
POSITROX LIFETIME SPECTRA IN IVIOLECULAR GASES

determined from refractivity. (A thermal positron has a
velocity of about 10"cm sec ', so that for a, molecule of
dimension about 10 ' to 10 ' cm the passing positron
looks like a, transitory alternating electric field of

frequency 10" to 10"sec ' i.e. , the frequency of visible
light. )

The correlation of X,+ with e is evidently much

stronger than with P D;„,. In fact from Fig. 4 we can get
approximately,

X +=a' 2'"/10

for all gases, with P,+ in @sec ' atm ', n in esu

y 1O-oI.

This general relationship seems to demonstra. te that
the long-range dipole distortion is the predominant
mechanism in low-energy positron scattering. This has
not previously been clear, either in the positron case,
or for slow-electron collisions. There is support for this
picture from recent calculations of Cody et al. l2

"%V. J. Cody, Joan Lawson, Sir Harrie Massey, and K. Smith,
Proc. Roy. Soc. (London) A278, 479 (1964).
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The first Born approximation to the transition iso-,-2P0. in H2 is developed. The internal degrees of
freedom of the molecular ion are treated explicitly, and in a manner that takes advantage of the dissociative
nature of the 2po.„state. The resulting total cross section is found to depend on the initial vibrational state.
Numerical results are presented in graphical form for the cases in which this process is caused by collision
with an electron, proton, or hydrogen atom. In each case the total cross section is given for all 19 bound
vibrational states of the H2+ ground state (the iso, orbital). In the electron and proton cases the cross
section for the lowest {1=0) vibrational state is observed to be two orders of magnitude lower than the
cross section for the last {v=18) bound vibrational state. The dependence on initial vibrational state in the
hydrogen-atom case is not as dramatic as in the bare-charge cases, but simultaneous excitation of the hydro-
gen. atom is demonstrated to be an important factor in the shape and magnitude of the cross section. A
method of summing simultaneous excitations is presented for the situation in which one particle undergoes
a specific transition and the other particle is left in an unspecified state.

I. INTRODUCTION
' PREVIOUS theoretical treatments' ' of scattering by

the hydrogen-molecule ion H2+ indicate that the
internal degrees of freedom of this molecular ion must
be considered to predict its scattering behavior accu-
rately. This is particularly true because the major
mechanism leading to the formation of H~+ is
H2('&,+) ~ H2+('Z, +)+e, where the Franck-Condon
factors predict a finite probability of occupation' of all
bound vibrational states of the '2,+ electronic state.
These states also have long lifetimes, because they must
decay by a quadrupole mechanism; hence any experi-
ment p erformed with H2+ could easily involve all 19
bound vibrational states. '

In this paper we investigate the total cross section for
the inelastic process

a+H2+(Iso, ) = a+Hg+(2pa. „), (1)
* This work divas supported by the U. S. Atomic Energy Com-

mission.
' James M. Peek, Phys. Rev. 134, A877 (1964).' E. H. Kerner, Phys. Rev. 92, 1441 (1953).' J.Wm. McGowan and L. Kerwin, Can. J. Phys. 42, 972 {1964).
4 S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr. , Phys. Rev. 119,

1025 (1960).

where each bound vibrational state of Hq+(1so, ) is
considered separately and a is an electron, proton, or
hydrogen atom. The orbital designating the electronic
eigenstate of H2+ is given in parentheses. It will then be
possible, with a knowledge of the population of vibra-
tional states, to predict an observed cross section by
forming the appropriate average of the results for the
individual vibrational states. ' Investigation of transi-
tions to several lower lying electronic states' has shown
that the reaction indica, ted by Eq. (1), in the electron
case, dominates the discrete transitions proceeding from
the ground state. The 2po„state has no bound vibra-
tional states; hence, in the electron or proton case, the
cross sections given here will be good approximations to
the dissociation process that results in a proton and
hydrogen atom.

The approach will be that of Ref. 1 (to be referred to
as I); that is, the total cross section will be calculated in
the nrst Born approximation and it will include the con-
tributions from all eigenstates of nuclear rnot;ion for the
final electronic configuration. The method used in I for.

summing the contributions from all i~nal eigenstates o.

' See Eq. (13).
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nuclear motion was based on the closure relation that
results from assuming these eigenfunctions form a com-
plete set. This technique is exact for a given momentum
transfer, when the collision energy is such that all states
in the sum are possible, but makes it impossible to
calculate a total cross section consistent with energy
conservation. An alternate method of performing this
sum is given in Sec. II where use is made of the fact that
all nuclear eigenstates for the 2po„potential curve lie
in the continuum. This derivation removes the difficulty
encountered in retaining energy conservation at the
expense of introducing an approximation to the con-
tinuum wave function. The advantage of the alternative
treatment will be discussed. Section III contains the
results of calculations based on this theory for the re-
action of Eq. (1) when a is either an electron or a proton.
Total cross sections are given for all 19 bound vibra-
tional states of the 1sa, state.

The total cross section for reaction (1) when a is the
hydrogen atom is considered in Sec. IV. The simul-
taneous excitation of the hydrogen atom is demon-
strated to be an important factor in the total cross
section. An asymptotic theory, correct at both low and
high collision energies, is developed that takes into
account all possible 6nal states of the hydrogen atom
for a given inelastic process in H2+. Correction terms are
derived and a comparison of this approximate technique
with the term-by-term sum is made. Numerical results
for reaction (1) are given for all 19 bound vibrational
states of H2+(1so, ) for both the case in which the

hydrogen atom remains unexcited and the case in which
all possible 6nal states of the hydrogen atom are
included.

dRR'~ X,(R)
~
'Q(R), (2)

where the initial wave function is +„=f„(r,R)X„(R)
&& Yrsr(5, $); iP„(r,R) being the initial electronic eigen-
function, X„(R) the initial vibrational wave function,
and I'I,~ a spherical harmonic describing the initial
rotational state. The total cross section Q, represents
the sum over all nuclear eigenstates of the 6nal elec-
tronic state, P„, and an average over the degenerate
levels of the initial rotational state. For the scattering'
of an electron or proton,

8~~2 kii+ kryo ~

~n kryo —krs~

where p, is the reduced mass of the scattering system,
k„=pVp where Vp is the relative velocity between the
two colliding systems, k„.= {2iip(-,')iiVO' —AEj)'", and
hE is the energy loss of the inelastic process. The Born
matrix element is dehned as

II. EXCITATION TO A DISSOCIATIVE STATE

The first Born approximation to the total cross section
for the excitation of a molecule was shown in I to be

sinB d8 d$ dr exp(iK r)P„(r,R)P. *(r,R)

p p

sin8 db dt~ e(IC,h, f,R) f',

where 8, $ orient R with respect to K, K=k„—k ~ and &=
~
K~ defines the momentum transfer.

As was pointed out in I, the dependence of k ', hence hE, on the final rotational and vibrational states is ignored
in deriving Eqs. (2), (3) and (4). The argument based on closure then makes it impossible to choose d E in a manner
consistent with energy conservation and does not indicate what method of choosing ~ is best. This poses a serious
problem, especially if the physical process is one in which ~E may cover a wide range of values. One such situation,
under coilslderation in this paper, is the scattering from Hz (1so.,), initially in a highly excited vibrational state,
to the dissociative state H2 (2po ) where a wide range of dissociation energies is possible. By considering the
nature of the 6nal nuclear eigenstate and introducing different approximations, a more detailed knowledge of the
scattering process can be obtained. Following Kerner, the 6nal-state function can be written

4m

=i/„*(r,R) P P (—i)' exp(ib/)Yi *(5,()Y/ (80,po)F/*(K, R),
(g~a)»~ i o~ i=—

where X„&—~ satis6es the boundary conditions for dissociation, Hp, @p 6x x with respect to K, and 8~ is the phase
shift. This wave function refers to an energy in the continuum of 2p K where p' is the reduced mass of H2+. The

' All equations will be given in atomic units unless otherwise speci6ed.
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total cross sectio n is then

4+4 ~

slnH dHp dip K dK

A:n—&n'0 0

dr dR exp(iK r) Pi.r .(r,R)P..*(r,R)dE r

2

Vp'E

* » R . (6)* 8 )Yi (eo,@0)Fi*(»,P (—i)'exp(ihi)YiX Yz, jr(&,k)X„ R)
7r
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FIG. i. Q„ for a proton exciting
the transition 1sog—2pa„ in Hq+
and all bound vibrational states of
the ground state of H2+ shown as
a function of the relative velocity
Uo of the collision. Q„ is in units of
~uP and Uo is in atomic units.
The upper scale is the energy in
keV of a proton colliding with a
stationary hydrogen-molecule ion.
The cross sections that go off scale
are continued in the upper-right-
hand corner.
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of the 1so-, electronic state but probably unreliable for
the last few bound vibrational states. However, the true
situation will not be known until the matrix elements
appearing in Eq. (7) have been evaluated. Work of this
nature is now in progress.

oba= v v

v=0
(13)

Since there can be no unique set of f„which would apply
to all situations, it is necessary to give the individual
Q„rather than the composite Q,b, .

Except at the lowest velocities given in Fig. 1, the
cross section for the proton case is independent of mass.
Hence, this cross section will apply to the scattering of a
hare particle of charge s if Q„ is replaced by Q,/s'. At
higher velocities the electron results approach the mass-

III. DISSOCIATION BY AN ELECTRON
OR PROTON

The total cross section Q„defined by Eq. (12) is shown
in Fig. 1 for the proton case and in Fig. 2 for the electron
case. These ngures show the inHuence of the initial vibra-
tional state and clearly indicate the necessity of having
accurate knowledge of the population of vibrational
states prevalent during a measurement to make a pre-
diction of the effective cross section. Obviously, if the
numbers f„represent the initial population of vibra-
tional states of H~+, the observed total cross section
would be

18

independent case. The electron results, Fig. 2, are
terminated at these velocities since the cross section can

then be obtained from Fig. 1.
The integral defined in Eq. (12) was evaluated in the

following manner. The vibrational wave functions used

were those tabulated by Cohen, Hiskes, and Riddell. '
The evaluation of Q(R) has been carried out' for a few

values of R using the exact electronic eigenfunctions.
This turns out to be a laborious task and, since Q(R) is
needed over a wide range of E, 0&R&20.0, for which

all necessary exact wave functions are not available, the
electronic eigenfunctions were approximated by
the appropriate linear-combination-of-atomic-orbitals
(LCAO) functions

where X+ is the normalizing constant and 4„4b are
unscreened hydrogenic functions centered on nuclei a
and b, respectively. The function P+ refers to the is&r,

state and P refers to the 2pa„state. The evaluation of
Q(R) is then relatively simple, the results being a
generalization to any R of Ivash's' calculation when his
screening constant is taken equal to one. The error
introduced into the calculation of Q(R) by using the
LCAO functions LEq. (14)] has been shown' to be

8 S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr., University of
California Radiation I.aboratory Report No. UCRL-8871, 1959
(unpublished).' E. V. Ivash, Phys. Rev. 112, 155 (1958).

"James M. Peek, Phys. Rev. 139, A1429 (1965).
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approximately 30~/~ at R= 2.0ao and 20% at R=-3.2ap.
The error decreases monotonically from these values as
E becomes large and increases as R becomes small.

Q(R) calculated in this manner is greater, for all R, than
the true first Born value. See Ref. 10 for a more detailed
discussion. Because of the fact that Q(R) is a rapidly
increasing function of R, the error in Q„will tend to be
that of Q(R') at a value of R' occurring at the largest
internuclear separation for which

i
X„(R)i

' has a maxi-
mum. This tends to minimize the eBect of the large
errors found for Q(R) at small R in the calculation of

Q„. However, because of this approximation, as well as
the untested nature of the approximation defined by
Eq. (8), these numerical results should be viewed as
semiquantitative in nature.

The limits used in evaluating Q(R) were calculated
from the eigenvalues for the initial vibrational state'
and the exact 2P&r„p toe tni lacurve. " The X„(R) are
known for increments in R of 0.05ao, Q(R) was calcu-
lated at these same values of R and the quadrature was
carried out using Simpson's Rule.

One additional approximation has the advantage of
reducing the computation time by a factor of almost 19
although it does not introduce any simplifications into
the calculation. If one takes hI as the di6erence be-
tween the 1sr, and the 2PO potential curves, " and
hence independent of v, one table of Q(R) is sufficient
to calculate Q„ for all 19 vibrational states for a given
Vo rather than one table for each of the vibrational
states. It was found that this approximation was quite
good for high velocities but decreased the cross section
by about 10/o for Vo ——1.0. The error was a function of
v, being smallest for the extreme v and greater for the
intermediate v. Because of these results, the correct
values of AE were used for Vo&2.0 and the approximate
values were used for all higher velocities. As an indica-
tion of the computation times required, it takes between
20 and 25 min to calculate Q, for all v at a given Vo on
the CDC 3600 when the correct limits are used.

A recent paper by Bates and Holt" treats the case of
proton excitation of the 2P0-„state of H~+ as well as
other final states of the molecule ion. Their approach is
much the same as that used here except they avoid the
use of approximate wave functions near the equilibrium
internuclear separation and scale the Q(R) calculated
with the I.CAO functions by an appropriate factor for
large E. The limits used by Bates and Holt are calcu-
lated from the energy diGerence between the 1so., and
2po.„curves. If we note that the vibrational wave func-
tions used in these two calculations may not be identical,
the numerical results of these two treatments are in
essential agreement with the rough error analysis given
in the preceding paragraph.

E (ov)
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Fro. 2. Q„ for an electron exciting the transition 1sag —2P0„
in H2+, for all bound vibrational states of the ground state of
H2+, shown as a function of the relative velocity V0 of the col-
lision, in atomic units. The upper scale is the energy in eV of an
electron colliding with a stationary hydrogen-molecule ion.

H(1s)+H2+(1sa. ,) =H(nl)+Hg+(2PO~), (15)

where it is assumed that H is initially in the 1s state and
may be in any one of its eigenstates after the collision.
This corresponds to the conditions of many experiments
where a specijic process is observed for one particle but
nothing is known about the final state of the other
particle. The first Born approximation to Q„ for this
case can be found by a simple but lengthy argument
which results in redefining Q(R) in Eq. (12) as

H~p2 k:n+ kit i

Q(R, 1s)=
7~ u kit —Ir&i

dK K '
i «(K,R)

i

'

X
i
I(1s)—1i ', (16)

or
87rp'

Q( , R' n') =f

k 2
dK K-3i,(K,R) i

2

X il(n'f') i', (l7)

where n'l' cannot refer to the 1s state. The quantity
i
e(fi, R)

i

' is defined in Eq. (4) and

IV. DISSOCIATION BY A HYDROGEN ATOM

The reaction of Eq. (1) for the hydrogen-atom case
must be written as

"James M. Peek, Sandia Corporation Report No. SC-RR-65-77,
1965 (unpublished)."D. R. Bates and A. R, Holt, Proc. Phys. Soc. (London)
A85, 691 (1965).

I(nl) = dr exp(iK r)C i,(r)C„&*(r), (18)
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where Cj.„C ~ are normalized hydrogen-atom wave
functions. Equation (16) applies to a collision in which
the hydrogen atom is unexcited and Eq. (17) describes
the simultaneous excitation of the two systems.

The analysis for the reaction indicated in Eq. (15) is
similar to that given by Bates and Griping" for the
collision of two hydrogen atoms and to that of Boyd,
Moiseiwitsch, and Stewart'4 for the scattering of He+
on hydrogen atoms. As in these two papers, the simul-
taneous excitation of the target while the projectile
sufFers a speci6c excitation is found to give an important
contribution to the desired cross section.

The total cross section for a single excitation process,
defined by Eq. (15) when nf=1s, is shown in Fig. 3.
Q, again is seen to be an increasing function of v but the
dependence is not nearly so dramatic as the e, H+ cases.
This is a refiection of difference in behavior of Q(R) and

Q(R,nl) Tha.t is, for a given Vo, Q(R) as defined by
Eq. (3) is proportional to R' as R becomes large. "Since

~
X.(R) ~

' becomes important for larger R as a larger v is
considered, the R' behavior of Q(R) will amplify the
diBerence between various Q„LEq. (12)j.In the hydro-
gen-atom case, the asymptotic behavior for large E. is

Q(R,nl) A+(8/R'), where A and 8 are constants for
a given V0."If one evaluates Eq. (12) with a function
of this form for the large E behavior, it is evident that
the extension of

~
X„(R)

~

' to larger R as v increases will
have little e8ect on the diferent Q„.

The cross section needed to compare with experiment
is defined by

Q(R,Z) =Q(R,1s)+P„i Q(R,e'1') (19)

where Q(R,Z) is the integrand to be used in Eq. (12)
and Z indicates that all contributions from simultaneous
excitations are included. Previous work" indicates that
only the states n&3 plus the continuum give signi6cant
contributions to Q(R,Z). This point was verified; the
formulas used for I(nV) were the ones given by
McCarroll" for the discrete states and the continuum
contribution was obtained from results quoted by Bates
and Griping" where the ejected electron is described

"D. R. Bates and G. GrifBng, Proc. Phys. Soc. (London}
A66, 961 (1953);A67, 663 (1954); A68, 90 (1955).' T. J. M. Boyd, B.L. Moiseiwitsch, and A. L. Stewart, Proc.
Phys. Soc. (London) A70, 110 (1957)."Strictly speaking, the results quoted do not include the change
in hE as R changes. For a given initial vibrational state, b,E
changes very little as a function of R, for large R, since the 2ptr
curve is ffat for large R. Also, the energy dMerences between adja-
cent vibrational states is small, so the inffuence of bE as a function
of R or the initial vibrational state is of secondary importance.
Since hE becomes a very weak function of R for large R, it can be
shown that Q{R)is bounded as R —+ oo, but this occurs at such large
R compared to the range of importance in evaluating Eq. (12)
that the R~ behavior is the dominating factor. However, if one
considers the "classical" limits, Q(R) is independent of v but the
asymptotic behavior of DJ' is now a strong function of R,
DL~~cRe +, and one 6nds Q(R) R' in the large R region. It is
shown later in this section that the hydrogen atom case is insensi-
tive to the lower limit, and hence to AE, so these omissions are in
this case of even less importance.

'6R. Mcparroll, Proc. Phys. Soc. (London) A7$, 460 (1957).
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by a wave function for an attractive Coulomb Geld. An
example of the evaluation of Eq. (19) by adding these
various terms is shown in Fig. 4 as the solid curve.
Evaluating the sum in Eq. (19) by adding the individual
terms is a tractable method but somewhat cumbersome.
An alternative method of evaluating this sum is now
developed.

Utilizing the relationship"

Q„(~I(nl)
~

'=1,
the approximate relationship

Sxp'
Q Q(R,rc'1')=

2

(2o)

&((1—t j(1s) i
')

( e(E,R) i

' (2l)

follows. The approximation arises in ignoring the
dependence of hE on n'/' when changing the order of
integration and summation and is emphasized by re-
placing k with k„..In general, hE= AE(H2+)+DE(NV)
where AE(H2+) is the excitation energy for Hq+ at the
internuclear separation R and DE(e'l') is the energy
difFerence between the 1s, n'l' states of the hydrogen
atom. If we take AI;(n'I, ') =0.5 and evaluate Q(2.0,Z) us-

ing Eq. (21), the dot-dash curve in Fig. 4 results. It is
apparent from Fig. 4 that this method is asymptotically
correct at both large and small Vo, but not particularly

OOI I I I I I l i I I l I l I

0 0.4 08 l.2 l.6 2.0 2.4 R.S
Vo

FIG. 3.Q„ for a hydrogen atom exciting the transition iso ~
—2po „

in H~+, for several vibrational states of the ground state of H2+,
shown as a function of the relative velocity Vo of the collision, in
atomic units. The cross section is for the hydrogen atom remaining
unexcited. The upper scale is the energy in keg of a H~+ colliding
with a stationary hydrogen atom.
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less sensitive on the lower limit and the "classical"
method of calculating AF. as the difference between the
isa-, and the 2po. .„potential curves is a much better
approximation. It was the one used in the computation.
Numerical checks showed the error to be less than 1%%uo

at V0=0.6 and then to increase slowly as 1'(1 was made
smaller. The method of summing simultaneous excita-
tions made use of the approximate formula given in
Eq. (21). The appropriate correction term for the con-
tinuum was evaluated according to Eq. (22) and then
added to the results from the approximate summation
formula.

Comparison of the results that include simultaneous
excitation with Fig. 3, which shows the cross section
when these events are ignored, demonstrates their im-

portance. It is apparent that the first Born approxima-
tion must include these processes when it is possible for
them to occur. This is especially significant since their
inHuence is the strongest at the high energies where the
Born approximation is most likely to be used. As yet

there is no experimental evidence to compare with these
results, but the inHuence of simultaneous excitations on
the dependence of the cross section is suggestive when

one looks at the results obtained for the H2+, H2

scattering system. "
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The recently developed improved minimum principle for single-channel scattering is applied to a study
of the s-wave elastic-scattering phase shift pp of positrons by atomic hydrogen. The method requires the
exact solution of the static one-body equation and of the corresponding static Green s function, and also the
orthogonalization of the trial function to the hydrogenic ground-state wave function. The radial part of
the trial function Q+f is chosen to be of the exponential-polynomial form, with linear and nonlinear varia-
tional parameters; to simplify the orthogonalization, Q+& is expanded in Legendre polynomials whose
argument is the cosine of the angle between the coordinate vectors of the electron and the positron. Rigorous
lower bounds are obtained on pp at various energies. The calculation includes the contributions from hydro-
genic states with angular momentum l up to l =5. For each energy, an estimate is made by extrapolation of
the true contribution to rip from 0&i&5, and this estimate is used in turn to estimate the contribution from
l &5 to gp. The rigorous lower bounds obtained and the estimates are compared with previous estimates of gp.

I. INTRODUCTION

A LARGE number of calculations have recently
been performed of the scattering of electrons by

atomic hydrogen, at low' ' and at high energies. This
is on the one hand a reHection of the increased interest
in atomic scattering processes in the atmosphere of the
earth and of the sun, for example, and on the other hand
of the presence of high-speed computers which make

~The research reported on in this article was sponsored by
the U. S. Ofhce of Naval Research, and the Advanced Research
Projects Agency under Contract Nonr-205 (49), NR 012-109, and
NASA under Contract No. NSG 699.' L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev. 119,
164 (1960).' C. Schwartz, Phys. Rev. 124, 1468 (1961).' A. Temkin, Phys. Rev. 126, 130 (1962).

4 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).

possible large-scale calculations aiming at high accuracy.
In view of the concurrent recent interest of the experi-
mentalists and of the consequent improvements in
technique, there is little doubt that relatively precise
contact will be made shortly between the experimental
results and theoretical calculations based on first princi-
ples, even for energies at which the distortion of the
hydrogen atom is great enough to more or less com-
pletely invalidate the Born approximation. tA'e might
remark parenthetically that, roughly speaking, such
contact has just about been made for scattering by an
atom. It would obviously be extremely useful to the
experimentalist to be able to normalize cross-section
data by the use of reliable theoretical results.

Because of the great similarity of the problems, in the
course of studying e H scattering the theorists have


