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A general approximate method for computing the cross sections for certain inelastic collision processes is
developed. It is based on the possibility of obtaining, with the use of the impact-parameter method, an
exact expression for the transition amplitude in a special case. The dependence of the cross section on the
parameters of coupling constant, velocity, and energy difference between states is discussed for a two-level

model. Detailed calculations are made of cross section for collisions of the type A (sP3/s)+B A ('Piie)+B,
where A is an excited atom of an alkali metal and B is an atom of a noble gas. An Appendix contains a re-

view of the effective long-range interaction of atoms.

I. INTRODUCTION

'HE study of inelastic collisions of slowly moving
atomic or molecular systems has been of consider-

able interest for many years. One problem of this sort
which has received attention is that of sensitized Quo-

rescence of alkali metals induced by collisions with rare-
gas atoms. ' ' In such a process, an alkali-metal atom
(denoted. by A) in an excited state collides with a noble-

gas atom (denoted by B) in its ground state, and makes
a transition to another excited state of diferent j.The
energy difference involved comes from (or goes into)
the kinetic energy of relative motion.

A ('Pets)+B ~ A ('Pt tv)+B.

Our object here is to develop a general method for the
theoretical study of inelastic collisions of heavy particles,
which can be applied to the problem of sensitized
fluorescence as a special case. Our procedure is founded
on the possibility of obtaining a complete solution to the
equations of time-dependent perturbation theory in a
special case, and offers considerable advantages of
simplicity and generality over previous treatments.

Let us consider two general colliding objects, which

we will call A and B. They may be either individual

atoms or molecules, although our specific considerations
here will be devoted entirely to the former case. They
are assumed to be distinguishable. %e are particularly
interested in the case in which A undergoes an electronic
transition, but 8 does not. Moreover, we will ignore the
possibilities of charge exchange, or excitation transfer,
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although similar techniques can be—and have been—
applied in such processes. ' '

Our approach to the calculation of the cross section
will be through the impact-parameter method. " The
relative motion of A and 8 is described classically. Two
additional assumptions are also made at this point:
(1) The energy change in the transition (i't&o) is small

enough so that the change in the speed of either particle
can be ignored, and (2) the elastic scattering, or de-

Qection, of the objects is neglected.
The reaction is considered in the coordinate system

shown in Fig. 1.For purposes of illustration, A is shown

as having a single electron bound to a core. The origin
of coordinates is taken at the center of mass of A, which
is at rest, and the polar axis is chosen to be opposite to
the velocity v of B. The separation of A and B is R(t),
and the origin of time is chosen so that R(0)= p, where

p is the impact parameter.
The interaction of the atoms is described by means of

an effective potential V,ff, which acts to produce
transitions of atom A. This potential is considered only
within a subspace of the Hilbert space of A spanned by
the states actually involved in the transition. (We are
here considering the situation in which 8 remains in its
ground state. ) Let a„(t) be the amplitude that at time t,
A will be in state e. This quantity obeys the differential
equation:

dQ —Z

P(ni V,trim)a„(t) exp( —see „t).
Ch

The sum over m, includes only those states involved in
the transition. The quantity co „is given by

~&77b, n =~m, +n ~

The energies in (2) refer to the states of A when B is
absent. They do not depend on E. The effective po-

' R. McCarroll, Proc. Roy. Soc. (London) A261, 547 (1961).
r E.F. Gurnee and J.L. Magee, J.Chem. Phys. 26, 1237 (1957).
e T. Holstein, J. Phys. Chem. 56, 832 (1952).
e T. Watanabe, Phys. Rev. 139, A1747 (1965).
"N. M. Mott, Proc. Cambridge Phil. Soc. 27, 531 (1931).
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tential V,ff depends on the electronic coordinates of A
and the A-8 separation E.. We can expect that V,gg will
be a sum of terms involving the coordinates of each
electron of A separately. In this case, if the electronic
wave function of 2 is a Slater determinant, the matrix
element will reduce to an integral involving a single
electron coordinate. Thus, Eq. (1) can be regarded as
applying to a one-electron problem.

We cannot solve Eq. (1) in a closed form. An itera-
tive solution can, of course, be given but this is useful
primarily for derivation of the perturbation expansion.
An exact solution in closed form is known only in special
cases. One such solution, for a two-level problem in
which the matrix elements of the potential are inde-
pendent of time, was obtained by Rabi."Another solu-
tion of a two-level problem with no diagonal elements of
the potential and a special ti~e dependence was found
by Rosen and Zener. "We want to propose an approxi-
mate solution of Eq. (1) which is not difficult to evalu-
ate if the number of levels which must be included is
not too large, and which becomes exact in an important
special case. There are other advantages with respect to
previous treatments of this problem which will be de-
scribed below.

Let the matrix Q(t) be defined as follows:

Fzc. 1. Coordinate system for the inelastic collision of atoms 3
and B.Atom A is at rest, and possesses an "external" electron at
r. The polar axis is opposite in direction to the velocity e of atom B.

term in the expansion:

—T (t) = —T(t) T"—'(t)
dt dt

dT
+T T~—'+ +T~—i.

dt
But

Then, using Eq. (6)

dT~/dt=mQ T™1(t)
so that

(d/dt) expL iT)=— iQ e—xpL iT)— (7)

da/dt= —iQ(t) expL —iT(t)] a(—~)= —iQ(t) a(t).

&Q-= ( I
l'.«I m)e-'-- -~. (3)

Further, let u be regarded as the eth component of a Thus

vector a. Then Eq. (1) can be written as

da/dt= —iQ(t) a(t). (4)

Suppose the vector a is known at t= —~. We propose
the approximate solution" of Eq. (4):

a(t) = exp i—Q(t')dt' .a(—~). (5)

Equation (5) is an exact solution of Eq. (4) if, and only
if, the matrix

From this, we see that if Eq. (6) is satisfied, Eq. (5)
is a solution of the differential equation (4). Equation
(5) also obviously satisfies the boundary condition that
a(t) must reduce to the known vector a(—~) as
t ~ —eo. Evidently, Eq. (6) is a sufficient condition.
It is also easily seen to be necessary: If it is not satis-
fied, we cannot commute Q through the factors of T,
and so Eq. (7) will not hold.

One important situation in which Eq. (6) is satisfied
is the following. Let all the elements of Q be proportional
to the same function of time (such that the integral for T
converges), then we have

&. (t)=b„ f(t),
commutes with Q:

[T(t),Q(t) 1=0.
To prove this, we observe that

(—i)"
-pL-'T(t)3=2 LT(t)1-.

sf

(6)

where the quantities b are arbitrary complex numbers.
Then Q (t)=b„ f'(t), with f'=df/dt. Therefore, both
Q and T are proportional to the same matrix, and thus
must commute. We will see below that this situation
occurs in an important case.

Now let us consider the utility of Eq. (5) as an ap-
proximation in cases in which Eq. (6) is not satisfied.

Differentiate this with respect to time. Consider the mth

"I.I. Rabi, Phys. Rev. Sl, 652 (1937)."N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).
"This approximation was suggested by K. Takayanagi, Sci.

Repts. Saitama Univ. , Ser. A 3, 65 (1959); Progr. Theoret Phys.
(Kyoto), Suppl. 25, 1 (1963),

(1) The first term in the iterative solution of Eq. (4)
coincid. es with the first term in the expansion of Eq. (5)
Therefore, whenever &st-order perturbation theory is
applicable, Eq. (5) gives a correct result.

(2) The exponential operator in Eq. (5) is unitary.
Therefore the normalization of the state vector a(t) is
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preserved at all times. No transition probability can ex-
ceed unity. There are, of course, other methods of pre-
serving the normalization of the state vector a(t); for
instance one may take a as computed in first-order
perturbation theory and divide this by the norm of a,
but this procedure does not yield an exact solution in
the special case when (6) holds.

(3) For a two-level system, it is always possible to
evaluate the exponential in (5) regardless of what the
matrix elements of T are. If there are more than two
levels, the exponential can frequently be evaluated using
standard methods: one such example is discussed in
Sec. III.

One further simplification is possible in Eq. (5). We
define a matrix U

U(1) = T(1)—(1/1V) [trT(&)]I

(the dimension of T is X&&N). I is a unit matrix. We
have

exp[ iT]—= exp[ i—U]I[exp( (—i/Ã) trT)]. (8)

The second factor in Eq. (8) contributes only a change of
phase to the amplitude, and therefore may be disre-
garded. Let us assume that the system was initially in
the state j.The probability that it will be in the state e
finally is

-P=
I
~-(~) I'=1(s '~'"')- I'. (9)

With the use of Eq. (9), the cross section for the process
in which A goes from state j to state e is given by

27i'

P I o-(")
I
'dpd4 (10)

0 0

o(j~e)=

The ft dependence is usually trivial.
A particular advantage of the present approach is

that the transition probability I' can never be singular
for any value of the impact parameter. Ordinarily, the
use of interaction potentials proportional to negative
powers of R leads to difficulty in the impact-parameter
method when a perturbation expansion is employed. In
that case, the integral (10) over the impact parameter
will not converge. This makes the introduction of a
lower cutoG necessary. Our method requires no arbi-
trary cuto6.

II. THE TWO-LEVEL MODEL

A. General Considerations

Before we investigate the alkali-metal —rare-gas col-
lisions in detail, we shall examine a simple and general
model in which only two levels are considered. Results
similar to some of those we will present here have been
obtained previously by Bates" and by Vainshtein,
Presnyakov, and Sobel'man. 's Our analysis is, however,

"D.R. Bates, Discussions Faraday Soc. 33, 7 (1962).
5 L.Vainshtein, L. Presnyakov, and I.Sobel'man, Zh. Ek.sperim.

i Teor Fiz. 43, 518 (1962) /English transl. : Soviet Phys. —JETP
16, 370 (1963)g.

The diagonal elements are equal in magnitude but
opposite in sign since the trace has been removed. The
o6'-diagonal elements can be written as S and S* since
U is Hermitian. The square of this matrix is a multiple
of the unit matrix. Fram this, it follows that if we de6ne

p=Ws+ ISIs
we have

ffW S ~-
exp —iI

ESe —W)

(cosf i W—(si n$)/$ —iS(sing)/$
(12)—iS*(sin))/$ cos$+iW(sing)/$)

If we assume that the system was initially in state j. at
t= —, the probability that it will be in state 2 at
time t is

sin'$.
w'+ IsI'

(13)

It is easily seen that for all times
I
fft

I
'+

I as I
'= 1. This

must hold if the original vector a was normalized since
the transformation of Eq. (5) is unitary.

To proceed further, it is necessary to introduce specific
assumptions concerning the interaction V,ff. In general,
this may be a rather complicated function, particularly
if it is necessary to consider close encounters. We shall
restrict most of our analysis to distant collisions, by
which we mean collisions in which tl-;e interaction is
dominated by the smallest negative power of R appear-
ing in V,ff. It will be necessary to consider diGerent
dominant powers of R in the diagonal and o6-diagonal
matrix elements of U, ff in the case of transitions
between levels of different parity. After integration
over the electronic coordinates, the matrix elements

(nI U,ffIm) will have the form

(ff I V,ff I m) = gigt(O, C)/R", (ffWm)

(BI vgff I e) —qsgs(8 c )/R

(14a)

(14b)

in which each g is an effective coupling constant con-
taining, among other things, a radial integral over the
electronic coordinates. The functions g~ and g2 depend
on the angles specifying the orientation of E. We must
now 6nd the integrals S and W. To this end, consider
the integral

This integral is not too diQicult to evaluate. In all situa-

considerably more complete. It is, of course, based on the
approximate Eq. (5). We can write

iW(&) S(t) i
U(&) =I

ES*(1) —W(1)P
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tions of interest to us, the function g(8,&) has the form if n=l. In addition we set qi
——q2. Then we get
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g(8,$) ~ sin'0 cos28f(p) (15b)

2 x~'I'
M, (x)= —

~

&,»(*)
I"(s/2) 2I

(16b)

and x=cop/v. The function E,» is the 'Bessel function
referred to above. M, is defined so that M, (0)= 1. For
small values of x we have

M, (x)= 1—x2/2(s —2)+ (s) 2)

while, for large values of x, 3f, decays exponentially:

~.(x) =2/I'(~/2)(x/2)' ""v

It is obvious that in the detailed analysis of a reaction
cross section, the precise results will depend on the de-

tailed form of g. It is probable that many reactions of
interest in which co is small are dominated by matrix
elements in which k=0. The alkali-metal —rare-gas col-
lisions are of this type. We shall restrict ourselves to the
case k= j=0 from here on. Such restriction is consistent
with the general idea of the the two-level approximation
Moreover, we will ignore f(p). Thus we write

or is a sum of such terms. The function f(g) is of no
concern at the present. The result can be expressed in
terms of modish, ed Bessel functions of the third kind and
their derivatives. With g given by (15b), Eq. (15a)
yields

I I L(~+j+k—1)/2j
f(4)

vp"—' I'p(N+ j+k)/2g
dk

X (—i)' M;~2~„2(x) (16a)
dx~

in which

0 =2K
A'+B' 2

pdp sill' (A'+B')'~'
kvpn

—1

2 (n —1) I'(1+2/(22 —1)) sin L2r/(22 —1)]
2(x —2/(n-i)

X (A'+B')
A'+B' hv

=const X (qi/hv) 't &

This result is valid for values of 22) 2. It is particularly
to be noted that (for 22) 2) the integral is convergent
without the introduction of any cutoff. This situation
should be contrasted with that which would obtain if
we used ordinary 6rst-order perturbation theory, which
amounts to retaining only the leading term in the ex-
pansion of sins&. In that case, the integration over p
always diverges at the lower limit. In the present situa-
tion, a natural cutoG is provided by the trigonometric
function, which effectively enforces unitarity.

Equation (19) is exact for the two-level model with
co=0, n=l, and no angular dependence. This follows
from the fact that these conditions ensure that the ele-
ments of Q(t) are proportional to the same function of
time. This guarantees that T(t) and Q(t) commute, so
that Eq. (5) holds exactly.

The dependence of the cross section on the coupling
constant and velocity can be accounted for by the
following very simple physical argument (due to M. H.
Johnson).

(1) The rate of change of the amplitude a2 for findin
atom A in state 2 is proportional to V,fq. This interac-
tion is proportional to q/p .

W(~)=q A/hvp' '

S(ee)= (qiB/hvp"
—')3II„,(x),

(17a)

(17b)

da2 U, gg q

dt k hp"

in which A and B are numerical constants whose pre-
cise value does not concern us here.

We can now consider the calculation of the cross sec-
tion. From Eqs. (17), (13), and (10) we have

qi'B'M„ 2'((up/v)
0'= 22r pdp

A2q 2p2(n —il+q 2B2~ 2(~p/v)

(2) The interaction acts for a characteristic time
At= p/v. The change of a2 in this time is

d82
~a2=

kvpn
—1

(3) The cross section is proportional to 2rpe2, where ps
is the value of p which gives has ——1. Thus

Xsin' Lq 'A'p"" "+q B M22222(rap/v))"2
n—1

and
ps= (q/Psv) "&"

0 =2r(q/hv)21&" '&.

It is obvious that, in the general case, we cannot expect
to evaluate this integral analytically. Before we discuss
the formulation of approximate methods or the results
of. numerical computation, we shall examine the or=0
limit in which the integration can be performed exactly

These results may be contrasted with those obtained
by Stuckelberg'6 in an earlier treatment of this problem.
He obtained a result which, when expressed in our nota-
tion, has the following form for small energy diGer-

"E.G. C. Stuckelberg, Helv. Phys. Acta S, 369 (1962).
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ences (h&o).
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~ ~ q3/n(Pg ) (n-3) In/hp
as p —+ 0, then we have to a good approximation

+ p I ~(p,~) I
'~p.It will be seen that his result is in agreement with ours

only in the case e= 3. For higher values of e, his expres-
sion for the cross section vanishes as ~~ 0, in contrast
to our result, Eq. (19),which remains finite in this limit.

(22)
0

We may use Eq. (17) in Eq. (22) for p) b, but not for
P(b. A crude approximation is to set 5=0 for p(b; b
is then a cutoff for the simplest form of the impact-
parameter method.

If S and t/I/" are nonsingular, the conditions leading to
Eq. (22) will be satisfied for fixed q for sufficiently
large ~, and for fixed e for su%ciently small q. In such
cases, perturbation theory actually does apply, as
would be expected, and the Born approximation is re-
covered in the appropriate limit. The situation with re-
spect to the energy difference is, however, not the same.
Because of the presence of W in Eq. (21), it may be
possible to satisfy (21) with P) b for any value of + if
q is large enough or v is small enough.

It is dificult to make a precise statement about the
value of b, but in general it should be of the order of an
atomic radius. On the other hand, it is easily seen that
P as defirred by (21) is of the same order of magnitude
as po. Thus, if a is the "radius" of the atom A, a condi-
tion for the utility of the present analysis is that

B. Relation to Perturbation Theory

It is important to understand clearly the circum-
stances in which Eq. (19) and similar results, to be ob-
tained below, are applicable. The characteristic feature
of the present treatment is the weak dependence of the
cross section on the coupling constant. This appears at
first sight to be in confhct with the expectation that if
the coupling is weak, or the velocity is high, ordinary
perturbation theory should apply. But first-order per-
turbation theory should give a cross section proportional
to (q/hv)' and Eq. (19) does not, no matter how small

q is or how large v is. Thus, Eq. (19) does not agree in
any limit with the Born approximation, which should
hold when v is large. "

The problem here arises from the assumptions made
concerning the effective interaction. It is easily seen
that the Born approximation does not exist for an eGec-
tive potential proportional to E " if e~&2. However,
Eq. (14) is only an approximation, and cannot hold for
small E..

A complete expression for the effective interaction
will not resemble Eq. (14) as R-+ 0. Let us therefore
introduce a parameter b such that Eq. (17) is not a use-
ful approximation if p(b. For p(b, Eq. (17) must be
replaced by another expression whose dependence on

p is quite different. Equations (10) and (13) are still

valid, and we may write in general:

0' = 27I + pdp
0 b W'+ ISI'

(q/h~)'~&" —'&) g (23)

It is possible to construct a simple model which shows
explicitly the transition between perturbation theory
and the regime of Eq. (19), as the parameters are
varied. "All we have to do is to replace the assumed
matrix elements of U,«, given by Eq. (17), by expres-
sions of the form

(n I U, rr I m) q/(r, '+E') "I' (24)

in which W and 5 are determined from (11) as 3 ~~.
Now define a value of p which we will call P by the

condition
m.ro' 8' 1 ( —2 2

2 A'+8' 2 En —1 n 1—(21)W'(P)+
I
S(P,co)

I

' = 1.

sin'LW'+ ISI']r~' (20) Then the analysis leading to the computation of the
cross section may be repeated without difhculty. In
the case co=0, we 6nd a cross section

The arguments have been written in Eq. (21) to em-

phasize the fact that while 5 depends on the energy dif-
ference, and vanishes as co —+~, 8' does not. Next, sup-
pose that P»b. In this case, the approximation in which
the sine is replaced by its argument will not be valid
near P, in which case it will generally be a good ap-
proximation to set b=0. Then Eq. (19) and. similar
results are obtained.

If Eq. (21) is not satisfied for P) h when the asymp-
totic expressions of Eq. (17) are substituted for S and W,
it may be that it is not satisfied for any value of p if the
complete expression for the interaction is used. If this is
so, that is, if S and 8' are actually nonsingular and small

» J. Ql. Frame, Proc. Cambridge Phi1. Soc. 27, 511 (1931).

, —2ifo
I

—1
n —1 )

(25)

in which C is a confluent hypergeometric function, and
the parameter t, is

0
y n—1

0

q(a 2+a')
(26)

If l o is small, the hypergeometric functions may be ex-
panded in a power series, and the result of perturbation
theory is recovered. If, however, t'0 is large, an asymp-
totic expansion leads back to Eq. (19);this condition will
occur when Eq. (23) is satisfied.
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(p (2qC) '/("—')
xp ———

/

vE kv)

Then Eq. (18) may be expressed as

xM'(x)
0 =271

0 IC M x

x ) e—1 -K2+M2(x) —1/2

)&sin' ——
~

2 x) E'+1

(27)

dx, (28)

with x=&pp/r). The subscript /s —1 on M has been

dropped. The result previously obtained, Eq. (19),
follows from Eq. (28) if M is set equal to unity. Except
for the multiplicative factor of (i)/o))', the cross sec-
tion is expressed as a function of two parameters xo and
E. Equation (28) is reasonably convenient for the pur-
poses of numerical calculation of the cross section, and
some results based on such calculation will be presented
below.

However, it is desirable to be able to obtain approxi-
mate results without the necessity for numerical in-

tegration. In order to do this, we observe that for x((xo,
the trigonometric function oscillates with great rapidity.
For such values of x, it is a good approximation to re-

place sin'$ by its average value, s. For x) xp the argu-
ment of the trigonometric function becomes small, and
we can replace sin'$ by P. A similar approximation has
been suggested by Seaton. 's Let us call the value of x
at which we switch between these two approximations
X. We have

/
r)

'- x xMs(x)
-Zx

ko) p E'+M'(x)
XQ

2 (n—1)

+ x '"+'M'(x)dx . (29)
2(E'+1) x

In Eq. (29), X satisfies the condition

1~xp~
"-' E'+M'(X) —'/'-

=k
2(X) K'+1

"M. J. Seaton, Proc. Phys. Soc. (London) 79, 1105 (1962).

(30)

C. Deyendence of the Cross Section on
the Parameters: l= n

Now we shall examine the consequences of the present
method with respect to the dependence of the cross sec-
tion on the parameters q, v, or in more detail, always sup-

posing that Eq. (23) is satisfied, so that Eq. (17) may be
employed without serious error. Although we cannot
give an analytic expression for the cross section for
general values of the parameters, we can still express
Eq. (18) in a form suitable for numerical computation,
and also describe a method for obtaining an approximate
evaluation of Eq. (18) by elementary methods.

Let us first consider the case l=N. We put C'= 2'+8',
E= &/&, q= qi=qs, and define a dimensionless measure
of the coupling:

f q ) s/(&-i) — ( q ) s/(&—i) (ps-

Ekr i kkr)
(31b)

Thus the leading corrections to the cross section are of
order ((p/rt)'o((p=0).

Next we consider the case in which xo is large. In
view of the exponentially decreasing nature of M(x)
for large x, it is legitimate (if KWO) to evaluate the
cross section in this limit by allowing I—+~. Then we
see from Eq. (29) that

where

(nl'
a=md —

i f(K),
k~)

xM'(x)
f(K) = dS.

E'+M'(x)

(32)

(32)

In particular, the cross section is independent of the
coupling constant (it depends, however, on the range of
the force). The corrections to this result are obviously
of order e—~.

Equations (31) and (32) assist us in constructing a
general qualitative picture of the dependence of the
cross section on the parameters describing the process.

(1) Eeergy digere/sce betwee/s the states. If the cross
section is regarded as a function of co, for fixed velocity
and coupling constant, and supposing the inequality
(23) to be satisfied for all o), it is seen that the cross sec-
tion attains its maximum value when the energy diGer-
ence is zero. For e&3, it is Bat as a function of co, cor-
rections being of the order co'. As the energy difference
increases, the cross section ultimately falls off as co '.
It should be noted, however, that the exact solution of
Eq. (1) may contain terms of order o) which Eq. (5)
does not give."

(2) Velocity. Here, we consider the cross section as a
function of velocity for fixed q, M. We suppose that (23)

in which k is a dimensionless constant of the order
of unity.

We consider Eq. (29) in two limiting cases. If xp is
small, X will also be small, and M'(X) will be nearly
unity. Then we can replace M' by the leading terms in
its power-series expansion. The integrals are then ele-

mentary. Next, the expansion for 3P is substituted into
Eq. (30), and a solution for X(xp) is determined by
iteration. We shall not give the details of this calcula-
tion. Including terms of order ((p/v)', we have for rt) 3:

vr(qC)'/(" ') 1 2k' 2 /qC)'/(" ')
1+

2 kkvk) E'+1 s—2 e—3(ksh)

o)' 2k' E'~ 1—2k'
X— + + . (31a)

n' rt —3 E'+1 (E'+1)(/s —1)

We may abbreviate this result by lumping the dimen-
sionless constants together into parameters n and P.
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1.0 this two-level model is shown in Fig. 3, which is based
on the results of numerical computation for a transition
between states with an energy diffference of 0.007 ev.
The behavior is in accord with the discussion above.

In order to be able to analyze experimental results
based on measurements of reactions occurring in a gas
at temperature T, it is necessary to average the cross
section over a Maxwellian distribution of relative veloci-
ties. Since what is measured under these conditions is
usually a reaction rate, we de&ne an effective cross sec-
tion at temperature lby

vo.tt(T) = E(v)v~(v)d'v (34)

0.01
0.10

I I I I I

1 ~ 0

X

I I I I

10.0 ( )s/s
P(v) =

~

— —
~

exp( —Iiv'/2k T) .
k2 kT3

(35)

in which P(v) is the probability of finding relative
velocity u

Fn. 2. The ratio of the cross section for any co and e in the two-
level model to the limiting value 0.0 for co=0 is denoted by 0.R~D
and is shown as a function of the dimensionless parameter Qp.
The curves are labeled according to the value of m, the exponent
determining the range of the interaction potential.

is satisfied for a substantial range of velocities above
threshold. For small velocities, if xp is large, the cross
section is proportional to v'. It attains a rather Qat
maximum, and then decreases, proportional to p

—'I'("—».
For very large velocities, (23) cannot be satisfied and the
cross section ultimately decreases as v ', which is char-
acteristic of the Born approximation.

(3) Couplieg Constant For valu. es of the coupling
constant suffi'ciently small so that Eq. (23) is not satis-
fied) the cross section is proportional to q'. If q is in-

creased until Eq. (23) holds, the cross section then de-

pends more weakly on q, being proportional to q'~&"—').
Finally, for very large q, the cross section approaches
a limit independent of q.

Much of this information can be exhibited graphically
if one plots the ratio of the cross section o Las computed
numerically from Eq. (29)) to the limiting cross section
for a~=0, given by Eq. (19).This ratio is a function of
the Parameters xe and E.It is shown in Fig. 2 for Is =3, 4,
and 6 as a function of xp for E= 1.The results for diGer-

ent values of E are qualitatively quite similar to those
that are shown.

A useful empirical representation of the dependence
of the cross section on these parameters is the following

(for m&3):

p, is the reduced mass of the A and 8 atoms in the gas,
and 0 is the average thermal velocity

v = (8kT/s p)'~'. (36)

whe~~ co is the limiting cross section given by Fq. (19)
evaluated at a velocity vs=(2kT/p)'I', and xv is also
evaluated at this same velocity. When xp' is large, Eq.
(37) reduces to

(38)a,rr(T) = 2o v/yxv'.

D. Dependence of the Cross Section on
the Parameters: l/n

We now return to a discussion of the behavior of the
cross section as determined from Eq. (18) when /&Iv.

I I I

3 0—

CV

2.0

C)

)C

I.O

The averaging can be accomplished with the aid of
Eq. (33), and the additional approximation, valid for
large n, in which v'"~'" " is replaced by v'. The result is

00

1+y(E')xv'
(33)

in w}11cli 0'p is the limiting- cross section given by Eq.
(19),and y is an increasing function of A. '. For example,
if @=6, then y(rs) =0.1'2, and y(1) =0.15. These rePre-
sentations are reasonably accurate for xp&10.

The dependence of the cross section on velocity in

I I I I I I I

0 1.0 2;0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

V (10 CM/SEC)

FIG. 3. A typical cross section in the two-level model is shown
as a function of velocity. The parameters used in obtaining this
curve are vv=6.4X10 "cm'/v'~' vv=8. 8/v'~' (where vis measured
in units of 10' cm/sec) and X=1.
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This situation arises when the dominant powers of E
in the diagonal and off-diagonal matrix elements are
difFerent. Let us first consider the case t = rs+ 1.Our de-

scription will not be as detailed as in the case e= l and we

will consider only a few limiting situations. The rather
important case of transitions induced by ions between
states with an angular momentum difference of unity is
included here. This situation is characterized by v=2,
3= 3. Other circumstances in which t= e+ 1 applies can
be determined from the Appendix. The dimensions of

q1 and q2 must now be diferent. We can still define

dimensionless parameters as follows:

C'=B'+(ar'qs'/v'qr )A, K=arqsA/vq&B

1.0

C3

~~ 0.10
fV

X

I I I i I I I I

~ (2q C) 1 / (m—1)

xp ———
l

vk itv i
(39)

0.01 '

O.l
I I I I I I I I I

1.0
I I I ! I I I I

10.0

t x y
n—1-E2+x2~2(x)- 1/2

X»n' —
l

—
l E'+1

(40)

In order to understand the behavior of the cross sec-
tion as cv —+ 0, we must compare two quantities which

have dimensions of a length.
Let

L& (q&B/hv)'«" —'&-—
Le ——qsA/qtB.

If Lr&)Ls, the diagonal terms of U(t) can be neglected
compared to the ofF-diagonal terms. Then the cross sec-
tion is given by Eq. (19) with A =0.

On the other hand, we can consider the opposite case
in which L2))L1, which means that the diagonal terms
dominate. In this case it does not appear to be possible
to give an exact expression in the limit co =0 as we did in

Eq. (1'9) previously; however, an approximate analysis
similar to that employed in Eq. (29) is still possible.
Instead of Eq. (29) we have approximately

(v) s x x'M'(x)
dx

karl p E'+x'3P(x)

In place of Eq. (28), we have instead (with /III=M r)

(v ' " x'M'(x)
o =2s.

l

— dx
p E'+x'M'(x)

X

The analysis is somewhat lengthy, and we will give
only the result. In place of Eq. (31b) we have to order
(~/v)'

~fqrB'I /qsA'I '"

4(qAi E av i
1+

s—2

where

/qrB) tqsA ~ )arq, Aq'-
1+Prl I

(42)
&qsAJ & &v kvq, BJ

2(m —3) (1+6k'q

3rs E rs —3)
p, =NL(~-2)(~ —3)j-r.

The stronger dependence of the cross section on the
coupling constant will be noted.

Equation (42) applies only when N)2. It will be
seen that when rs=2, the second integral in Eq. (41)
does not converge if we set 3f=1. However, when
m=2, we have simply

FIG. 4. The quantity xp'nnnrr/8 is shown as a function of xp
LKq. (39)j for the case I=2, l=3, %=1.In this case enrprr=p/op,
where 00 is defined as 00——2'.gPB /A'o'.

where

g 2(m—1)

+—
2(E'+1)

x—'"+'M'(x)dx, (41) M. r(x)=e—.

Then for small xp such that Mr(X) = 1, we have

1 I xpq" ' E'+X'M'(X) '"—-
2X (X/ E'+ 1

k being, as before, a constant of order of magnitude
unity.

v. /v)'
o =—

l

—
l

XP—Ks ln(1+XP/KP)
2 karl

X0
Ei(—2X) . (43)E'+1
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Then, after solving for X, we obtain

~(&&BI
I

~ 1——»I1+—
/pi

4k2 t' 2qr(gB~»2)-
Ei/—

n ~ hv'k
(44)

in which we have defined the following symbols

~=kL1+(1+4'')"'j
Akq2Ae

g
2+2

qrB)' qgA q2A)'Ir" "
g2A) qrB hake

k'
+—(45)

e—2

in which k is again a constant of order of magnitude
unity.

III. ALKALI-METAL-RARE-GAS COLLISIONS

We now turn to a quantitative description of reac-
tions of the type

A( PS~2)+B=A( Pi~2)+B

mentioned in the Introduction. "The leading term in the
interaction is obtained from Eq. (A11) of the Appendix,
and is (since the states have the same parity)

V,rr= —2i(n.e'/R')r'(3 cos'8+ 1) (46)

in which cx& is the polarizability of the rare gas atom
and 8 is the angle between r and R. The basis states for
the construction of the matrix Q are the six P levels,

» Other theoretical calculations of reactions of this type have
been presented by J.W. Moskowitz and W. R. Thorson, J. Chem.
Phys. BS, 1848 (1963) and by E. E. Nikitin, J. Chem. Phys. 43,
744 (196S).

It is to be noted that, because of the presence of the
exponential integral function in Eq. (44), the cross sec-
tion in this case becomes logarithmically infinite as
~ —+ 0. Results of numerical calculation for this case
are shown in Fig. 4.

Finally we should consider brieQy the situation in
which n=l+ 1. It is seen from the Appendix that this
situation occurs in reactions between neutral atoms
possessing no multipole moments if the states involved
in the transition have opposite parity. The analysis is
rather similar to that described above. In this case,
however, the characteristic lengths are

Li (qgA/hvk) ——r« -",
L2 grB/qgA. ——

Npw, if L2))Li, we can neglect the diagonal terms, and
return tp Eq. (19) with A=O. But, if LQ)Lz, the di-
agonal terms are important. We will present the result
for this situation in the case or =0.

four of which have j= -,' and two, j= -', . The wave func-
tions for these states are products of radial functions
and combinations of spin functions and spherical har-
monics; these combinations are given by Schi6."
It is a straightforward matter to perform the integra-
tion over the electronic coordinates, and then to cal-
culate the integrals J'„"Q(i)dt required by Eq. (7)
with the use of Eq. (15). The matrix simp1ifies sub-
stantially in the limit that the energy difference be-
tween the states can be neglected (it is 0.002 eV for
Na and 0.007 eV for K). With this assumption, and if
the basis states are arranged properly, the matrix V
defined in Eq. (7) consists of two identical diagonal
blocks:

(47a)

then the 3X3 matrix N~ is given by

1 5/vZ —5~-;
mr= —u 5/V3 -1 —y'2

—5Q-', —V2 0
with

3x ckgg

&")
160 hap'

(47b)

exp( —iU) = S exp( iA)S+— (49)

The matrix exp( —iA.) is diagonal. If the elements
«A are X 8-, then the elements of exp( —iA)
exp( —i~ )8 .. The eigenvalues and eigenvectprs of L'
as given in (47) can be determined without diff cuity,
since the secular equation factors. A straightfprward
computation gives

exp( —

iver)

0
l~

exp( —ili)) (50a)

I. Schi8, Quarts 21Iechaeics (McGraw-Hill Hook
Company, Inc. , New York), 2nd ed.

p 19557 p 291.

in which (r') represents the average value of r' in the P
state, computed with appropriate radial wave func-
tions. The basis states may be characterized by giving
the values of (j,m;). For the matrix of Eq. (47b) these
are, in order (~3,23); (2, —2); and (—'„—-,'). An identical
matrix connects the states (—'„—s3); (2,-', ); and (-'„-',). It
will be observed that only states with Am;=~2 are
coupled. This is a consequence of the assumption that
~=0 The matrix elements connecting states with
Dm;= ~1 are of order cu/v. A nonessential dependence
on g in Eq. (47b) has been discarded.

We must determine exp( —iU). This is conveniently
done by 6rst obtaining a unitary transformation 5
which diagonalizes U.

US=ST,
where ~ is the diagonal matrix of the eigenvahies pf L'
and 5 is constructed from the normalized eigenvectors
of U. Then we have
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in which

4ia —Gia (—1/+12) Le4"—e "'j (1//6) f
e4"—e "j

(—1//12)Le4' —e P' ]
exp( —igr) =

2 csin+ 1eiis+ r e pi a—1

31»

~4ia &
Gia

( /v' )L "'— ygezia
3

~4i a e—6ia-
i

Le
& ia+ e4i u+ e—6 isj

in which

3~ irnes(rs) sip

0 3/2-+1/2
80 Psv

(51)

pr'(1+4si'+5'")
C= = 1.95. (52)

45I'(7/5) sin(s /5)

The cross section for the rs—+ —,
' transition is just twice

that given in Eq. (51).
The cross sections given by Eq. (51) have been evalu-

ated for collisions of sodium and potassium atoms with
argon and helium. Self-consistent-field wave functions
were used to evaluate the matrix element (r')." We
give below the values of the cross section evaluated at
a velocity

t = (2kT/iu)'Is

in which the temperature T is taken as 450'K, and p, is
the reduced mass of the interacting atoms. This tem-
perature is close to that existing in the experiment of
Lochte-Holtgreven. s Since we have not computed the
cross section for values of &p/v/0, we cannot perform
the thermal averaging discussed in Sec. II. The results
are given in Table I, where they are compared with the

TABLE I. Cross sections for alkali-rare-gas cross sections:
comparison of theory and experiment. (All cross sections are
given in 10 "cm'.)

Observed:
Observed: Chapman Observed:

Jordan and Krause Seiwert
Calculated (Ref. 2) (Ref. 1) (Ref. 4)

Na-He
K-He¹Ar
K-Ar

Na-He
K-He
Na-Ar
K-Ar

2.2
2.5
6.6
7.8

4.4
49

13.2
15.6

~(2 ~ s)
4.1
5.3
6.5
3.4

~(p ~p)
7.2

10

"L. Biermann and K. Lubeck, Z. Astrophys. 25, 325 (1948).

The cross sections are obtained from the appropriate
matrix elements according to Eqs. (7) and (8). The
integration over p is performed as in Eq. (19).We then
sum over the final states and average over the initial
states. We obtain for the transition ~ ~

experimental measurements of Jordan, ' of Chapman
and Krause, ' and with Seiwert's deductions' from the
measurements of Lochte-Holtgreven. ' The results have
been obtained with the use of the following numbers:

o.Ar=16.3X10 "cm3)

(r')N. ——40.1up',
&He =2.1-X10 cm

(r') K ——52.0ap'.

It is seen that the calculated values are in moderate
agreement with the experimental results. Closer agree-
rnent is not to be expected since the computations are
based on the assumption that co =0, on the approximate
solution of Eq. (5), and thermal averaging has not been
performed.

Our result that the cross section for the ss —+ —', and the
—,
' ~ —,

' transitions are in the ratio of 1 to 2 is an exact
consequence of the impact-parameter method, and is
independent of a11 specific assumptions relating to the
interaction and of the approximate nature of Eq. (5).
This may be seen from the following argument.

The state vector at t= ~ can be obtained from that
existing at t= —~ by a unitary transformation, even
though this will not generally be given by Eq. (5). The
elements of any eXrs unitary matrix U satisfy

j=l j=l

The desired result follows from this statement w'hen the
cross sections for the two processes in question are
written out in terms of the matrix elements of the
transformation.

It follows that, in order to obtain a value of the cross-
section ratio different from 2, we must go beyond the
impact-parameter method; that is, we must treat the
relative motion of A and 8 by quantum mechanics. A
rough estimate of this effect indicates that the ratio of 2
will be reduced by a factor of the order of 1—(hip/kT).
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APPENDIX

The principal objective of this paper is to describe a
method for computing cross sections for inelastic col-
lisions of atoms and to apply this method in a simple
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Object 8 possesses

Charge Qg
Permanent dipole moment p~
Quadrupole moment D~
Polarizability (B is

spherically symmetric)

Matrix element
same parity

xi=0, 2

eQe(r')/R»
epe(r')/R4
eDe(r )/R'

~»(r')/R'

Matrix element
opposite parity

zl =1
eQe(r)/R'
cps(r)/R'
eDe(r)/R'

o.ee'(ra)/R'

a The matrix element between two s states falls off exponentially.

TABLE II.The dependence of the matrix elements relating to an
electronic transition of atom A interacting with an object 8 is
given. The quantity (r") is a matrix element of the eth power of
the electronic coordinate between the states. All angular factors
and vector or tensor indices are omitted.

The dominant interaction between two atoms A and
8 depends on whether the objects possess permanent
multipole moments, and on whether the transition of
interest occurs between states of the same or of opposite
parity. In order to include the case in which 8 is a
molecule, we have also considered the case in which 8
has a dipole moment. The results are presented in Table
II; we will discuss the derivation below.

Let A and 8 be characterized by charges QA, Qjj,'

instantaneous dipole moments pA, yB, and quadrupole
moment tensors DA;, and D~;j. If the coordinates of
the electrons on atom A are denoted by $, (we do not
write the electron number explicitly), then

example. Reactions with large cross sections will

generally be dominated by the behavior of the inter-
action potential at large atomic separations. Applica-
tion of the model presented in the main text requires
knowledge of the dominant (least negative) power of R
in the diagonal and oR'-diagonal matrix elements of the
interaction. For this reason, we want to review here the
determination of the long-range interaction. Although
this material is not at all new, the ideas having been
developed 35 years ago, we feel that it is desirable to
present a discussion of the interaction in order to have a
reasonably complete treatment.

The sum includes all electrons of A. Similar expressions
are valid for B. Octupole and higher moments are
neglected.

The interaction potential V between A and 8 can be
expressed as a series of interactions between the various
instantaneous multipole moments. The coordinate sys-
tem is shown in Fig. 1, and the components of the vector
R are denoted by x;. It is assumed that A and 8 do not
overlap. We include interactions up to quadrupole-
quadrupole. Then we have

V=
QAQB (Q' pAB, i QBpAi)&i , (QADB, ij+QBDA, ij)&i&j

+ +3
R R' R'

~PA, iPB,i PA,iPBj i&j) (PA,jDB,ij PB,jDAij)&i , PAkDBij , PB,k, DAij)&i&j&k,—3 +3 2 —5
i R~

R' R"

2+A, ijDB,ij DA. ,ijDB,jk&i~'Ij; DA, ijDB,kl&i~j &k~l—20 +35 + . (A1)

Since R varies with time, this interaction is time-
dependent, and may cause A and 8 to undergo transi-
tions. To describe this process, we expand the wave
function for the A csystem in term-s of product wave
functions for A and 8 separately. Let f„(A) denote the
time-independent wave function for state e of atom A;
similarly, fj(8) tbe wave function for state j of object
B. We neglect exchange eRects and write a general
wave function for the A-8 system as

+(A,&)=2 - (f)lt-(A)lt j(&) '""", (A2)
n2

where &e;=h 'pE~, A+X;,jjj. By standard methods,
the coefficients a j are found to satisfy the equation

dc ' z

P(rsj~ Ulmk)a k(f)e *"-'-j'i, -
(A3)

with co ~, ,——co ~
—or j. The interaction potential V is

given by Eq. (A1).

We suppose that atom A has some low-lying excited
states, and we are concerned with transitions which
occur among these. We shall assume that 8 does not
have any low-lying excited states, so that it will remain
in its ground state. Therefore, we are interested in the
matrix element (jz0

~

V
~
rrj0).

If 8 possesses a permanent dipole moment, the ex-
pectation value of rB will not vanish. Hence, if the
m-m transition of A is allowed, the dipole-dipole term
of (1) will give the leading contribution to the matrix
element. This is of order R '. However, if the m-e
transition of A is optically forbidden, the leading con-
tribution will come from the dipole-quadrupole inter-
action which is of order R—'. If 8 has a quadrupole
moment, but not a dipole moment, the leading term is of
order R 4 for an allowed transition, and R ' for a for-
bidden one. We will not consider higher moments.

However, suppose J3 has no multipole moment. This
will be the case if, for instance, 8 is a noble-gas atom. In
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this case, we must work to second order in the perturba-
tion as is customary in the theory of the Van der Waals
force.""In order to do this, we divide the levels of the
two-particle system into two groups: Group 1 includes
those levels of A between which real transitions occur,
plus the ground state of 8, while group 2 includes all
other levels of the system which are only virtually ex-
cited. It is necessary for tbe validity of the analysis that
all levels in group 1 be well separated in energy from
any of those in group 2. This requirement may be ex-
pressed somewhat more precisely by the statement that
if m~g~k~~~ are any states in group 2, while e~g~0(~~
are states of group 1, then oo &, &)any frequency oc-
curring with appreciable amplitude in V(R).

We shall assume that this requirement is satisfied,
and that the amplitudes of states in group 2 can be de-
termined by first-order perturbation theory. A standard
calculation then shows that we may replace Eq. (A3) by

dC&p Z

Pg, m,

(No] v~qr)(qi~ v~mo)

COmp, j
&&mo, no&& o(1) (A4)

in which the sum over m includes only states in group I
and the sum over j~&)l(z) includes all states in group 2.
This result is, of course, well known, but it is useful to
understand the conditions under which it applies.

Inspection of Eqs. (A1) and (A4) leads to the ob-
servation that the leading terms in Eq. (A4) will be of
order R ' since they arise from second-order treatment
of the dipole-dipole interaction. This was to be expected
since we are dealing here with the Van der Waals inter-
action between two atoms. The next term in the series
is of order R r, and arises from cross terms between tbe
dipole-dipole and dipole-quadrupole interactions. The
term of order R may be expected to dominate if states
m and e are of the same parity, whereas if they have
opposite parity, the leading contribution will be of
order R ~.

We can define an effective potential which acts on the
states of atom A falling in group 1 by

(~ol vl qi)(qual vlmo)
(n[ v.„[m)=p

j.l ~mp, jt
(AS)

in which tbe sum includes states in group 2. Substitu-
tion of (AS) into (A4) converts (A4) into an equation
resembling (A3) except that only states of A in group 1
are included in the sum

d+n
g(N~ V~m)a (t)e—'"" '.

dt
(A6)

Here u„=a„o, oo,„=co o o, etc. This is Eq. (1) of the
main text.

~' R. Eisenschitz and F. London, Z. Physik 6Q, 491 (1930).~ H. Margenau, Phys. Rev. 38, 747 (1931).

(A9)

and the sum in (A9) includes all the occupied one-
electron states of B. Tbe sum in Eq. (AS) includes all
electrons of A. These electrons have coordinates $, 8, P
in the system mentioned above.

The polarizability of 8, n&, is determined by consider-
ing the change in energy of 8 in a uniform Geld of
strength Ii. Let the perturbation be

v~ —e Q p.].i&i

To second order in Ii, the change in energy of 8 is
given by

(ol v. l~),'nor F'=P—
+p, B—Ej,B

(A10)

It is now assumed, and again, this is only an approxima-
tion, that the energy denominator can be replaced by
the same constant dE~ which appears in Eq—. (A7).
Then we obtain

—sror/ps= —(gE/) r(0~ Vi
~
0)= sre p (r~ )—

We can give an approximate evaluation of V,f~ in
terms of the polarizability of 8. For this purpose we
suppose, following Margenau" that the energy de-
nominators which appear in Eq. (AS) can be replaced
by a constant. This constant characterizes the energy
spectra of the atoms in an approximate way. There are
two interesting cases:

(1) If the excited states of A which contribute to
Eq. (AS) are of low energy compared to the excited
states of 8, then we set Aco p,,~= —AE~, where DE~ is a
characteristic excitation energy of B.

(2) If the spectra of A and B are similar, with ex-
cited states spaced more or less equally, then her p, &

= —26E~.

We will analyze case (1) here; the result for
case (2) can be obtained at the end simply by multi-
plying Eq. (A11) by —,'.

We can now write Eq. (AS) as

(rI,
~

Vorr
~
m) = —(1/&Eii)(eo~ V'~ mo). (A7)

To obtain a more explicit result we take (here only) the
s axis to lie along R, and insert Eq. (A1). Only the two
leading terms are retained. A straightforward, but some-
what lengthy calculation gives, if exchange terms are
neglected

e4(r~') —(
('s

( U 0
~
oN) = P (

e g'(3 cos'8+ 1)
3AEeRo

12@cos'8
+ rN i (AS)

R
in which
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We solve this for (re') and insert the result into (AS).

ntse
(st~ V,ff~sss)= ——,

' P) I P(3cosso+1)
Rs

12/
+ cos'8 m

~

. (A11)z j
This result is used in the main text )Eq. (46)] in

discussing the interaction of an excited atom of an
alkali metal with one of a rare gas. Evidently, our
assumptions about the energy spectra of the atoms

should apply in that case. It is interesting to note that
our expression for the eGective potential acting on A
can be derived classically by determining the change in
energy of 8, regarded as a lump of polarizable material,
in the presence of A, which possesses instantaneous
dipole and quadrupole moments.

I"inally, we observe that if A is described by a de-
terminantal wave function, nonzero matrix elements
exist only between states which differ by the occupancy
of a single electron state. Thus, we may use the symbols
m, e to refer to one-particle states of A without am-
biguity, and this is done in the main text.
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The characteristic E x-ray yields are measured in Sn, Te, Ce, Sm'4', Sm'" Sm'", Gd' ', W', and Pb,
by bombarding them with a particles of energy 4 and 3 MeV. No excess of x-ray yield has been observed in
the atoms of deformed even-even nuclei, when the observed data were corrected for the x-ray contribution
due to internal conversion by using the theoretical values of E-shell internal-conversion coefficients. The
observed variation of the number of X-shell vacancies per microcoulomb with the atomic number indicates
that the E2 internal-conversion coefficients and also the probability for X-shell ionization are unaffected
by nuclear deformation.

I. INTRODUCTION
' "N the earlier measurements' of E-shell ionization and
~ - Coulomb excitation by bombardment with o. parti-
cles, a larger characteristic E x-ray yield was observed
in atoms of deformed even-even nuclei. It was concluded
from these measurements that this larger E x-ray yield
was due to higher internal-conversion probability which
was thought possible due to some unknown effect of
nuclear structure on the internal-conversion process.
Several measurements' —4 of the E-shell internal-con-
version coeScients supported the above conclusion, and
an anomaly between the experiments and the theory
was reported to exist. As the transitions (2+ —& 0+) in-

volved in these cases are pure E2 in character, it was
dificult to explain the above discrepancy by taking into
account the finite-nuclear-size effect' and the dynamic

effects of nuclear structure. ' The recent 0.1, measurements
with improved techniques carried out by us~ in eight
deformed even-even nuclei do not seem to indicate any
discrepancy between theory and experiment. This has
been supported by several other recent measure-
ments 8—lo Hpwever, Hamiltpn p) g~ u ppjnt put
possibility of some nuclear-structure effects in the E2
conversion process in deformed nuclei from their meas-
urements of particle parameters for such transitions.

In view of the above situation regarding the E2 con-
version process we have carried out the measurements
of E-shell ionization by the impact of 4- and 3-MeV
n particles in Sn, Te, Ce, Sm', Sm'", Sm'", Gd'" %'",
and Pb. The measurements on the isotopes of Sm, viz. ,
Sm 4, Sm 5 and Sm, have prpvided a gppd cpmpari-
son of the characteristic E x-ray yields in atoms of
spherical and deformed nuclei.
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