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A theoretical model is developed for the behavior of an optical maser medium in a static magnetic field
of arbitrary strength in the Z direction and an electromagnetic field which is composed of traveling waves
with both states of polarization and with both +s and —s directions. An integral formulation of a truncated
phenomenological density matrix is introduced to treat the degeneracy of the atomic energy levels within
the natural width. This integral is an exact solution of the phenomenological differential equation for the
density matrix which was introduced by Wilcox and Lamb. The inherent degeneracy in the electromagnetic
Geld is included by treating the field in a classical manner. The integral formulation is iterated to yield the
Grst- and third-order contributions to the electric polarization vector P in a spatial element dr, and the
electric Geld and the electric polarization are made self-consistent in this spatial element by using coefficients
in Maxwell s equations which are slowly varying functions of position and time. Atomic motion, hyperfine,
isotope, and other line-broadening effects are included in the polarization vector P. The general linear-
a,mplifier, linear-oscillator, and closed-path-oscillator or photon-rate-gyroscope problems are formulated and
in the simplest case require the analysis of eight nonlinear equations. These reduce to four equations for the
linear oscillator with an axial magnetic Geld, and these examples are discussed in detail and compared with
experiment. An anomalous situation arises for the j =j& or F,=Ii& linear amplifiers or linear-oscillator
masers, and the development indicates that these systems are stable near line center only for either right or
left circular polarization in zero or weak magnetic fields. A magnetic Geld "dip" near line center is discussed.
Special examples which require four or fewer nonlinear equations are discussed.

1. INTRODUCTION their differential-equation formulation. This integral
formulation is particularly convenient for treating de-
generate systems or for determining the effect on the
observable response of the system as the degeneracy is
removed by a magnetic 6eld. Some useful features of
this integral formulation are shown in this paper, but it
may be expected to be useful for other problems in
which phenomenological di6'erential equations of the
Block' type have proved useful in the past.

Many of the interesting features in the third-order
contribution to the macroscopic polarization are con-
tained in a theory which includes electromagnetic waves
traveling in the +z and the —z directions, of arbitrary
polarization, and which are interacting with atoms in a
static magnetic field in the Z direction. Explicit expres-
sions are derived for this specific problem for the first-
order polarization which is linear in the field and for the
third order polarization which is nonlinear in the electric
field. These expressions may be used to analyze a travel-
ing-wave closed-path oscillator such as used in the
photon-rate gyroscope, ~ ' the linear oscillator' discussed

by Lamb, a linear oscillator with polarizing windows"
and with the maser medium in a magnetic field, an

amplifier with polarizing windows and again with the
maser medium in a magnetic field, investigations of the
natural width of the levels, etc. Second- and fourth-

XPERIMENTAL investigations of gas optical
& masers, maser amplihers, and related research on

the atomic systems themselves require a more general
expression for the macroscopic polarization than the
expression introduced by Lamb' or the expressions
introduced by Bloembergen and Shen. ' Their discus-
sions are limited to transitions in atoms with two non-
degenerate energy levels and linearly polarized radia-
tion. It is the purpose of this paper to extend the theory
to real atoms which have states of angular momenta,
and therefore, energy levels which are degenerate in the
absence of a magnetic 6eld and which in the presence of
weak magnetic fields may lie within the natural width
of the line. Some aspects of this problem have been con-
sidered by Tang and Statz' and by Culshaw and
Kannelaud. ' As in the previous papers the radiation
field is treated in a classical manner, but the electric
field which is perturbing an atom is now permitted to
have arbitrary polarization and direction. In order to
obtain the response of these atoms to the electric field
or the macroscopic electric polarization of the gas in the
region which is nonlinear in the electric field, an integral
formulation of the density matrix is introduced. Since
the density matrix is truncated to the energy levels of
interest, damping and excitation are introduced in a
manner similar to that used by Lamb and Wilcox' in
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order tensors are introduced to relate the electric polari-
zation to the electric Beld. If these are used with Max-
well's equations an index of refraction or accumulated
phase becomes available and the type analysis which
was used by Bennett" for maser oscillators may be used.

2. RESPONSE OF AN ATOM TO A
PERTURBATION V(t)

The energy levels of a typical gas atom are shown in
Fig. 1. Excitation to the sets of levels labeled j,m and

j&mb can occur because of collision with electrons,
collision with photons of the trapped resonance radia-
tion, or other excitation processes. "A perturbation V(t)
with matrix elements between the (t blevels -induces an
atomic polarization. In the presence of weak magnetic
fields the separation of the energy levels of the m, and
m b sets may be less than the natural line width. The per-
turbation V(t) may include radiation of both states of
polarization and radiation traveling in the +z direction
and —z direction. Hence, a theory is needed which
includes in its framework techniques for handling de-
generacies in the atomic states and degeneracies in the
radiation 6eld. The density matrix provides a suitable
framework. A density matrix for the atom plus radiation
Geld is not used. The two are regarded as independent
and the interaction of an atom with a perturbing Geld

V(t) is considered. Only the density matrix for the atom
is needed in this approximation. The radiation Geld is
expressed in a classical manner in terms of the Geld
vectors E and B and in a certain sense includes the
density-matrix approach for the radiation Q.eld since the
number of photons in a cell of phase space is large.

If the Hamiltonian for an atom is H, then the develop-
ment of the density matrix p in time is given by

ihp=Hp —pH.

Since, in the problem under consideration, the observ-
able effects are related to the u-b levels through the per-
turbation V(t), it is convenient to truncate the density
matrix to these levels. The remainder of the density
matrix and the external perturbing terms in the Hamil-
tonian are included in a phenomenological manner. The
phenomenological or psuedo-Boltzmann differential
equation for the density matrix introduced by Lamb
and Wilcox is quite convenient and is suitable for treat-
ing many aspects of the problem und. er consideration.

imp= (Hp —ill'/2) p
—p(H +i&I'/2)+i@.+(Vp —pV); (2)

p is the truncated part of the density matrix and has
elements which are related to the u-b sets of states. Ho is
the Hamiltonian of the free atom and is independent of
time. The anticommutator I'p+ pI' introduces damping

"W. R. Bennett, Jr., Appl. Opt. , Snppl. I, 24 (1962).~ Reference 11 contains a partial list of references to these
processes.

FIG. 1.Maser energy
levels.

for the elements of the truncated density matrix and X

is the inhomogeneous excitation for these elements.
Spontaneous emission from the excited levels is included
in the damping term I'. V(t) contains the explicit time
dependence.

If Hp, F, and X commute, the phenomenological diGer-
ential equation for p has an exact integral formulation,

p(t) = lj, l' + (ih) ds Tt(s)

XLV(t —s)p(t —s) —p(t —s) U(t —s))T(s), (3)

where T(s) =exp) —(2I'—ik 'H())s]. This integral form
may be iterated to yield a series expansion of the density
matrix. Regarding the perturbation V(t) as a fi'rst-order
nondiagonal quantity, iteration yields

p(p) —yi —j.

(4a)

(4b)

p(")(t)= (ik) ' dsTt(s)

Vp(R 1) p(R 1)Uj ) T(s) (4c)

Since the integral formulation is exact and lends itself
to a perturbation treatment of degenerate and non-
degenerate problems, it seems appropriate to examine
the requirement that Hp, F, and X commute in greater
detail. In the representation in which FIp is diagonal,
I' and X must be diagonal matrices. In this representa-
tion X is a measure of the rate at which an atom enters a
new state per second and I' is a measure of the rate at
which atoms leave this state. In the absence of the
perturbation V(t), p =XI' ' is diagonal and expresses the
probability of occupation of the diagonal elements of the
truncated density matrix. The probability of this occu-
pancy is established by the external excitation processes
and perturbations causing relaxation. If these processes
are of thermal origin, then by using a canonical ensemble
for p it follows that p=p(H())=exp(A —H())/kT=XI' '.

In the more complex dynamical systems under con-
sideration X and I' are determined by the experimental
arrangement and spontaneous emission, and the thermal
aspects are of minor importance, The damping matrix I'
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is diagonal in the representation in which H0 is diagonal
for spontaneous emission. "Collisions which completely
destroy the state add additional diagonal components
to F and collisions which create only diagonal com-
ponents of p are described by a diagonal matrix X in the
representation in which Hs is diagonal. Although all

aspects of relaxation cannot be covered in a brief
manner, it would seem that rather than introduce non-
diagonal elements to ) and F it would be better to
enlarge the truncated density matrix in order to intro-
duce the perturbation causing the nondiagonal elements.
Thus in Fig. 1 the creation of a linear combination of
states m, = &1 by the absorption of linearly polarized
photons might be best treated by including the ground
state into the truncated density matrix. An integral
formulation of Eq. (2) with a single restrictive condition
on F is given in a note added in proof.

Equations (2) and (3) describe the response of a
single atom to a sequence of random perturbations X

and I' and to a well-defined perturbation V(t). The effect
of collisions which destroy the phase relationship with
the perturbing field V(t) and effects which are related
to the statistical average over a group of atoms will be
included in subsequent sections.

In this paper the zero-order density matrix is assumed
of the form

I&"&(j,el„j m ; t) =&~(j m )I' '(j m, ) ~ li,/I'„ (5)

etc. for the b levels, since the rate of entry and the rate
of exit is assumed to be independent of the magnetic
quantum numbers m. Direct substitution into Eq. (4)
yields p& & to all orders. Excitation to states a or b by
trapped resonance radiation is included in the inhomo-

geneous excitation term 'A.

V(~) =—0 E= —2(—)~V~"'E-~' (6)

is the electric dipole operator and /sr&'& is the same
operator written as a tensor operator" of order 1. E is
the electric field as measured by the atoms and E ~ the
components of the electric vector in the spherical basis.
This basis is defined in the conventional manner as

e+——W2 '&'(ex+ier); ec&
——ez,

and a general vector E may be expanded as

E= P ( )~E1rre 1|r —and Esr e&tr E. ——(8)
M=o, yl

The matrix elements of /sr&'& are conveniently obtained
by the use of the signer-Eckart theorem, "
(j l&i

I
%bi"'

I jbl&l b) = (2j +1) "'
X(j.II/&" II jb)(jbimb3EI j.m.). (9)

The notation of Ref. 14 is used for the C'lebsch-Gordan
coefficients and the reduced matrix elements. The ob-
servable time-dependent properties of the atoms are
included in the trace pQ. For a zero-order density matrix
of the form given by Kq. (5), the first- and third-order
quantities are of the form

3. ELECTRIC-DIPOLE TRANSITIONS

In a system in which only the levels j, and jb are
connected by the time-dependent perturbation V(t), the
interaction of primary importance is the electric-dipole
interaction and is of the form

tr&t&&'&'Q=Ei p ( )~esr(j bimb3—f
I j,m, )'i ds expl —I', b io&(m,@lb)—5SE bi+cc.

fS~tRQ 0

trp &'&Q = Es—(jbimb'M
I j nl, )(jbimb'M'

I j.m, ')(jbimbM" I j,m, ')(jbinlbM'"
I j nb.)(—)

' ~"'ebr-
fges~~ s Sl

/mal

Xi dSdS'dS"ezp( I',b io—&(NS,m—b))S(ezp( I'b io&(—mb'm—b))S'

where

XLexp( —I', b
—i o(&m,'mb)) "sEsrEbl'E sr ."+exp(—I', b io&(mb 5$ ))s E—srEbr E br 5—

+exp( I io&(m m ))s I exp( I b to&(1sb m ))s E MEM' Z 1lr"— —

+exp( —I', b io&(m,mb'))s"E —sr"Esr 'E bi-))+c.c. , (11)

and

and

&i=(& bi'b '—~.1'. ')(2j.+1) '& 'l(S IIV"'llab) I'

z,=(&,br; —&.r.-i)(2j,+1) 'h '{l(j,ill '
ll jb) I')',

Esr=Esr(t s), Ebr' Ejr(t s s')—, Ejr" E——sr(t s—s—' s")——, —— —

r.,=-,'(r.+r,).

(12)

(13)

(14)

"G. Breit and L S. Lowen, Phys. Rev. 46, 590 (1934).
~4 The notation of A. Messiah, Quantum Mechanics (North-Holland Publishing Company, Amsterdam, 1962), Vol. II, is used for

the tensor operators, Clebsch-Gordan coef5cients, the signer-Kckart theorem, and the reduced matrix elements.
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Although these equations are valid for an arbitrary electric held E, waves traveling in the +e, direction are of
primary interest in this paper. For this purpose an almost plane monochromatic wave expansion

E(z,t; k,&o) = LE(k,&o) exp i—cot+ E(k, —co) expitotg expiks+c. c.

is introduced. The E(k,to) are regarded as slowly varying functions of time and position in this approximate ex-
pansion. The Esr in Eqs. (10) and (11) are components of a real electric vector. Introduction of complex vectors
E(k,to) requires greater care and to avoid confusion some of their properties are given. The coefficient E(k,&u)

refers to the wave traveling to the right and E(k, —&o) to the wave to the left. E is transverse and divE=O. For
convenience the substitution

E(k,co) =A= (coefficient of wave to right),

E(k, —to) =B= (coefficient of wave to left)

(16a)

(16b)

will be used in the third-order expansion. Spherical basis vectors are used in the expansion and E is expanded as

E(z,t; k, (o) = P (—)~Est(z, t; k,~)e M = Q ( )&—&„e „ (17a)

and

Esr(z, t; k,oo) =est E(z,t; k, to)

= LEsr(k, co) exp —icot+E~(k, —co) expitotj expiks

+[Etrtt(k, te) expitot+Esrt(k, —&o) exp( —itot) j exp( —iks), (17b)

where Est(k, oo)=esr E(k,to). The superscript f is used
to avoid confusion in the use of complex vectors and it
should be noted that for A and B

E~t(k, to) =Abet ——(esr A*)=(—)~(A ~)*. (18)

The choice of coordinate systems is shown in Fig. 2.
XF'Z refers to the coordinate system in which the static
magnetic fi'eld is in the Z direction and is the reference
system for the axis of quantization or the wave functions
lt (jm). Since the radiation travels in the +z direction,
an hays system is used for the radiation and the
electric vector lies in the x-y plane. The components
of a vector A in the x, y, s coordinate system are
related to its components in the XI'Z system by the
Dsr„&"(tr,P,y) matrix. 's If rr is the rotation about the
Z axis, P about the intermediate y' axis, and y about the
s axis, then in the spherical basis notation

where the ( ) indicate an average over the atomic
velocity distribution in a small spatial element dr. The
development in the previous section gives p(t) for atoms
which experience a perturbation V(t) as measured by
the atoms. If an atom enters state (j,ttt ) at position
r, at time t, with velocity v, it will contribute at r at
time t if

r, = r—v(t —t,) .
The electric field E(t') measured by the atoms during
the interval (t—t,) is related to the radiation Geld by

E(t') = E(r,+v(t' —t,); t') =E(r—v(t —t'); t') .

Since the atomic perturbation for an electric dipo1e is

Asr= Q Dsr„*(n,P,y)A„. (19)

A„refers to the x, y, s system and p=+1 since the
radiation is in the s direction. p=+1 denotes right
circular and p =—1 denotes left circular polarization for
a wave traveling in the +s direction. Asr refers to the
components in the XI'Z system and M=O, &1 can
then occur. Pertinent details of the transformation are
given in Appendix I.

4. MACROSCOPIC ELECTRIC POLARIZATIOÃ

The macroscopic electric polarization and the density
matrix are related by

P(r, t)=Xtrp(r, t)Q=1V(trp(r, t; v)Q), (20)
Fzo. 2. Magnetic Geld 8 is along Z and determines the axis of

's M. E. Rose, Etememtary Theory of ANgtttar 3Eomeltlm Qohn quantization. The radiation is along &s with the electric vector
Wiley 8z Sons, Inc. , New York, 1957). in the xy plane. O.py are the Euler angles.
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of the form given by Eq. (6) the density matrix for the
group of atoms with velocity v is

p(t) ~ p(r, t; v), with V(t—s) —+ V(r—vs; t—s) . (21)

Only the motion in the direction of the traveling wave
has a significant eRect. If W(t},) is the probability that
an atom enters state j with velocity v, which is along
the direction of the traveling wave, then l}.—+ XW(t},) and

p(s, t) = (p(s, },'; t.))= dt},W(s},)p(s, t; t},.). (22)

For a Doppler-broadened line, the typical integral is of
the form

di},W(t},) exp+ikt},s =exp iD's—'

where
D' = 8«r'k Tv'/mc' =sr'AvD'/ln2, (24)

and AvD is the Doppler width. The Doppler-broadening
integral

Z(Ql —eo b I b, D)

iD dsexp —I' b i o)—co,b &ikv, s

P}}r(k,co) coefEcients are introduced in the same manner
as used in Eq. (15) for the electric field and P}}r&'}(k,co)

is used to denote a typical term linear in the electric Geld
and P~&s}(k,co) a typical third-order term in the electric
field, or

Pi«r(k co) =P}«i&i}(kco)+P}}r"}(k,(o)+ . (27)

The first- and third-order polarization coefficients are
now given for this model.

First-Order Polarization CoefBcients

Direct substitution into Eq. (10) and averaging over
the velocity distribution yields the first order coefficients
to the macroscopic polarization

P

corti}(k,

(o)

ND Ki p (j&1mb3II
~j,m )'

tÃrh « fft b

XZ(to —~(m„m&),F,&,D)E }}r(k,&o), (28a)

Psr&'}(k, —eo)

=ED—'Ei Q (j&1mbM~j, m )'
fitz «sL b

=iD ds exp) —F,bs+i(co ~.t,)s —',D's'5—-(25)
XZ*(a} cv(m—„mb),F,t„D)P}}r(k,—io), (28b)

and Z is defined by Eq. (25).

is of use in the first-order expansions. "
The macroscopic electric polarization is assumed to

have a form similar to that used for the electric field,
Third-Order Polarization CoeRcients

Direct substitution in Eq. (11) and. averaging over
P(s«~«k«~) Lp(k«~) exp( ~~~)+P(k« ~) exps&i5 the velocity distribution yields the third-order coeK-

Xexpiks+c. c.+higher order terms. (26) cients to the macroscopic polarization.

P }}rl«t }(k«oo) = —ilVE2 (—) '(jb1m},'cV~j.m, )(j b1m&'M'(j m, ')(j b1mbM"
( j„m.')(j }1m}iV'"~j m.)

mama «mbmb'

dsds'ds" exp[ F,}, s(co—(m,m—t) co)]s(exp—P Fb iso(m—t,
'm—t) js'

0

X [exp( F} s(io(m„—'me) —oo)js" (A s«sA—sr tA }«i Gi+A i}rB}}rB sr tGs+B t}rtBsr A }}r Gs)

+exp[ F.t+s(~(m—.'mt, ') oo)js" (A }—}rB}«tB }}s-'Gi+A }}rA~tA ~-Gs+B }}rtBssA sr-Gs)'J

+exp[ F,

ice�

(m—,m, '—)5s' [exp[ F,t, i (to(—m, mt,—') cujs"—
X (A }}sA}}stA 3r Gi+A srB~ B }}stGs+B }}stBs}rA i}r Gq)+exp) F,t,+i(~—(m, 'mb') &u)js"—

x(A arsw, e w„os+2 arsm A ar os+8 aresrA w«oi}}}). (2«a}

P}}r"t'}(k, a})= [change i —to i and Ass to B &r, e—tc., in Eq. (29a)5. (29b)

"3.D. Fried and S. D. Conte, The P/asma D«spersion I'NNos«o««. The Hilbers Tralsform —of the Gagss«a««(Acaden}ic Press Inc. «

New York, 196T).
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TAuLE I. Nonzero products of the four Clebsch-Gordan (C-G) coeiiicients contributing to g(—M"', —M, M', —M"). The symbol

{C-G}=(jb1m~'M~j,m )(js1ms'M'[j m ')(j~1msM" ~j,m ')(jslmsM"'[j, m);
and the C-6 coeScients imply —3P"=—3E+3P—Jj/I"; m —ns, '=38"—j/I"=3E—M', m& —m&' ——M —31"'=3l'—M", etc. TheZ, {C-G}has the following sum rules: (1)= —,'L(9)+(7)+ (18)j=ssg(8)+(6)+(19)7; (8) = (9)=—,'P(2)+(4)+(15)+(17)g=—,'P(3)+(5)
+(14)+(16)]; (9)—(7)—(18)= (10)+(13)= (12)+(11); and (2) = (4) = (3)= (5); (6) = (7); (10)= (11)= (12)= (13); (14)= (15)= (16)= (17); (18)= (19). Each dash in column (3) denotes a nonzero Clebsch-Gordon coeKcient between levels (j,m, ) and (j gamb)
Four products occur in the symbol {C-G},and a vertical dash ( implies the change in m is zero, while slanting dashes g or / imply the
change in m is &1.

7t ( M'", ——M, M', —M")

gaol F
jp or Ff,

2 1
1 1

36 4

it Z, {C-G}

2 3
2 2

36 225 225 100

2 3
2 2

36 225

RZ m {C-G}

2

1

36

1 (0000)

2 (00+ —)
3 (--00)
4 (00-+)
5 (+goo)
6 (---+)
7 (+++—)
8 (--+-) ////
9 (++-+)

10 (0—0+) iXi
11 (—0—0) iXi
12 (+o+0) I

x
I

13 (0+0—) ~x~

14 (—oo—)
15 (o—+o)
16 (+00+)
17 (o+—o)
18 (+—++)
19 (—+——)

34 2

1 33 1

33 1

1 33 1

1 33 1

1 21

1 21 1

1 46 2

1 46 2

0 12 0

0 12 0

0 12 0

0 12 0

0 13 1

0 13 1

0 13 1

0 13 1

0 1 1

0 1 1

34 259

13 288

13 288

13 288

13 288

2i 126

21 126

26 371

26 371
—8 112
—8 112
—8 112
—8 112

13 133

13 133

13 133

13 133

21 21

21 21

164 104

68 98

68 98

68 98

68 98

96 56

96 56

136 146

136 146
—28 42
—28 42
—28 42

—28 42

68 48

68 48

68 48

68 48

96 6

96 6

0
0
1

0
—1

—1

1

0
0
0

0

0

0
0
0
0
0

0 2

15 —1.

48 0
—15 1

—48 0
21

—21

81 1

—81 —1

6 0
6 0

—6 0
—6 0

9 1

9 1

0 0

0 0

0 0
—17 196
—4 434

17 —196

4 —434

21 101
—21 —101

13 910
—13 —910
—4 56
—4 56

4 —56

4 —56

17 140

17 140
—17 —140
—17 —140

0 0

0 0

Again it is useful to note that A srt= (—)~(A sr) . The G coefficients are of the form exp(&ikv, s) and the average
over the Doppler width is given by Eq. (23) as

where
(G(s))= (exp(+iks, s))=exp —is D's',

Gi= G(s+s"); Gs =G(s—s"); and Gs ——G(s+2s'+s") .

5. TENSOR FORMULATION FOR THE ELECTRIC SUSCEPTIBILITY

(30)

Equations (28) and (29) suggest a tensor formulation for the polarization in terms of the spherical basis functions.
If M in Eq. (28) is specified, then the sum is limited to m, or m& by the Clebsch-Gordan (C-G) coefficient. If M'"
is specified in Eq. (29) the sum over either m, or m& may be omitted. If the other values of M, M', M" are speci«d,
the sum is reduced to the sum over a single value of m, or

8(M"'—M+ M' —M") (3&)~ ~ ~ +
m,ama', mym ts' maMM'M"

es P srlil(k)M) =7(l(—M ) M i k)oi)A sriii+g~( —M )
—M) M )

—M i k)(o)A siAsr~ A

+ps( —M'", —M, M', —M"; k, (v)A srBsr.B sr-t

+X.(—M'", —M, M', —M"; k,oi)B srtBsr A sr- (32a)

The Kronecker 5 indicates the constraint which is placed on the M indices by the Clebsch-Gordan coeKcients
and Table I indicates the 19 nonzero products of the C-G coefFicients in terms of the 3f indices. If more convenient,
m& may be chosen as the summation index. The polarization may be written in tensor form as

P jr "(k, —o~) = (change i to i in }c, and—A sr to Bsr, etc.) . (32b)
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in Eq. (29a)). (34)

with similar expressions for g~ and g, . For atoms at rest

Gg ——G2= G3——1, (35)

and the typical integrals in Eq. (29a) over s, s', s" yield
Lorentz line shapes or products of the type

L+i(~(m.mb) —~)+r.b] 'Li&o(mb mb) Pr,]—'

X Li(pp(m. 'mb') —cp) —I'.b]
—'. (36)

Since integrals of this type are readily evaluated only
one of the four products is given. A particular feature
of two of the four integral products is the tendency for
the effect of the frequency ~ to become of reduced im-
portance. This is more noticeable as the average over
the velocities is made and in the extreme Doppler limit
co cancels out of two of the four repeated integrals. For
large Doppler broadening the contributions of G~ and
G3 are small compared to that of G2, and the G2 term
tends to act as a b function, ' so that

Repeated indices are summed in these expressions. gq
and X. are coefhcients of the coupling between the ~2,
traveling waves.

A typical g(—M'", —M"'; k, &p) coefficient may be
obtained by inserting the desired value of 3f"' in Eq.
(28) and then summing over m, or mb. This second order
tensor is diagonal in the M indices and g and g are
related by

spy( —M"', 3II"'; k—, tp)

=rD 'K, P-(yb1mbM'"~ j.m )'
mt' or mg

XZ(tp —o)(m mb); I' b,D). (33)

Since the Z functions are tabulated" g(—M'", —M"')
may be evaluated in principle for arbitrary values of
the magnetic 6eld and co.

No such simple procedure is possible for the third-
order terms. In general

spy, (—M"', M, M', ——M"; k, pp)

ilVKs —P(COefHCient Of A brAbr &A ~"

6. MODIFICATIONS FOR HYPERFINE AND
ISOTOPE EFFECTS

Zeeman Sylitting of the Energy Levels

In the absence of hyperfine splitting, the splitting of
the magnetic sublevels is given by

(j.m. (
—M.S~j.m.)

=
C
—(2j.+1) "'(j-II31'"'llj.)]m.~= @~.m.&, (39)

where the reduced matrix element is replaced by y, .
The energy difference between optical levels may then
be expressed as

pp(m. mb) tp. b
—(y,m——.—ybmb)8. (4o)

Hyyerfine and Magnetic-Field Sylitting
of Energy Levels

The expression for Fbrt'~ and P~t'& may be generalized.

to atoms with hyperfine splitting by making the follow-

ing changes in Eqs. (28) and (29). The Clebsch-Gordan
coefficients and the reduced matrix elements are
changed to

(j b1mbM~ j,m, ) —+ (Fb1mF,M~F,mp. )

(2j.+1) '"b.ll'P"'llab) ~ (2F.+1)-'"
X(jgF.IIV"'lljb»» (41)

the form

D 'Li(&v(m. mb)+to(m. 'mb) —2tp)+2I"gb]

XLitp(mb'mb)+ I'b] '. (38b)

Large Doppler broadening tends to cancel the coupling
between +s traveling waves and —s traveling waves.
Averaging over the atomic velocities tends to reduce
this coupling and to enhance the cancellation of co. The
frequency dependence of the two integrals contributing
to g, are of the form given by Eq. (38a); imp(mb'mb)+ I"

b

occurs in one integral and i&a(m,m, ')+ I', in the other.
The frequency dependence of Kb is given by Eq. (38b)
and X. differs in the m indices as indicated in Eq. (29a).

All other cases lie between these two extremes.
Aronowitz' has considered the contribution of integrals
of the type (Gt) and (Gp) in some detail.

J P

dsds" f(s,s")G(s s")~ 2''i'D-t— The trace must now include the sum over the hyper6ne
levels and is of the form,

X ds'f(s's") 3(s s") . (37)—
m~my Erbmy Egmj &

{42)

Cancellation is apparent in the second and fourth inte-
grals in Eq. (29a) and two of the products for extreme
Doppler motion yield line shapes of the form

D 't i(tp(m. m )—&p(m. 'm '))+2I'„]—'

X$itp(mb'mb)+ I'b] ', (38a)

while the remaining two integrals yield lines shapes of

An expression for the energy-level separation

a)( .Fpm. , bFmp;) —~.b

is given in Appendix II along with other pertinent data.
Although most atoms have nuclear spin and hyper6ne
splitting the notation (j,m, ) is used in most of this

» F. Aronowitz, Phys. Rev. 139, A635 (1965).
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paper to avoid the double subscript 22tb. . The trans-
formation from one notation to the other is readily made
by the substitutions given above. Table I may be used
by changing the j's to Ii's.

Isotopes

If more than one isotope is present, then

P=1V trp —& Q 1V trp @, (44)

where 1V is the number of the nth isotope atoms per
cubic meter and p is the density matrix for the nth
isotope atoms. Since the isotopes will in general have
differences in nuclear spin and mass, p will differ in
the zero field splitting co,b, the hyperfine splitting, and
in the F, 2N2 indices over which the trace is summed.
In this same manner the electric susceptibility is an
average over the individual susceptibilities for each
isotope,

g(M"', M, M', M")=Q(N /1V)g (M"',M, M', M").

Weak and Strong Magnetic Fields

In zero magnetic field the polarization is independent
of the choice of the axis of quantization and for the
entries in Table I the integrands are independent of
m„m~, etc. In the presence of hyperfine splitting it is
necessary to complete the sums over Ii and Ii& and x
will depend on the amount of hyperfine separation in
comparision with the Doppler width in the first-order
terms and on the natural width in the third-order terms.
In the absence of hyperfine splitting x is pure imaginary
in zero field at line center. x is complex when co is not at
line center and is in general complex for atoms with
hyper6ne splitting. It is approximately correct to con-
sider for X=X' 2X"

that X' causes a phse shift and X" effects the gain.
A magnetic field is weak if the splitting of the energy

levels is small compared to the natural width of the line.
The width of the natural line is dominant in the third-
order terms and the Doppler width in first order terms.
As the magnetic field is increased from a value of zero
for an atom without hyperfine structure the term x' will

grow linearly with the field and interference eGects be-
tween states of polarization can be expected near line
center. This is no longer true for atoms away from line
center or for atoms with hyperfine splitting and a linear
dependence in the gain can occur. This linear depend-
ence is proportional to the product of the Zeeman
splitting with the deviation from line center or with the
hyperhne splitting. Weak magnetic fields require a con-
sideration of all three values of M in 2r(M, M) and of all
terms shown in Table I for the third-order term
g(M'",M,M', M").

In strong magnetic fields, that is fields which yield a
Zeeman splitting large compared to the natural width,

the major contribution in third order arises from one of
the terms of type 1, 8, or 9 in Table I. The frequency
o& determines which term is most significant. oi also
determines which of the three first order values of
g(MM) has the largest gain. Thus a strong magnetic
field tends to create a two level problem, and which
two levels depends on co and on the polarization of the
radiation.

E„(k,oi) expi(ks nit), — (46)

where p= &1 and E„(k,oi) is regarded as a slowly vary-
ing function of t and s. En(k, o~) may also vary with the
beam cross section in the manner suggested by Fox and
Li" for a maser or in other suitable ways to limit the
beam of radiation to a finite cross section. "Neglecting
second derivatives in space and time, Eq. (45) may be
written in the approximate form

BE„(k,oi) BE„(k,(u)
2ikc2 +2io

+ (&2 k 2~2)E (k &) &
-1~2P (k ~) (47)

Equation (47) implies four equations since p= ~1 and
changing &u to —o~ yields new equations. Four additional
equations are obtained by changing k to —k and E~ to
E„~ or by noting that E„is complex. These eight equa-
tions relate the electric field and the electric polarization
in a volume element dr and the derived value of the
polarization in terms of the field must be self-consistent
with these equations. '

Unfortunately the polarization is given most con-
veniently in the XI"Z coordinate system and the radia-

A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
r2 S. A. Collins, Jr., Appl. Opt. 3, 1263 (1964); P. O. Clark, J.

Appl. Phys. 36, 66 (1965).

7. ELECTROMAGNETIC FIELD EQUATIONS

The development in the previous section gives the
electric polarization in a space element dr if the electric
6eld is known. Maxwell's equations require the electric
polarization and the electric field in the space element
to be related by

—curl curlE —c 'B'E/Bt'= c cs 'B'P/Bt' (45)

and divm is assumed approximately zero for the system
under consideration. In tbe experiments under con-
sideration a large number of photons are assumed to be
traveling in the +s directions and these almost plane
waves have two states of polarization for the electric
vector. 0 and d„ form one convenient expansion set for
the polarization. Since a spherical basis set is used for
the expansioii of the atomic states, it is convenient to
introduce a spherical basis set d~ ——W2 '12(B,&iamb„) for
the expansion set for the radiation field. Following the
procedure indicated in Eqs. (15)—(17) the electric field
is expanded in terms of tbe components
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tion field in the hays system. The first- and third-order
contribution to the polarization may be transformed by
using the Dsr~ coefficients given in Eq. (19).Thus

P i»c ~(k (o) =D( M— p)—D ( M ——p)
Xg(—M"', —M"')A „=g(—p"', —p)A „(48)

or the second-order tensor transforms as

Xg(—M"', —M"', k,~) . (49)

It is convenient to have the index p in Eq. (47)
denote two canonical states of polarization o, , and these
canonical states can be selected such that g(n'n) is
diagonal. This may be accomplished by using a trans-
formation of the type

A~ D*(Mp——)A~=D*(Mp)U*(pn)A =S~(Mn)A, (50)

where U and S are unitary matrices and o,=1, 2 is an
index denoting the two canonical states of polarization.
The transformation from Psr to P is given by Eq. (A5)
in Appendix I.Equations (28a) and (29a) may be trans-
formed directly by transforming P~ as

P "(k,cd) =S( tlat'", —n'")P sc" (k,co), (51a)

and by noting that

A ~A~. tA ~"——(—)'~'S*(—Mn)S( —M'n')

XS*(—M"n")A (A )*A (51b)

etc. Equations (28) and (29) are not rewritten in terms
of the n index since the substitution of Eqs. (51a) and
(51b) into Eqs. (28) and (29) is readily made.

Using the approximation that co=kc, the equation of
motion of the 6eld in terms of the A's and 8's is for
either the p or n index,

that is B~——0. Denoting the nonzero coefFicients of the
susceptibility tensor as

—X(a a)=a~, X.(a a W a)=b~,
X.(W W W W)+ X.(W W W W) =c~.

The nonlinear equations of interest are

(53)

Circularly Polarized Incident Radiation

If the incident traveling wave is right circular and
only steady-state operation is of interest, Eq. (54)
reduces to

2i (dA+/ds) =kA+(a+ b+ I A+—I
') .

Making the substitution

U~iu+

and writing a+ and b+ in the form

11a+= A +zap (s6)

the real and imaginary parts of Eq. (55) yield an equa-
tion for the amplitude U and an equation for the phase
N. Direct integration yieMs

U2(s) —U 2caz

X L1+Uo'( +"/a+")( *- )] ' - (a+"/b+") ( )

BAg BA~
2ik ' +2i(u '

Bs Bt

=A+(a+ —b+
I
A+ I

'—c+ I
A+

I
'& (54)

These equations indicate that a wave of given polariza-
tion must be incident to be amplified, that is right
circular does not generate left circular.

8A BA
2ik '+—2i(u-' = eo 'P.(k,~), ——

t9s 8$

88 88
2zk ~ 2')

g

I= ——',(~/c) ds(a+' bp'U') . —
0

= —eo 'P (k —(u), (52b) (s8)

(52a) where n is the linear gain term n= ka~" ——roc 'a+". Direct
integration of the equation for dN/ds yields an accumu-
lated phase of

where P is given by Eq. (51) or (As). The equation for
E (k, —a&) or 8 is obtained by changing A to 8, ~ to
—cu and using P (k, —cd). Again eight equations are
implied, that is, for the real and imaginary parts of A

and 8 . These equations are nonlinear and simple solu-
tions will only occur for special cases. The equations are
examined in the ensuing sections in the order of their
complexity.

8. AMPLIFIER WITH AXIAL MAGNETIC FIELD

The simplest problem to consider is an ampli6er with
an axial magnetic Geld since D~~ is a diagonal unit
matrix and M=p=&1. In this initial example it is
assumed that no reQected wave occurs and the coeQi-
cients of the traveling wave in the —s direction are zero,

Saturation occurs for large z and the amplitude is limited

by the ratio of a+"/b+" a+" or g"(+. +) is the Doppler
gain curve as given by Eq. (33) and has the frequency
dependence of a sum of Z functions which differ by the
term (y~m~ yet, )8 —for each m, . These appear as
displaced Gaussian gain curves. b+" or X,"(++ +)
requires detailed evaluation of terms sensitive to co and
magnetic field sensitive equations of the type given by
Eq. (36), or (38a) and (38b). For large Doppler broaden-
ing b+" is approximately constant and the gain curve
has the frequency dependence of a~"(&u), that is the
Doppler line. This is apparent from Eq. (38a) which
gives the form of b+" or x(+ + I-) of line 9 of
Table I. Since the 3f's are all equal, m, —m, '=0 and
mb —mb'=0 and b+" is not sensitive to the input fre-
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quency or magnetic fields. This is not true when the
(Gi) and (Gs) yield non-negligible coefficients for the
other two integrals in the intermediate region of Doppler
broadening.

The accumulated phase u is zero for co=or, ~ and zero
magnetic 6eld, and is linear in the Geld for weak mag-
netic fields. If the Z functions in Eq. (33) are expanded
in terms of the magnetic field 8, at line center the real
part of Z is of the form,

Z'~ —2D- (1+—sr 1 I' s/D)(y rN ybsrs—s)P. (59)

Summation of the C-G coefficients over res in Eq. (33)
with Z replaced by the approximate value of Z' given
in Eq. (59) yields a term proportional to a+'. b+' follows
from an analysis of the integrals in Eq. (29a) and for
extreme Doppler broadening is almost zero. Beam-
splitting techniques could be used to measure the phase
shift as a function of the magnetic field Q and yield
some information concerning the y's for the excited
atomic levels. This equation divers from the oscillator
equation in that it does not depend on the bandwidth
of a cavity.

a+' is a measure of the deviation of the index of re-
fraction from unity. If the nonlinear term is included
only the accumulated phase I can be defined.

E11iytical Polarization for the Incident Radiation

If the incident radiation has elliptical polarization and
frequency ce, then both A~ are needed in Eq. (54). Again
steady state is assumed and the time-dependent term
omitted. For convenience let

A+ ——Ue'" and A = t/'e'"

and the amplitude aspects of Eq. (54) are given by

dU'/ds= k)a+" b+"U' c+"V—'$U'= k—Q, (60a)

dV'/ds=k$a "—b "V'—c "U']V'=kP. (60b)

These may be examined for stable solutions by a
standard procedure of phase trajectories'0 and the phase
diagrams are similar to those used by Lamb in dis-
cussing the mode coupling in a linear oscillator or by
Heer" in discussing the coupling between clockwise and
counter clockwise traveling waves in the photon rate
gyroscope. The phase trajectory equation

d V'/d U'= P(U, V)/Q(U, V) (61)

has singularities at P=Q=O. The straight lines for
P =0 and Q =0 are shown in Fig. 3 and the singularities
occurat U'=0, V'=a "/b ";U'=a+"/b " V'=0;and
at the intersection of the two lines. The path of the
phase trajectory is horizontal as it crosses the line I' =0

'0 A. Andronow and A. Witt, Archiv. fur Elecktrotechnik 24,
(1930l; N. Minorsky, 1Vors Liqueur Mechu-riics (Edwards Brothers,
Inc. , Ann Arbor, Michigan, 1947), p. 341.

"C. V. Heer, in Proceedings of Colloque Sur Jes Gyroscopes
Aeulces, Puris, 1964 (Sci. et Techniques de L'Armement, to be
published); and Proceedings of Symposium on Unconventional
Inertia Sensors for 1964 (Republic Aviation Corp. , Farmingdale,
¹ Y., 1965), pp. 221-231.

Fio. 3. Phase plane for d P/d U'=P/Q where

P =Lui —bi V —ciU'j V' and Q = Lus —be U' —csV'j U'.

The straight lines are for P =0 and Q= 0 and the singularities are
indicated by O. The intersection is stable if bs/c&)us/ui)cs/b&
and is shown above. Figures 3, 4, and 5 of Ref. 1 give detailed
phase-plane diagrams for this equation.

and vertical as it crosses Q=O. The intersection occurs
and is stable if

bp"/c "&ap"/a "&c+"/b ",
and both U' and V' can coexist with amplitudes

(62a)

and
U'= (a+"b " a "-c+—")/-(b+"b " c "-c+—")-

(62b)
V'= (a-"b+" a+"c ")/(b+—"b-" -c "c+"). —-

u= ——',cec ' ds(a+' b+'U' c+'V'), — —(63)

Otherwise one of the other singularities is approached
and only the right or the left circularly polarized waves
leaves the amplifi'er under saturation conditions. The
ratio of the linear gain term a+"/a " is unity in the
absence of a magnetic field and remains the order of
unity in weak magnetic Gelds. Of course in strong Gelds

the ratio may be made larger or smaller than unity.
If j,= 1 and jr=0 or j,= 1 and j s 1 th——en b~"/c~"

is unity in zero magnetic Geld and of the order of unity
in weak magnetic Gelds, and there is a tendency for the
intersection to become a saddle point. This is apparent
from Table I by observing that b+ depends on entry 9
or 8 and c+ on entry 7+18 or 6+19.Small changes can
make this saddle point stable or unstable. j =2 and
j&= 1 or j,=3 and j&= 2 are highly stable at the inter-
section. j,=2 and j&=2 is unstable and implies that
such a system in a zero or weak. axial magnetic Geld

quenches one of the two states of polarization as satu-
ration is approached. This surprising result would be
interesting to examine experimentally.

The accumulated phase difference u or v for right or
left circular polarization is given by direct integration
of du/ds and dv/ds and the phase sc after traveling dis-
tance s is
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b+ ——const(46)(2r, s ')(rs '+I', '), (65a)

c~= const{[&i2y.8+2r.s
—'j '

x [r;i+(~i2&.e+r.)-ij
+21[&i2y++2r, s 'j '

X[(&i2y++rs ') '+I', 'g); (65b)

c~ is primarily dependent on the energy level with jb= 2.
These expressions indicate that b+" is independent of

the magnetic field and b+' ——0. In zero field a+' and c~'
are zero and in weak fields grow linearly with the 6eld.
The amplitude of the wave is approximately given by
U'= V'= u"/(b"+c"). As the magnetic field is increased
c" should decrease and the amplitude show an increase.
If the power output is observed with an unpolarized
detector a field sensitive "dip" should occur at 8=0.
For larger fmlds the curve takes on the magnetic fmld

dependence of the linear gain a". Examination of a+'
and c+' indicates that for U'= V2,

7

and within the validity of these approximations Eq. (64)
~ D. F. Hotz, Appl. Phys. Letters 6, 130 (1965l; Appl. Optics

4, 527 (1965).

with a similar expression for v, Reference to Table I
indicates that in the absence of hyperGne splitting and
for oi near line center the c+' term is most sensitive to the
magnetic Geld. A variation in the magnetic field 8 will
cause c' to be strongly dependent on the width 1', Fb,
and r, & as is apparent by examination of Eqs. (38a) and
(38b). The polarization of the radiation leaving the
amplifier depends on U', V', I, and e. No simple con-
clusions can be reached for atoms with j values other
than 0 and 1 and in general a detailed analysis is
necessary.

The experiment of Hotz" on magnetic effects which
were interpreted as bandwidth narrowing in a 3.39-p,
saturated amplifier provides an interesting example for
this theory. The 3.39-p, line of neon is the transition
(5s'[sfi~4P'[ssj, ). This is a j,=1, j&=2 transition.
In zero magnetic Geld b+"/c "=b "/c+" 46/22——and
a+"/a "=1 and the stability condition of Eq. (62) is
met. Right and left circularly polarized waves can co-
exist in this maser medium with zero or weak axial
magnetic field. The wave after traveling a distance s in
the amplifying medium is of the form

(e Ue'"+e~Ve'") expi(ks —cot)+c.c. (64)

For a saturated wave U'= V' and if the incident wave
is linearly polarized U'= V2 throughout the amplifier.

For large Doppler broadening only the (Gs) terms in
Eq. (29a) are large and the problem can be examined
in some detail. Intermediate Doppler broadening re-
quires the retention of many more terms and is not
examined here. Using the M values indicated in Table I
for entries 9 or 8 for b+ and entries 7+18 or 6+19 for
c~ with Eq. (38a) yields for co=co,s

9. AMPLIFIER WITH TRANSVERSE
MAGNETIC FIELD

If the magnetic held is transverse to the direction of
the traveling wave, that is Z is perpendicular to z and
along x, the polarization is given by

yS*(—M, n)S(—M', n')5*(—M", n")

)&y,(—M'", —M, M', —M")A (A )*A.",
where 5(0,x) = 1 and 5(&, y) =&2 'ts. The details of
this transformation are given in Appendix I. Using
abbreviated notation, P may be written as

—~o 'P.=a.A.—b.A.A.*A.
—cQ+„*A„+dA„A *As, (68)

and P„follows by permuting the indices x and y. The co-
efGcients are given in terms of x(—M"', —M, M', —M")
by

~*=—X(0 o), ~.= —s{X(+ +)+X(——)),
b,=+g(0000)=+(1),
bs= —4{(7)+(9)+(18)+(6)+(8)+(19)},
c*=—s {(2)+(4)+(15)+(17)),
c.=+l {(3)+(14)+(5)+(16)},
d.=+l {(1o)+(13))
ds =—s {(12)+(11)),

(69)

where (7) refers to y,(+++—) given by entry No. 7

in Table I, etc. It is convenient to use this table to keep

may be written for e„polarization of the radiation
incident on the amplifier as

U[e sinu —e„cosu7 sin(ks —u&t) . (66)

The phase u follows from Eq. (63) with b+' ——0. If a
linear polarizer making angle 0 with e„ is placed in the
path, a detector which is not sensitive to polarization
measures a signal proportional to

Signal ~ U'[sins8 sin'u+ cos'8 cos'u
—2 sin8 cos8 sinu cosu]. (67)

This explains the central shape of all four curves ob-
served by Hotz for 8=0, ~45', 90' as n is varied by
changing the axial magnetic fMld. c+' approaches a
maximum value as g is increased and this can be
determined in terms of the y's and r's in Eq. (65b). This
maximum occurs approximately at 2&+=r if the r's are
almost equal. The absence of a 'dip' at line center for
6=0 and the narrowing of the line as the magnetic field
is increased can be explained if (Gi) and (Gs) contribute
to b+", that is intermediate Doppler broadening occurs.
The presence of more than one isotope can remove the
dip.
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in mind the diagrams or integrals giving rise to each
term in the electric susceptibility. The eRect of magnetic
fields and tuning on the coefFicient may be visualized in
this manner without performing actual calculations.
The coefficients are selected such that a,",b,", , c„"
are positive constants in zero magnetic field. The sign
of d,"and d„"depends on the jvalues for the levels and
are of opposite sign in zero Geld.

Equations (47) and (52) may now be used with n =@

or y and the equation of motion for A, is

BA, BA,
2ik ' +2') ' =u,A, b,A—,A,*A

—c,A,A „*Ay+ d,A „A,~A y. (70)

A similar equation may be obtained for y by permuting
x and y. In zero magnetic Geld a,"=a„",b,"=b„",etc. ,
and the equations may be placed in the same form as in
the previous section. This is expected, since in zero mag-
netic field the expressions must be independent of the
choice of the axis of quantization. In zero magnetic field
the coefficients are all imaginary at line center, that is,
a '=0, b '=0, etc. , and only affect the gain. As the
magnetic field is increased the real terms a,', b,', etc.,
grow linearly with the magnetic field and contribute to
the phase term. Large fields affect both the gain and
phase aspects.

The arguments used in the previous section are not
as useful as in that section. Substitutions of the type
A = U expig do not cancel the phase in terms of the
type A„A *A„and this adds to the complexity of the
problem. d,"and d„" are third-order terms which pro-
vide gain rather than saturation for either the A or A„
component. This sign depends on the j values and is
related to the earlier observation that j =2, jb=2 is
unstable for elliptical polarization. Nonlinear problems
of this type will be considered elsewhere. A strong mag-
netic 6eld along the x direction has less effect on the
linear gain term a,"=g"(0,0) than on a„"and near the
line center the linear gain is larger for the x-polarization.
In large Gelds the gain can be made dominant at one
pair of transitions for the linear gain. This may be either
x or y depending on the incident frequency. Table I
reduces to one of 3 important diagrams, that is 1, 8, or 9
for large magnetic fields. If A „=0 or A, =O for the wave
incident on the ampli6er, the analysis is similar to the
analysis of Eq. (55) and yields Eqs. similar to (57)
and (58).

Amplifier with Two Input Frequencies ~ and m+Aas

If the amplifier has two input frequencies differing
by Ace, then the input wave incident on the amplifier
has coefficients of the type

A~= A i~+A,~ expi(hks —Au)t). (71)

If the magnetic field is axial Eq. (54) may be used for

the analysis of the amplified wave. Both the time and
space derivatives are needed for this analysis and this
example is introduced to show the general type solutions
which the left-hand side of Eq. (54) and the linear gain
term can admit. If A&a is less than the natural width a
complex nonlinear problem results.

10. LINEAR OSCILLATORS

Equation (52) may be used for the general linear
oscillator with arbitrary magnetic 6eld. Both E (k,+)
or A and E (k, —cu) must now be included in P (k,~)
in order to handle traveling waves in the +s direction.
The third-order contribution to P(k,~) must include the
electric susceptibility tensors X„Xb and X,. Xb and X,
couple the waves traveling in the ~z directions. X„Xb,
and X, differ through the Doppler effect or (G) coeffi-
cients in Eq. (29).

In the analysis of the linear oscillator by Lamb' terms
of the type BA /Bs were regarded as negligible and a
simple standing wave or normal mode solution intro-
duced. The time-dependent terms gave a measure of the
growth of this mode. Losses were introduced by a simple
cavity damping term. A standing-wave solution requires

E(k,~) =E*(k, —&o) or A= B*, (72)

and reduces the eight equations implied by Eqs. (52a)
and (52b) to four equations. This condition will occur
for metallic reAecting mirrors and no polarizing devices
in the path or in a transverse magnetic Geld with
Brewster-angle windows. The later case may be treated
by two equations since A, =B * and A„=B,=O and
Lamb has discussed this case in detail. Since cdt=dz,
there is little diRerence between this oscillator and the
discussion of the linear amplifier in the saturation region.
The resulting nonlinear problem is similar to the dis-
cussion following Eq. (55). —'" "'%6CCRPaBg%. . ' .. ... ———-~ %I%58

Linear Oscillator vrith Axial Magnetic Field

The more general case of an axial magnetic field and
perfect rejecting mirrors requires the analysis of a
problem similar to the saturated amplification of an
elliptically polarized wave. If an approximate normal
mode (2d) "'expi2~qs/2d is used for a cavity with
mirror spacing of d, the normal mode equations for the
qth mode are of the form for the

2i(dA ~/dt)
=co.A~[a~ —iQ '—b~)A~)' —c~]Ap)'g. (73)

Q has been introduced to account for simple cavity losses
and ~. is the cavity frequency. Since standing waves
require that

A ~=9„~, (74)

it is apparent that all products in Eq. (29a) are of the
form A ~A„~A „-and P'+&'& depends on only the Geld
terms A ~ ~

A + )
' and A + ) A p

~

'. The u, b, c coeKcients
are given by Eqs. (28a) and (29a). b and c depend on all
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u= ,'(o.(a+' b~' U' c—~'-V'), — —
&= —-', cv, (a '—b 'V' —c 'U'),

and the frequency of oscillation is

07+= GO
—8 and Q) =M —V .

(76)

(77)

"G. R. Fondles and R. C. Jensen, Phys. Rev. Letters 10, 347
(1965).

coeKcients in Eq. (29a) or on X„Xb, X, and the e6ectof
magnetic fields and cavity frequency, co.=co, is diRerent
than in the ampli6er. The discussion of the nonlinear
problem is the same as used for Eqs. (60a) and (60b)
with ds=cdt. Equation (61) follows and the stability
condition for oscillation of both right and left circularly
polarized waves is given by Eq. (62a) and the amplitude
of the two waves by Eq. (62b). For large Doppler
broadening both Eqs. (38a) and (38b) are needed for
b and c. Only Eq. (38a) is required for a linear amplifier.
Equation (38b) is sensitive to the cavity frequency &e,

relative to the line center ~,b, and for 8=0 and a single
isotope leads to the cavity tuning "dip" suggested by
Lamb. ' The form of the amplitudes are given by Eq.
(62b) by replacing a~" by a+"—Q '. In zero magnetic
field and near line center this reduces to

U'= V'= (a" Q—')/(b "+c"). (75)

The cavity tuning dip is introduced by the presence of
both Eqs. (38a) and (38b) in the b" and c" coeKcients.

In Table I b+ depends on entry 8 or 9 and c+ on entry
7+18 or entry 6+19. In zero magnetic field the ratio
of b~"/c+" is given by P {C-G). Combining these
values with the stability condition which is given by
Eq. (62a), gives the condition under which right and
left circular polarization can coexist in zero or weak mag-
netic fields. a~"/a "=1 for zero magnetic field and
cu.=~,q Under .these same conditions b"/c"=1 for

(j.=1, j&=0) or (j.=1, j&=1) and a saddle point
exists. b"/c"=46/22 for (j,= 2, j&= 1) and 371/247 for
(j,=3, jb——2), and the intersection in Fig. 3 is quite
stable. b"/c"=26/42 for (j.=2, j b 2) and righ——t and
left circular polarization cannot coexist in this oscillator
in zero field and at line center. This is similar to the
conclusion reached for the linear amplifier with an axial
magnetic field. The ratios given above remain the same
if the j values of j, and j b are interchanged.

The discussion remains valid if the hyperhne splitting
is large and a single set of Ii and Ii b levels can be used.
Fowles and Jensen" examined the maser oscillation
between the hyper6ne levels in iodine and found that
(& =-', , F&= 2) gave the only maser line. If only one
polarization is amplified for (F,= ~~, Fi,——2), then
Brewster-angle windows can introduce a 50% loss and
prevent oscillation. It is premature to suggest this eRect
for their experiment, but it does indicate that this rather
surprising dependence of stability on the j or Ii values
must be considered in future experimental arrangements.

The phase is given by an equation similar to Eq. (63),
and

The magnitude of the frequency shift depends on U' and
V' and these are in principle known for an oscillator. In
zero magnetic field and at line center u'= b'= c'=0 and
the frequencies are the same. As discussed earlier, both
U and V can occur or they can occur separately. At line
center or co.=M b these coefficients increase linearly with
the magnetic field and have opposite signs. a+' ———g ',
b+'= —b ', and c+'= —c '. The diRerence in frequency
between right and left circular polarization is given by

(78)

Since u and v have opposite signs a beat frequency pro-
portional to the axial magnetic 6eld will occur and has
been observed experimentally. 4 '4 In an ideal system a
(j,=2, j b=1) transition should have this frequency
diRerence down to zero magnetic fieM. Less stable lines
will tend. to "lock" together due to the lack of ideality
in the system. All terms in Eqs. (28a) and (29a) must
be included in correlating the beat frequency between
the two modes with the y and I' values. If the oscillator
is not at line center, then the a, b, c coeKcients must
be modified to take the frequency diRerence co,—~ b into
consideration and the previous discussion must be
modified. At line center b+' and c ' reach a maximum
value at a field strength y8 = I', and the quantity (u —v)
at high power levels should show a similar maximum.

The linear ampli6er showed a dip at line center
as the magnetic field was varied. The oscillator tuned
for M.=co,b has an output which is dependent on
U'=(a"—Q ')/(b"+c"). Equation (38b) must now be
included in the b" and c" and for large Doppler the
magnetic field dependence of the amplitude is diRerent
from that for the amplifier. Culshaw and. Kannelaud4
have examined this beat frequency in some detail and
found a dip at zero field. Brewster-angle windows were
used with an axial magnetic field in their experiment and
this complicates the analysis of the problem. The ob-
served shape of their power output curve is in agreement
with that expected for U~.

Linear Oscillator with Arbitrary Magnetic Field

The linear oscillator with arbitrary magnetic held and
with polarizing devices in the path is described by the
basic Eq. (52). It does not appear possible to define a
simple normal mode with a simple loss term under these
conditions for a cavity. This is apparent by considering
a wave in a linear amplifier with an axial field. A linearly
polarized wave has it plane rotated during ampli6cation
and the loss at the next Brewster angle window depends
on the amount of rotation. The problem becomes quite
complex and is only formulated here. Fork and Patel"
have experimentally examined the characteristics of a
maser in very strong transverse and axial magnetic fields

R. D. Graft, Ph.D. dissertation, Ohio State University, 1965
(unpubtIshed)."R.L. Fork and C. K. N. Patel, Appl. Phys. Letters 2, 180
(1963).
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and their results can be described in terms of the strong
field a and the b and c coeKcients which depend on
diagrams 1 and 8 or 9 in Table I.

the form

2i(dA /dt)=,A,[—gQ+u —ig- —blA. l
—clB.l j, (81a)

BA BA
2ik ' +2ico ' +2[c '(0 xr) u, ]A

Bs Bt
= —

pp
—'P (k,p~), (79a)

BB~ 88rtt
2ik ' —2ico ' —2[c '(Q xr) d,$8~

= —
pp 'P (k, —p)). (79b)

Both. A and 8 are needed for the %z traveling waves
and all eight nonlinear equations are needed for a de-
tailed solution of the problem. The eRect of rotation on
the cavity has been included by giving space a pseudo-
index of refraction in this short-wavelength limit of
the form

n=ep+c '(Q xr) tlg+0(Q')

where 0 is the angular rate of rotation, u, is the direction
of the optical path, and I' is the distance from an origin.
This is equivalent for co=1 to a contribution to the
polarizability (e'—1)=2c '[(Q x r) d,l. Justification
for this procedure and modifications for eo/1 are given
in Ref. 7.

If the cavity structure permits a simple separation of
the time and space variables and a normal mode ex-
pansion is made using L 't' expi2~qs/L as basis func-
tions, the field equations may be integrated around the
closed path of length I. to yield the time dependence of
the normal mode with index q. The correction for rota-
tion may be written as

2c 'Q. ds(r x tt, )/L=4Qc —'

X [(enclosed area)/L] cos8=gQ.

8 is the angle between the normal to the plane formed by
the closed optical path and Q, and g is a geometry factor
for the structure. Then the normal mode equations are

2ipp i(dA /dtp)+gQA p= pp iP p(k &o) (80a)

—2ico '(dB,/dt) —gQB,= —pp 'P (k —(g); (80b)

&,(k,pi) is the same as I' (k,pi), with k=2~q/L.
These equations have been examined in some detail

by Beer" for 2, and 8 unequal to zero and A „=8„=0.
Equations (80a) and (80b) reduce to four equations of

11. CLOSED PATH OSCILLATORS AND THE
PHOTON RATE GYROSCOPE

The equations for the electromagnetic fields in a
closed path oscillator~ with a simple transverse polariza-
tion following Eq. (45) are

2i(—dB,/dt)
=ca,B [+gQ+u*+iQ —i b*lB l2—c*lA lpj. (81b)

With A = U expel and 8,= V exp~v, these reduce to the
same form of nonlinear equations as used in the dis-
cussion of Eqs. (60a) and (60b) and shown in Fig. 3.
The stability equation for the coexistence of clockwise
traveling waves is given by Eq. (61) and the amplitudes
of these waves by Eqs. (62a) and (62b) with u" replaced
by (u"—

Q '). The linear gain coefficient is given by
Eq. (28a) and u= —g(0,0) .

c=2b=g.(0000).
For extreme Doppler motion only the (G2) integrals are
appreciable and

b=const(1', p)
'

c= const['t(pig p
—or c)+Fg bj (84)

Clockwise and counter-clockwise traveling waves can
coexist in this closed path maser if b"/c")1.This occurs
for large Doppler broadening if the cavity is tuned away
from line center co,b. Line center is a saddle point. Atoms
at rest are unstable at the intersection in Fig. 3. The
frequency separation between clockwise and counter-
clockwise traveling waves is

~cw ppccw=Q+U=(OcgQ, (85)

and in this ideal system does not "lock" to a single fre-
quency. The effects of non-ideal conditions are con-
sidered in some detail in Ref. (21).

The general case of arbitrary magnetic 6eld and
polarizing mirrors or Brewster angle windows requires
the use of all eight equations implied by Eqs. (79a) and

(79b) and appears to be a rather formidable problem.
The discussion of these simpler examples gives some
measure of the problems involved.

12. PRESSURE AND OTHER LINE
BROADENING

Equations (10) and (11) or (28) and (29) may be
corrected for pressure eRects in an approximate manner

by regarding the energy level spacing co & to be perturbed
during th.e collision. The statistical average of the per-
turbing eRect can be taken into account in part by
making co, & complex. Changing I'

p in Eqs. (28) and
to (29)

r+pp b (86)

From Eq. (A5) in Appendix I, b and c depend on
g(0000). There is no dependence on the m„mp, etc. ,
coefficients and the sum over m, is just (2j,+1) times
the frequency dependent integral. For atoms at rest

(Gi) = (G2) = (Gp) and
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can be used to introduce a pressure broadening term into
the theory. "'

An inhomogeneous magnetic field over the maser
length could be used to broaden tbe line. In this formu-
lation atoms in spatial element dr would respond to the
magnetic field g at their position in the tube. The
overall gain of the amplifier would depend on an inte-
gration over the length of the tube and would incorpo-
rate the variation in the gain introduced by the magnetic
field variation of cv(m, mb) cu —over the amplifier length.

C3. CONCLUSIONS

The phenomenological integral equation for the den-
sity matrix which is given by Eq. (3) has provided a
useful model for describing the response of an atom to
an external perturbation. An iteration solution of this
integral equation is used to obtain the first and third
order contributions to the electric polarization vector
and these are given by Eqs. (10) and (11).Equations
(10) and (11) are suKciently general that they can be
used in the discussion of a multimode problem in which
the modes are well separated in frequency or are within
the natural width of the line and is more general than
the development of Lamb. ' These equations are valid
in arbitrary magnetic field. For almost plane mono-
chromatic traveling waves in the ~s directions, these
equations permit the introduction of a macroscopic
electric polarization for a volume element dr and Eqs.
(28) and (29) give the first- and third-order contribu-
tions to the electric polarization for arbitrary magnetic
field direction. A fi'rst- and fourth-order tensor are
introduced for the electric susceptibility and forms a
convenient notation; but in a given problem it is more
convenient to substitute Eqs. (51a) and (51b) directly
into Eq. (29). The coeKcients of the electric field are
regarded as slowly varying functions of position and
time and the electric field of the waves and the electric
field in the polarization are made self-consistent by
direct substitution into Maxwell's equation. This leads
to the very general Eqs. (52a) and (52b) which may be
used for the discussion of amplifiers, oscillators in which
normal modes are defined, and in oscillators in which
normal modes are not obvious.

This phenomenological model for the macroscopic
polarization of a gas has many features in common with
earlier approaches. Hanle" was the first to apply
quantum theory to problems involving specific polariza-
tions involved in the various Zeeman transitions and
Sreit' gave a thorough discussion of dispersion for
atoms with byperfine structure and in magnetic fields.
Coherent excitation and its eRects on spontaneous emis-
sion were considered by Breit and used to discuss the

"A. Szoke arid A. Javan, Phys. Rev. Letters 10, 521 (1963).
~'H. Margenau and M. Lewis, Rev. Mod. Physics 31, 569

(1959).
'8 W. Hanle, Z. Physik 30, 93 (1924).
29 G. Breit, Rev. Mod. Phys. 5, 91 (1933).

results obtained in level-crossing experiments. "Similar
considerations were used in the discussion of double
resonance. " The coherence in these experiments was
between the closely spaced magnetic levels and in the
theory developed in this paper correspond to the growth
of second-order density-matrix elements p"'(m, m, ') or
p'"(mb mb) .This second-order density matrix gives rise
to the third-order contribution to the atomic polariza-
tion and modifies the stimulated absorption or emission
and spontaneous emission. Only the aspects related to
stimulated emission were discussed in this paper.

Since all of the problems of interest were in the non-
linear region only a limited number of simple examples
could be considered in detail. In these simple examples
and for ideal experimental arrangements, the relation-
ship between the experimental observations and the
atomic properties were discussed. .These examples were
not pursued to their full extent, since tbe correlation of
a nonlinear theory with an experiment is better done in
a paper in which these aspects are known before the
experiment and are subject to study during the experi-
ment. Even so, reasonable agreement was obtained on
the magnetic eRects observed in tbe experiment of
Hotz" with the linear amplifier, Culshaw and Kanne-
laud4 and other observers for the linear oscillator, ""
and other aspects of linear oscillators. ' "

A surprising aspect of this study was the instability
of j = jb or F =Fb maser amplifiers or oscillators to
the two states of circular polarization. Thus a linear
amplifier with j = jb ——2 prefers to amplify either right
circular or left circular polarization and will quencb one
or the otber of the two states of polarization. No experi-
mental check is available for this conclusion.

The most complex problem to consider is the closed-

path maser which has clockwise and counter-clockwise
modes and two states of polarization for each of these
modes. The formulation of tbis paper is adequate to
treat this problem and eight nonlinear equations result.
This was studied for an ideal system with linear polari-
zation and it was shown that in such a photon rate
gyroscope the clockwise and counter-clockwise traveling
waves do not "lock" for large Doppler broadening and
the beat frequency between the two waves is propor-
tional to the angular rate of rotation Q.

Although the formulation of this paper includes

hyperfine efFects by making the modifications indicated
in Sec. 6, it again appeared that the discussion of such
examples would be better treated in detail with the
appropriate experiments. For large hyperfine splitting
most of the previous discussions are applicable by

' F.D. Colegrove, P. A. Franken, R.R.Lewis, and R. H. Sands,
Phys. Rev. Letters 3, 420 (1959).

"G. Brossel and F. Bitter, Phys. Rev. 86, 308 (1952); J. N.
Dodd, W. N. Fox, G. W. Series, and M. J. Taylor, Proc. Phys.
Soc. (London) 74, 789 (1959); J. P. Barratt, Proc. Roy. Soc.
(London) A263, 371 (1961).

"L Tobias, M. Skolnick, R. Wallace, and T. Polanyi, Appl.
Phys. Letters 6, 198 (1965).
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changing j to F. For small hyperfine splitting the trace
must be modified as indicated in Eq. (42) and all u, b, c
coefficients must include the effect of these additional
sums.

Very little consideration was given to the effect of the
variation of the electric vector or of states of polariza-
tion across the maser beam. Since the general equations
were developed for a spatial element dr, these effects
can in principle be taken into account as the electric
polarization or susceptibility is integrated over the
spa, tial normal mode of the cavity.

APPENDIX I
The transformation between two complex vectors

expressed in terms of the spherical basis set are given by
the D~p"' or D(M, p; nPy) coeflicients and the trans-
formation is of the form

A,ir=D*(M, p)A p. (A1)

Repeated indices are summed throughout. These co-
efBcients are elements of a unitary matrix and obey the
usual rules for a unitary matrix,
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The elements of D(Mp) are"

D(+ +)=D*(——)=-', (1+cosp) exp'(n+y);
D(+ —) =D*(—+)=-', (1—cosP) expi(n —y);
D(0 +)= —D*(0 —) =2 '~' sinP expiy',

D(+—0) =D*(—0)= 2 '~' sinP expin
and

D(00) =cosP.

A more general transformation from any two canoni-
cal states of polarization n to the M scheme is needed.
This is readily accomplished by transferring the states
n= 1, 2, 3 to the spherical basis p=0, &1 and then to
the M basis. Once done, it is most convenient to use a
single unitary matrix for the transformation. Repeating
Eq. (50), the transformation is

Abr=D*(Mp)Ap=D(Mp)U*(pn)A =S*(Mn)A . (A3)

D, U, and 5 are unitary matrices and 5 gives the direct
transformation. Since the wave is transverse the com-
ponent of A with n=3 or p=0 is taken as zero. If n=3
is 2', and Z is along x, the spherical bases vectors are
related by D(M,p; 90', 90', 180'). U(p, n) relates p and
x, y. The elements of the combined operator is quite
simple and 5(&, x)=0, 5(0,x)=1, 5(&, y)=%2 '~',

S(0,y) =0, and S(M,s) is not used.
Following the transformation given by Eq. (A3) and

noting that A~t transforms as

A~t ——(—)~(A br)*= (—)~LS*(—M, n')A
= (—)~5(—M, n')(A )*, (A4)

D*(M,p) D(M'p) = 6(M,M'),
D*(M,p)D(M, p') = 8(p,p') .

(A2) the general electric polarization vector may be written
in terms of the canonical states of polarization 0. as

e0
—'P -(k,(o) =5(—M'"n'")5*(—M'"n)g( —M"', —M'")A

+(—)~'5(—M'"n'")5*(—Mn)5( —M'n')5*( —M"n")g,(—M"', M, M', —M"—; k,(o)A (A )*A "
+( )'~"5( M"'n—"')S*( —Mn)S*(M'n')—S(M"n")yb( M'", M, M', M—"—; k,co)A 8 (8—-)*
+ (—)~5(—M"'n'")5(Mn)5'(M'n')5'( —M"n")g,(—M"' —M M' —M" k ~)(B.)*B;A.~ . (As)

This is written out in detail to emphasize the diGerences
in the transformations for the tensors g„gb, and g,.
The direct transformation of F~ to F using Eqs. (51a),
(51b), and (29) seems more convenient.

Hr=kSJ I—M.S, (A6)

then the energy-level splitting in magnetic fields which
are weak relative to the hyperfine splitting is given by

~(F.mp. ,Fbmp, ) co.b-
=-'@.LF.(F.+1)—j.(j.+1)—I(I+1)7

—k@bLFb(Fb+ 1)—jb(jb+ 1)—I(I+1)7
+(yp.mp. Vpbmpb)8 (A7)— .

APPENDIX II
If the correction to the Hamiltonian for the hyperfine

splitting and magnetic field is written as

The p&'s are defined by the reduced matrix elements

&vp = —(2F.+1)-"'(j».ll ~"'llj».) .

BR is a first-order tensor operator and in weak fields is
proportional to the total angular momentum F and the
constant of proportionality is given by the p's.

In strong magnetic fields corresponding to the
Paschen-Back effect the quantum numbers (m,mr)
replace (F,mp, ).Optical transitions occur between levels
with the same mq values and

(o(m.mb) —(o.b ——(y.m.—7bmb)8

+(S.m.—Sbmb)mr (A9)

gives a typical term. Equation (40) follows by omitting
the hyperfine term which is regarded as small compared
to the term depending on the magnetic field. y, and yq
are defined by the reduced matrix given in Eq. (39).
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It is apparent from the equations for the reduced matrix
elements that

Ap=gpg ~ (A10)

where tts is the Bohr magneton and g is a constant
usually between —,

' and 2.
Pote added irt proof Th.e conditions which were placed

on F and X in the integral formulation which is given by
Ecl. (3) are more restrictive than necessary. C. P. Yang
and C. V. Beer have shown that an integral solution of

Etl. (2) exists if a part of l' commutes with Ho. Then
Eq. (2) has the integral solution

p(t) = ds T+(s)

X (h+L(V/'t't —-', 1' )p —p(&/'Pt+-, '& )$) ( —.)T ( ),
where T(s) = expL —(—', I'o—iPt 'JIo)sf. No restrictions
are placed on X and FI, and Fo)0 is sufhcient.
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2"P 3"P and 4"P States of He a11d the 2'P State of Li+

B. ScHIPF) H. LIPsoN, C. L. PEKKRIs, AND P. RABIN0%'ITz

Departmertt of Applied Mathematics, Weismartm Irtstitute of Sciertce, Rehoooth, Israel
(Received 9 June 1965)

A method is outlined for calculating nonrelativistic eigenvalues and wave functions for a two-electron
P state of odd parity, and for evaluating the mass polarization and all of the relativistic corrections, apart
from the radiative terms. Calculations have been made for the low-lying P states of He and the 2'P state
of Li+ using up to 560 terms in the expansion of the wave function. The nonrelativistic eigenvalues converge
to within an accuracy of from 10 cm ' to 10 ' cm '. The values of the mass polarization and of the relativ-
istic corrections converge more rapidly than this, so that the total theoretical ionization energy is esti-
mated to be correct to within an error of not more than 10 2 cm ', i.e., considerably less than the experi-
mental error, in the case of all of the states considered. The difference between the theoretical and experi-
mental term values is in no case greater than 0.1 cm in absolute magnitude, and is presumed to be due to
the contributions from the radiative terms, which have not been included in the calculation. The term
value obtained for the 2'P state of Li+ confirms the identification of the line at 9581.42 A in the Li+ spectrum
as belonging to the 2'S-2'P transition.

I. INTRODUCTION

N this paper, we outline a method for determining
~ - two-electron atom P-state term values in which the
contributions from the mass-polarization and all of the
relativistic corrections, apart from the Lamb shift,
have been taken into account. Computations have been
carried out for the low-lying P states of helium, and the
2'P state of Li+, and in each case the results converge
to an accuracy exceeding that of the experimental
measurements. The same methods have also been used
to compute the 6ne-structure splitting of the 2'P and
3'P levels of helium, the results for which have been
published previously. '

The classical papers of Breit on the angular depend-
ence of a two-electron P-state wave function' and the
fine-structure splitting of the helium 2'P level' appeared
soon after the basic work of Hylleraas on the ground
state. Subsequent calculations for the P state were
mainly performed with the object of determining the
fine structure of the 'P levels, and in contradistinction

to the case of the 5 state, no complete calculation of the
relativistic corrections for a two-electron P state has up
till now been made, no doubt in view of their greater
complexity. We shall therefore give considerable de-
tail in the following exposition.

At the time when the work to be described below was
started, the most accurate calculations for a two-electron
P state were those of Araki et al. ' and of Traub and
Foley. ' The latter authors were able to obtain a theoreti-
cal ionization energy within 15 cm ' of the experimental
value for the helium 2'P state by optimizing the values
adopted for the screening constants for the two elec-
trons, and by including 18 terms in the expansion of the
wave function. We set out with the aim of computing
ionization energies for two-electron P states to an
accuracy which would at least match that of the most
recent experimental data' ' (&0.03 cm '). The method
used to determine the nonrelativistic eigenvalues and
wave functions is an extension of that developed by one
of us for excited S states, ' the wave function being
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