to be recovered if de-
sired. The values of these 'constants are, however,
known sufficiently accurately to enable Ez and e~ t;p be
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computed in cm ' to at least four places after the
decimal point in all cases, an accuracy suf6cient for the
present calculations. The tables also contain the values
of E=—e' and the expectation values of pi', 8(ri),
8(rs), 1/ri, ri, ri', 1/rs, rs, and rs' in atomic units. It will
be seen that at X=560 (or /=364 in the case of
Li+), Jta has converged to within an accuracy of
10 ~10 ' cm ', and is thus in all cases subject to an
estimated uncertainty less than that of experiment.
The results are compared with those of experiment in
Table XIV,"in which we have listed v and J~~ for the
highest value of E in the case of each of the states con-
sidered, together with the experimental value J,„~.
The difference J, ~

—J&h is presumably accounted for by
the contributions from the radiative terms, and is less
than 0.1 cm ' in absolute magnitude in all cases.

There have been no calculations of the relativistic
corrections for a two-electron P state with which we

may compare the results presently described, apart from
Schwartz's calculation" of the fine-structure splitting
of the helium 2'P level. The splitting is obtained by
evaluating (Vs+Ha) Lsee Eq. (A33)], and our results
have been compared with those of Schwartz in a pre-
vious publication, ' in which the excellent agreement be-
tween the results of the two calculations is demonstrated.
Our results for the mass polarization correction &.M agree
well with the values of 1.3874 and —1.9443 cm ' ob-
tained for the 2'P' and 2'P states of helium by Araki
et ul. ,

25 and also with the values of 1.383 and —1.942
cm ' which may be derived from the results of recent
calculations by Machacek ef al." for these two
states.

Our result for the Li+ ion confums the identification
of the line at 9581.42 A as belonging to the 2'5—2'P
transition. " Combining our value of J~h= 108270.89
cm ' for the 2'E level with the theoretical ionization

energy of 118 704.88 cm ' obtained by one of us for the
2'5 level, "we obtain the value 10 433.99 cm ' for the
2'5—2'P transition. This is in excellent agreement with
Toresson and Edlen's experimental value of 10 434.01
&0.10 cm '"
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Vilb Vslbdr= 2sg'VgG V2G

8G ( 8G
+2ssC Wi GG+2siG. -+sissviG Vsg

8z, Bsy

where we have made use of the fact that certain terms
give equal contributions when integrated, because of
the synunetry of the region of integration with respect
to the two electrons. We now transform the derivatives
into the ri, rs, 8, 8', @', P scheme, using the equations

cos8s ——cos8' cos8—sin8' sin8 co+, (A3)

8 8f sin8' cosP Bf
f(ri, rs, 8) =cos8' +— —, (A4)

Bsy Dry ry 80

where 8f/8ri denotes the derivative with rs and 8 held

constant, and 8f/88 similarly. Since G is a function of

ri, rs and 8 only, the scalar products occurring in (A2)
will be independent of the angular variables 8', @', P,
and we can thus integrate immediately over these
variables to obtain

8x'
Vtf Vs/dr= 2r~'V~G V2G

BG rmsin0 BG BG
+2rs cos8C —2 G & 3GG+2riG +rrrs

Dry rg 80 Dry

Xcos8(ViG VsG+ ViG. VsG) dV, (AS)

where d V= r&'r2' sin0dr&dr2d0= r&r2r3dr&dr2dr3. By taking
suitable axes in the r&, r2, 0 plane, one can easily show

that the scalar product of the gradients of any two
functions of r&, r2, and 0 alone may be written

V rf(rt, rs, 8) Vsg (ri, rs, 8)

8f 8g 1 8f8g
cos0

Dry l9r2 ryF2 80 80

18f8g 1 8f8g)
+— —

~

sin8. (A6)
r'i 88 8rs rs Brl 88&

APPENDIX A: INTEGRATION OVER
THE ANGULAR VARIABLES

L Mass Polarization

We have to evaluate J'Vip Vs/dr. We write

F(ri,rs, 8)=riG(ri, rs,8) T. hen the wave function (4)
may be written in the form lb= siG&ssC, so that

V ill slV 1G~s2 V1G+Gz (A1)

where z is the unit vector in the s direction. Vs/ may be
expressed similarly, and thus
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If we substitute G(ri, r2, 8) =e &"1 3"3M(ri,rs, rs) and transform from (ri, r2, 8) to (ri,rs, rs), the integral may finally
be written, after some algebra, in the form

Sx'
Vig Vgkdr= {ri'rstsM1M2 —(ri'r stsM1+r1'tiM2+2ri'rsrsMs)Ms

+M(—strs'rst 3M1+ (rir sts —$r1'rst 3)M2+ (fr1'rsts+ rtr1'ti —rir sfs)Ms+ (&str1'rst3 —str sr st 3)Mj)
2m. '

&"2drydr2dr 3~ {Ms(rsts'Ms —2rststsM3) +M2(rsts'M1 —2rititsM3) —4rirststs(rs) 'Ms%3

+M/(Sra'r2rs 2$rsfs )Ml 22trsts M2+(4rlr2t2+2(rltlts+22tr2t2ts)M3

+ (12rirsrs —S)rs'rsrs+)'rsts'+stsrsts')M j)e &&~ &""+""dridrsdrs, (A7)

where M1 denotes BM/Bri, and so on, and ti r——i'+r —'+r ' t = ri' r'1 r '—and ts r, '+r '———r '. We have ex-
pressed the integral in this form, as a sum of integrals of the type (22), in view of the fact. that an interpretive
programming scheme has been developed for evaluating integrals of this type on the computer.

We have

(P14) (V 2P) 2dr = DV 2P)2+ (V 2$)2]dr
2

(AS)

From the wave equation (1), it follows that

(Visas)2+(V 2P)2 2V 2P. V 2P+4$g Vj2$2

where V= Z/ri Z/rs—+1/rs—, so that

(A9)

—(P1')= V1'P V2'/dr 2(E U)—'fsdr=I 2J— — (A10)

The evaluation of I is very simple. Again writing p= 21G&ssG and integrating over the variables 8, p, p we obtain
the result

16m'
J——

3

Z' Z' 1 2' 2J''Z 2E, 2Z' 2Z 2Z
I="+ + + + + — +——

& 1 r2 & 3 rl & 2 r3 rlr2 rlr3 r2r3
9 2 ~ 2

(ri'G'&rsrsGG cos8)d V, (A11)

which is then converted into the r~, r2, r3 scheme. To evaluate I, we note that

V12$= as V12G&ssV 12G+ 2(BG/Bzi)
and V2'f similarly, so that

(A12)

BG
2s12V12G V 2G+43, V 2G dr~

Bsy

Using (A3), (A4), and the relation

BG BG BG
s122(VPG V'2'G+V'1'G V2'G)+4 +422V2'G dr. (A13)

Bzg Bsg 8s]

Bf (cos8' sin8+sin8' cos8 cosg) Bf
f(ri, r2, 8) = (cos8' co—s8—sin8' sin8 cosQ)

882 Br2 r2 88
(A14)

and making use of the fact that Vssf(rs, rs, 8) and V2'f(ri, r2, 8) are independent of 8', p', and @, we may integrate
over these angles to obtain the result

j,6+'
I=— BG 4m'

rs Vs G+2r1 V' GdV~
Bf& 3

BG Sr2 sine BG-
2rirs cos8V1'G+Srs cos8

Oft 88

BG BC S cos8 BG BC 16sin8 BG BC
+S cos8 +2rirs cos8V1'G Vs'G d V. (A15)

Brg Br2 rjr2 ag ae r, ar~ ae
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Writing G(rl, r2, 8)= e &" ""M(rl,rs, rs) and going over to rl, r, , rs making use of the relation

graf ]2 ()2~ ()gal 2 (jl~
Vl'M(rl, rs, rs) = + + +— +-

r jr3 BrjBra Bra ry Brq r3 Brs
(A16)

and a similar relation for V'22M(rl, rs, rs) we obtain the final result

16m'
(P14)—=I 2J =—

3
t (rs) {rl r3M11+(4rl r3 2&1 rs)M1+rl rsM33+ r1 4M18+ (2rl + rlt2 farl 4)M3

+($'rl rs 4)rl'rs—)M}{rsrsM22+tlM2s+rsrsM88+(2rs —2qrsrs)M2+(2r2 —rttl)M8+(rt'rsrs —2rtrs)M}

+r1(rsr 8) '{ 2E'r 1'r—s'rs' 2Z'r2'r—s' 2Z'rl'r—s' 2rl'r2' ——4ZEr lr2'rs' —4ZEr 1'rsr 8'+4Er 1'rs'rs

4x'
4Z'rlrsrs—'+4Zrlr2'rs+4Zrl'rsrs}M']e '&"' '""'drldrsdrs+ — [(rs) '{rlrst83II11+tst3M13+rlrstsM33

3

+(6rsts 2$rlrsts)M1+(6rlts 81'lr2 @sts)M3+(pflr3ts 6(rsts)M} {rsrsM22+tlM28+r2rsM88

+(2r3 2(fsfs)M2+(2rs (tl)3II3+(prsrs 2$rs)M}+(r3) '{rsrstsM22+tltsM28+fsrstsM88

+ (2rst 8
—2rtrsrst 3)M2+ (2rsts —qtlts) Ms+ (rt'rsrst8 —22trst 8)M}{rlr 8M11+tsM18+rlr83II88+ (2r8—22trlrs) Ml

+(2rl —stts) 3II8+ (st'rlrs —22trs) M}+{4r34M1—8rltlM8 —4tr84M} {M2—$M}—8rlr24(rs) 'M:Ms

+(rlrsrs) '{ 4E'rl'r2'rs'ts 4—Z'r2'rs'ts 4Z'r—l'rs'ts 4rl —r2 t3 8ZErlr2 rs t3 8ZErl r2r3 4+8Erl r2 r3ts

—8Z'rlrsr3 ts+8Zrlr2'rsts+8Zrl'rsrsts}MMje '&+&""'+""drldrsdrs. (A17)

Again, we have written this integral in a form corresponding as closely as possible to that represented in the com-
puter program.

III. E2

The complicated nature of the angular dependence of the operator H2 necessitated the development of a general
method for integrating over the angular variables. We shall outline the method in some detail, in view of its
possible usefulness in other cases. Instead of, as heretofore, writing down the operators using the set of variables

(r1,81,&l,r2, 82,$2) and then transforming into the set (rl, rs, r3,8',p', p), we shall write the operators directly in terms of
the latter set of coordinates. It will be remembered that rj, r& and r3 dehne the shape of the triangle formed by the
nucleus and the two electrons, and O', P', and P are the Eulerian angles describing the orientation of this triangle

with respect to a set of space axes x, y, s (see Fig. 1).
In order to evaluate the scalar products, it is easiest to
resolve the various vectors into components in the r~,
I'2 plane and perpendicular to it. We therefore take a
set of rectangular Cartesian coordinates with unit vec-
tors k along rl, j perpendicular to the rl, r2 plane, and i

F&G. 2. The coo~d"Pte s~stern in this plane in such a way that a, ), 1& form a right
fp handed orthogonal set, as shown in Fig. 2. This set may

be brought into coincidence with the space axes x, y
and 2 by successive rotations of —P about the k axis,

e —8' about the (new) j axis, and —P' about the (new)
L k axis again. Thus it is easily shown that the cornpo-
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nents of i, j and k with respect to the space axes x, y and s are

i= (cos8' cos$ cosP' —sing sing', cos8' cosQ sing'+sing cosQ', —sin8' cosQ),

j= (—cos8' sing cosQ' —cos$ sing', —cos8' sing sing'+cosP cosQ', sin8' sing),
k = (sin8' cosp', sin8' sing', cos8') .

(A18)

The vectors which will be needed in the calculation may be expressed in terms of their components along the i,
j, and k axes as follows:

rr ——{0,0,rr},

r2 ——{r~sin8, 0,r2 cos8},

ra= {rm sin8, 0, r2 cos8 rr—},

V1=

ancl

sing B cot8' sing B r2sin8 B

rr B8' rr sin8' Bg' rr BQ

cosP B

r3 Br3

sing B cos$ B (cot8+cot8' cosQ) B B (rr —r2 cos8) B
+ +

rr B8 rr sln8 BQ rr Bp Brr r3 Br3

Br3

B r, sin8 B 1 B B (rm cos8 —rr) B
V~ —— sin8 +, —,cos8 +

Br2 r3 Br3 r2 sin8 Bp Br2 ra
(A19)

We note that the gradients of any function of r1, r2, and r3 alone lie in the r1, r2 plane, as we should expect. It will be
seen that the expressions for the various components of the vectors contain terms involving cos8 and sine. These
have just, been inserted as a shorthand notation for the corresponding functions of rr, r2, r& $e.g. , cos8 has been
written for (rr2+r22 r32)/(2rrr2) —j. It is useful to retain them throughout part of the subsequent development,
rather than to perform the tedious algebra which would result if the variable 0 were to be eliminated completely at
this stage. Expressions involving 8 do not, of course, commute with the operation of diffierentiation with respect to
r1, r2, or r3, and the following relations are useful in this connection

cos0=
2r1 r2 Br2

cose=
2r]r2 Br3

cos8=
r3

r lr2
(A20)

t2 cot8
slne =-—

2r]

t1 cote
sino=—

2r1r 2

r3 cote
sine=

rlr2

where B/Brr denotes differentiation with respect to rr keeping r2, r3, 8', p', and P constant, and so on.
We note that E2 ——n2X, where

r3' r3

1 Vr V2 r~(ra V2) ~ Vr V, r, (r, .V,)X=— + = (F cos8r&P cos82) +
2 r3 r33

' V]F cos01dv ~ (A21)

Writing F(rr, r2, 8)=—H(rr, r2,r3) and using the formulas (A19), we see that the vector Vr(F cos8r) may be written

sin8' cosQ sin8' sing
Vr(F cos8r) = cos8 VrH+H — —, —,0

r2 sin8 cos8' BH H sin8' cos$ H sin8' sing

r3 Br3 r1

BH (rr —r2 cos8)
, cos8' +

~r1 r3

BII
co s8' . (A22)

Br3

Similarly, the operator V&/r3+r3(r3 V2)/r33 may be written

(3r3'+r2' rr') B 2r2 si—n8 B
sin8 +

2r33 Br2 r3 r3' Br3

1 B (2r3' cos8—rrr2 sin'8) B 2(r2 cos8—rr) B

r3 r2r3 sin8 BQ r3' Br2
(A23)

Thus, taking the scalar product of (A23) and (A22) and making use of the relations (A20), and the fact that
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ai/a(t)= j, aj/a&= —i, and ak/a@=0, we have, after some algebra, the result

Bf18f3

f2 cos8 rirs sin'8 a'H 2(rs cos8—ri) a'H
{+2/rs+rs(rs' +2)/rs ) ' +1F cos81= cos8

~
+

rs rs ariars r3'

2(ri cos8—rs) a'H 2 B'H 2 BH

f3 Bf3

r 1r2 cose —r3' —r2' BH 2r2 sin0 BH
+sin8' cosQ sing-

er 2 r1r3 Bf3

(A24)

8m' t3 r1r2 t3' 9'H t2 O'H t1 O'H 2 O'B 2 BH

— r1f2f8 f3 4rlr2f3 ~f1~f2 flf3 ~f1~f3 r2f3 ~r2r3 f8 ~r3' f3' ~r3-

Multiplying the scalar product (A24) by H cos8'&H cos8' cos8+II sin8' sin8 cos(t) and integrating, we have, after
substituting for cose and sin9 in terms of r1, r2, and r3, the result

4m-2 t3' 82H BH 2t3 BH
+

«1'r2'r3' ~r18r2 r1'r2f3' ~f1~f3 f1f2 f3 ~f2~f3 flf2f8 ~r3

t32 BH
IId V. (A25)

4r2 2t3 BH 2

r1r3 f1f2f3 f ] r2r3' Br8 r1r3 r1r3' 2r1'r2'r3 4r1'r2'r3 Br2—

If we write H(ri, r, ,rs) =r,e &r' 8"2M(ri, rs, rs), we have finally

2ir2

—4ri(rs) 'M{rirstsM13+ri tiM23+2ri'rsrs3II33+(rsrs'+3ri'rs —rs' —(rirsts rtri'ti)M—3))e '&"' '""'dridrsdrs

7r2

3
L(rs) 2{3II12—stM1—$M2+ tstM)

X{(rl r3 +r2 rs +3rs +6rl r2 r3 ~rl r3 3r2 r3 +ri rl r2 r1 r2 +r2 )M}

+4(rs) '{—2rirsrstsM33 rststsM13 rltitsM28+ (grststs+rtritits+4rir21 3 4ri'rs)M3}M

L(rs) '{ri'Mis —stri'3II1+ (ri—$ri )Ms+ ($2tri stri)—M) {(2ri'rs'+2rs'rs' —3rs'+ri'+r, '—2ri'r, ')M)
3

+2(r3) {'gM M2) {(2ri'rs' —rirs' —6rirs'rs' —ri'+2ri'rs' —rirs')M)fe '&+&""'+""dridrsdrs ~ (A26)

IV. The Spin-Dependent Operators H3 and H5

In the case of a singlet state, the total spin 5 is zero, hence the expectation value of Hs is zero. Since (si ss) = —8,
the expectation value of the first term in Hs is just 22m (8(rs)). Also, it can easily be shown that

(A27)

so that the expectation value of the remainder of H5 is zero. Thus, for a singlet state, the expectation value of
Hs+Hs is equal to 2 sr((22(r8))3

Breit3 has solved the secular equation and determined the expectation values of H3 and H5 for 3P states in order
to determine their Gne structure splitting. For the J=O, J= 1 and 7= 2 levels, the expectation values of H3 are
—2C, —C, and C, respectively, where

in atomic units, and
C=—'(22LZCz —3C.] (A28)

8+2
C =—

3

BF BF)—2F(F Pcos8)+sin8~ F —F~ dV, —
r1 B8 B82

BF BFl(—2F(F Pcos8)+ri sin28~ F— F—
r3'- k ars ars)

(A29)

r2 BF BP)
+—(1+cos'8)FP 2F' cos8+sin8 cos8 F —F~ d V. —

f1 B8 B8I
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erence int e choice of normaliza-2/3 into Brei&'s fo~m"
~ F2+f3—2FF cos8)d V

„la because of a d' " -
1 whereas we

e" the extra factor ~
sg for which

~e have introdu«~
(3/S 3)1/3(p cos81ction = ~ . . ~

to 3 $7(' .
or all va ues

~ -fo

+reit uses the func
' =

'
h this integral is equa t

fs s isequalto4fo
sg p' cosg2, fol wh .

Th expectation value o
have used p=p co '

',.; l t ~t~te, (8(r3)) is zero.We now consider II5. For a trip e s a
of J, so that

and J—2 levels is q

—Sr/ cos8 FF}dV8jp3+ L(6+2 cos'8)r&r3 —Srg3
—' L4 '+(6 cos'8 —2)r3' —Sr&r3 cos8 I(y3) '{

alue of this operator forthat the expectation value o3 5.
D' 2D dD' ti l, h

There remains
the J=O, J= 1

Since

2K Q
D1

5
—4r &3 cos8)FP}dV . (A30)r '—4r r cos jp'+L(6cos'8 —2)rgr3 —4r& cosr3) '{L2r&3+(4—2 cos'8)r3' —4rgr3 cos

—(2F'—2FP cos8)d V, (A31)

't may easily be shown that
D'+-'n (31/r3') = ~gD, — (A32)

(II3+II3)= —2C—10D/3,
—C+ 5D/3,

C— D/3,

(A33)fol J= 1)
fol J=2.

8 =r,e &'& 3'3M r&,r3,r3), the formulas (A29) anand (A30) may be writtenIf we write F(y~,r3,8)=r3e '& 3'3M r~,r„r3,

r the J=O, J=1, and J=2 levels,/3 5D/3 and —D/3 for the I=,alue of II5 is equal to —10Dso that the expectation value o
respectively.

r J=O,
Thus, 6nally we have that

foi =
)

Cz ——
16m2

gyp 2 —2$ r1—2 f re

27r2

+
3

t )M}g &&+3~ &"&+"»dyzdy3dr33 r3t33 r3 t3-r3 3' ' ' 3II3——(2r&3r3t3+2r33r3t3r lr2 'M{(4rq3r3' —4r& r3 r&33'—
7r

CI

3 3 2 2 —2)r1 2&r2dr 1dr 2dr 3er3 ' r1'r2 —r1r
3

27r2

3 +rlr2r3 )

t '—4/r34r3 r3+$r3r3 3 3
3 'r t 2 3f( ') 'M{(4r33r3r3+ 3t g 34 r 4r2'r3 —gr1r2 r3 3—

)M } &t+3& & "&+"3&dy3dy3d73

rlr2r3 1 2

2 2 f1 r2r3 t '—4r1'r2'r3 M2 e-+(4rgr34r3 —r3y3 r3t3 1

7l (X
2 2

'—6rx r3+2 &

r r ' M e &3+»&"'+"»dr&dr3dy3 A34r3 — ' — ' 6rgr33+4rg'r3r3'+r&r3r3' M e(r3) 4(—3r&'r3 —3r&r3 rg r3 ' ' r r ' M e
7l CL

2 2

3)M3 2$r& 33r3dyydr3dy3- —r 'r r3 —6r1r2 r32 3r1r2r3~ e(r3) '(3rg'r313r&r3

THREE-DIMENSIONALENDIX 8: CALCULATITION OF THE TH
SCHEME

APPE
INTEGRALS IN THE (r~,r3, 8)

r ', e left with the evaua ion ol t' of three-
l h f 1 d

r variables, we are e wi
ed for evalu-

d
'

Sec. III, after integra ing

)
'

bl s (r r3r3) or rq, r3,p .ver the varia e
t. Their eriva i

dimensional integrals ov
mi ht be of some interest.( ) integrals, as they mug eating the (r1,r2,p i

publication.
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The integrals are evaluated with the aid of certain auxiliary quantities which are computed by means of the fol-
lowing recurrence relations, all of which are stable when used in the manner indicated.

(p+q) '
K(p, q) = IC(p —1, q)—+

X X(X+p) ~'+' p, q&0.

(p+q).
P(p, q) = H(p, q

——1)+
j (~+~)~~' p, q&0.

b c (a+b+c)!
V( a, bc) =—Ã(a, b 1, c)+——1V(a, b, c—1)+[1+(—1)~']—,a, b, c &~ 0.

p p ~(y+p) cc+b+c+1

L(a, b+1, c) =2L(a+1, b, c)+L(a, b, c+1), a, b, c~&0.

are I

O(a+ 1, b, c)= —,
' [O(a, b+ 1, c)+0 (a, b, c+1)j,

c+i 1 X+p
L(a,o,c)=

(c+c)!P+2cc)'c'c' = !. )(c+c+2+1)(X+2c)
a, c&0.

a, b, c~&0.
(81)

b Ic1 b ~ Pc+i 1 P-2X+j
0(o,b, c) =

( + )1!(1+c)"+'(c-',1+c)' = ( ! (5 c)kl+cc)— b, c~&0.

M2(a, b+1, c) =2M)(a+1, b, c)+M)(a, b, c+1), a, b, c~&0.

arc~
M2(a, o,c)=

(a+c+1)!j2'+ (X+2@,) +' a, c&0.

Mp(a+1, b, c)=
p [Mp(al b+1, c)+Mp(a, b, c+1)j, a~ b~ c~& 0.

b tcI c+i -'X+ j2) '
M(p,obc)=

2!(b+c+1))(P,+j2) '+'(-'X+ j2) '+' '=o i X+p 1
b, c&0.

The formulas for the integrals are then as follows:

J,(a,b, c)= ry e ""'dry r2 e ""'dr2
~1—~2!—~l

1 L1+(—1)'j
E(a, b, c+1)+ — E(a, b+c+1), a, b, c~&0 (82)

(c+1) c+1
and for the case b = —1,

where

L1+(—1)'j
Jp(a, —1, c)= I'(a,c)+ E(a,c), a, c~& 0,

(c+1) c+1
(83)

(c+c+1)! c+c+1+1 (—1/cc)' c!(c+1)! c+2) (—1/2c)'
P(a,c)=

j2'+'+' '=p i (a+i+ 1) 2'+'p'+'+' '=p i (a+c+2+i)

(—1)'(a+c+1)! a+c+i+1 ~ a 1 —'A

2'c'( —l +cc)'c'c' '= !. = j)(c+2+j+2) (l +2c)
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Jz(a,b, c)=— rq~e ""'dr& r2be ""'dr2
r2 pcs b

J,-(a, b 1,—.).—.,i-., (p+rz)

(8+i.

)& ia!(byc)! ~ p —X

+(—1)'
p +'+'+' '=o (a+b+c+1+z)

a!(b+c)! ~—z b+c+i 1 (
pl '(x+y)'+'+' '= ~ (a—i}4+v)

(a+b+ c)! (—1)' t'
I( a, b, c) +(—1)'O(a, b,c)+»i ~, (&4)

p (X+p) '+' (2p+Xl

Jz(a, bc)—= r~~e ""'dr~ r2be &"2dr2
p'(r zz rz') dp-

= cL J(za+ 2, b, c—1)—J&(a, b+2, c—1)]
ti rzi —rz (—p+rl)

2E(a, b+c+1), c even—M(a+1, b, c)—M(a, b+1, c)+II(a, b+c+1) II(a+1, b—+c)+ (»)—2E(a+1, b+c), c odd,

where M(a, b,c) =(a+b+c+1)!Lbf (zab, c) +(—1)'3l (zab, c)7.
Inverse powers of r3 greater than two appear only in the computation of the fine structure integral D, and it is

convenient in this case to define the following integral:

JD(a,b,c)= r ae—) r1dr
& r be—Pr dr 2

0 0 Ir1—r2t —r1

3(rz' —rz')' 2(rz' —3rz')
p'dp

(p+rz)' (p+rz)'

c(c—1)
)Jz(a+2, b, c—2)—Jz(a, b+2, c 2)7+2—c/Jz(a+2, b, c—1) 3Jq(—a, b+2, c—1)]

2

+3V(a+ 1, b, c)+51V(a, b+1, c)——',cd(a+ 2, b, c—1)—cd(a+1, b+ 1, c—1)—~cX(a, b+2, c—1)

(2c—6)(a+1)!(b+c)!/g'+'p~~', c odd
+

cE(a+2, b+c 1—)+(2c—6)I—I(a+1, b+c)+(10—c)E(a, b+c+1), c e'ven.
(86)


