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between grid and cathode was gratifying since it served
to validate the 1()nger lifetimes reported previously'
using only the triode. Such a reinforcement in confidence
in the triode is desirable since it is so much more Qexible
a device, and we expect to use it solely in future
work.

Above the saturation state expected when full
blockading of the 3'I'-j'S transition sets in, a decline
from saturation occurs as density is further increased.
This may perhaps be explained by the hypothetical
process of molecular formation in collisions between 1'S
states and the 3'I' states.

The cross section for this process would have needed
to be 2.0)(10 ' cm for formation from the 3'P state
compared with 2.7X10 ' cm' as found by Fowler and

DuKendacks (their Table II contains a computational
error) and with a value of 2.0X10 's deducible from
Hornbeck's measurements' on the assumption that the
formation cross section is the same for all states.

In the course of these measurements, additional high-
pressure data were obtained on two other transitions:
3sD-2'E at 5876 A and 4'D-2'P at 4921 A. At 20 mm Hg
these lifetimes were 56 nsec and 42 nsec, respectively,
and at 44 mm Hg they were 46 nsec and 34 nsec. The
5876 A is down considerably from the 200-nsec value
obtained at low pressures, but the 4921-A lifetime is
within the experimental error of the 35-nsec value
observed in a low pressure.

' R. G. Fowler and O. S. Duffendack, Phys. Rev. 76, 81 (1949).
e J. H. Hornbeck, Phys. Rev. 84, 1072 (1951).
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Recently Glauber has described the properties of coherent radiation fields, and has constructed the
density matrix of the field in two simple cases: (1) The radiating system is a classical radiator and no re-
action is considered; (2) the central-limit theorem applies to a collection of radiators. This paper investigates
other simple "almost" exactly soluble problems, in which a quantum-mechanical two-level system interacts
with a quantized electromagnetic field originally in a pure coherent state in a single mode. The erst-order
correlation function Go&=(E E+) is compared with (E )(E+) at resonance when the stimulating Geld is
initially a pure coherent state and the two-level system is initially in its excited state. The corresponding
quantities are also computed for a field whose initial density matrix is a Gaussian superposition of coherent
states (e.g., blackbody radiation), as well as for a Geld which is initially described as having a given number
of photons.

I. INTRODUCTION

HE concept of coherence of an electromagnetic
6eld has been introduced by Glauber' in terms of

an wth-order correlation function

G.,-...'"'=(E. (xr)E- (») "E.. (*-)
XE..„'(x~r) "E„.'(»-)) (I1)

where (( )) stands for trace p( ), x„=—(x„,t„), and the
y's denote the polarization. The electric field operator E
is written as a sum of positive- and negative-frequency
parts, E=E++E . A "pure coherent" state is one for
which G'"~ factors into the product

G„,...„,„&"&=h„,*(xr)B„,*(xs) h„„e(x )
X 8„„,(x~&) h„,„(xs ) (I2)

for all n. We are led to a de6nition of "nth-order
coherence" as factorization through order e of G&"~.

This definition is the quantum-mechanical generaliza-
tion of previous ones' and includes nonstationary

' R. J. Glauber, Phys. Rev. 130, 2529 (1963).' M. Born and E. Wolf, Principles of Optics (Pergamon Press,
Ltd. , London, 1959), Chap. X.

processes, an example of which is investigated in this
paper. In two elegant papers, "Glauber defines eth-
order coherence and describes the properties of coherent
states of the electromagnetic (e.m. ) field. Two examples
are given, one in which the field is produced by a
classical radiator (which always produces pure coherent
states) and in the other by a chaotic source (e.g. , dis-
charge lamp) for which the density matrix of the field is
seen from the central-limit theorem to be a Gaussian
superposition of coherent density operators in each
normal mode. The problem which we shall investigate
here is the following: An atom (molecule, spin) is
initially in an excited state at t=0, at which time it
comes into interaction with a quantum-e. m. field in a
pure coherent state in a single mode at the resonance
frequency of the two-level system (TLS).' The question
arises: "To what extent will the field produced by
stimulation also be coherent?" It is also interesting to
compare the resulting field, in which the stimulating

' R. J. Glauber, Phys. Rev. 131, 2766 (1963).
4 For the semiclassical solution for the long-time transition

probabilities, cf., F. W. Cummings, Am. J. Phys. 30, 898 (1962).
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field is initially in a coherent state, to the situations
where the initial density matrix of the stimulating Geld

is that appropriate to a chaotic source in a single mode,
such as a blackbody or discharge lamp, and also where
it is initially known that there are m photons in the
field. The problem is approached by a model employed
previously by Jaynes' and the present author, the
relevant portion of which is reviewed here for corn
pleteness. The problem can be solved "almost" exactly;
the approximation involved is equivalent to the neglect
of terms in the Hamiltonian which do not conserve
energy in first order. Also, only the second-order corre-
lation function, with t~

——t2 is computed; we are here
interested only in comparing the quantities (8 (x)E+(x))
and (E—(x))(E+(x)).

and
V x (V x E&,)—ki2E&, =0 in V

(II1)
n x Ei=0 on S.

The E&,(r) are normalized so that

E), Eg dpx=5), ), (II2)

and similarly for the magnetic field H. The electric and
magnetic Gelds are expanded in the forms

E(r, t) = —(42r)"2 Q), pg(t)E), (r)

=—p (22rtioi„)'ts(Ci+Ci*)Ei(r), (II3a)

II. FORMULATION OF THE PROBLEM

Let the closed surface 5 enclose a volume V, and let
Ei(r) and 42=a&2/c2 be the eigenfunctions and eigen-
values of the boundary-value problem

and the matrix elements of the electric Geld are given by

(niI EI22g')
= —(22iho&), )'12Ei (x)

&&I ( .)'"5-,.-,"+(.+1)'"~-;.-..3 (»7)

If the TLS moves along the axis of a cylindrical cavity
so that only the lowest TM mode is excited (as in the
ammonia-beam maser) then

(i2
I
E

I
22') = —(22rrp/Ji'V)'I

X I
22'128...+i+ (22+1)'128~,,„)8„(118)

where J'i ——Ji, (u) =0.5191 and I=2.405, the first root
of Jp(Q) =0, V is the volume of the cavity, and we have
set 6=1 and dropped the subscript ), since we are
concerned hereafter with only one mode. Suppose now
that a single TLS having only two possible energy levels
enters the cavity via a small hole in the end. With the
TLS field interaction in the usual form (J A), even
this simple problem cannot be solved exactly, but it is
possible to find stationary states of the system (TLS
+field) to an accuracy of about one part in 10' for
radiation densities up to the order of those encountered
in the ammonia Inaser, for example.

Let the two possible energy levels of the TLS
be denoted by E and the corresponding states by
Im)(2i2=1, 2). Similarly the number of quanta in the
field wi. ll be m and the corresponding state of the Geld
denoted by I22). The state vectors Im)IN) then form a
basis for the system (TLS+field). In this representation
the total Hamiltonian is

(m~IaIm'I')= (z„+~ )5„„.~.„,
+(~I I &'-p

I

~'~') (I»)
The interaction between TLS and Geld is taken as

H(r, t) =+(42r)"'Qi roid~(t)K(r)
+in'= 12'E

y (II10)

=++ (C —C *)H (r), (II3b)

Ci I 22') = (iig)'"
I
is),—1),

C&*II&)= (2i&+ 1)'t' I22&+ I).
The Hamiltonian for the free Geld is given by

(II5)

E2+Q2
d'x=g -', a (C C *+C *C ), (116)

' E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

where C),*and Cq are the usual creation and destruction
operators for the ) th mode. They satisfy the commuta-
tion relations

I Ci,c), *)=~),v) Ic~,cv]=Lci*,ca*)=0 (II4)

and have the properties, when operating on a state
function of the Geld in the m representation,

II; 2 V+W, —— (II14)
where

v.=—(1,I+1IvI2, ~)
=(2, 22I V I 1, 22+1)=y(I+1)'t2 (II15)

where p is the electric-dipole-moment operator of the
TLS, whose component along E shall have the matrix
elements

(mNI p, Im'n')=ti(1 5„)5.—;
Thus, the matrix elements for the interaction energy

are

(m~2
I
H;,2 I

2N'I')

=y(1—5 )LN'125, pi+ (n+ 1)'125~ij, (II,12)

where
7= (t/Ji) (2~~/V)'"

is the interaction constant (and has the value 5 cps for
a typical gas maser). The interaction Hamiltonian has
matrix elements of two diferent types:



ST I M ULATE D EM I SS ION OF RAD IAT ION I N S INGLE MODE A 1053

and for m=0

(1,0I UI1,0)=e-'"o', ~o= ——,'Q. (II26)
with all other elements zero. The term V has matrix
elements connecting "unperturbed" states with an
energy separation (Eo—E&—o&) which goes through zero
as the cavity is tuned exactly to the TLS natural fre-
quency. Elements of TV, however, connect states with
unperturbed-energy separation (Eo—E&+o&) 2o&. If we
diagonalize the Hamiltonian to order (n'I'y/o&)', we
neglect 8' entirely and it is this approximation made
here, which breaks down for extremely intense fields.

The resulting Hamiltonian can then be diagonalized
exactly, since it now has a "block" form consisting of
(2&&2) matrices along the main diagonal. It is at this
point that the difhculty involved in solving the multi-
TSL problem becomes apparent. For two TLS we must
diagonalize a 4&(4, and for E two-level systems we must
diagonalize matrices whose dimensionality is as high as

p„'=-',
I (~—n)'+4n~oj. (1128)

The above notation is chosen in such a way that the
block form of U consists of the syrnrnetric (2X2)
unitary matrices

(an ba)

Ef„e„j (1129)

All other elements vanish. The transition probability
for emission or absorption of one photon during time t is
then, neglecting terms in 8'

I
b I'= sin'28„sin'(oo„&+& —o&„' &)t

=ny' sin'P„t/P„', (II27)
where

2 ~i/Ji(~-J) & (II17)

Hp@ (+)—g (HC (+) (111S)

and thus the complexity of the problem increases rapidly
with 37. Physically this arises because each TLS "sees"
all the other (E—1) TLS via the e.m. 6eld.

The eigenvalues and eigenfunctions of Ho, de6ned by
neglecting 5', which satisfy

p(o) =pi(0) Spr(0) (II30)

along the main diagonal. The erst row and column,
however, contain only the single term exp( —zoot).

Now consider the effect on the field of passing a single
TLS through the cavity. At the instant (t=0) when the
TLS enters the cavity, let its state be described by the
density matrix p&(0). The initial density matrix of the
entire system is thus the direct product

with matrix elements
are the ground-state

~o=R=~o, Co——Im= 1&In=0)
During the interaction, p(t) undergoes a unitary trans-
formationand for e&0

E„'+&=o&„&~=(n ——,')o&a-',
I (oo—0)'+4ny'j'" (II20) (II32)p(t)= U(t 0)p(0)U '(t 0)

(II19)
(mnl p(o) Im'n') =&ml»(o) lm'&(nl pr(0) ln') (II»)

where we have defined the zero of energy of the TLS as
midway between E& and E&——0 and E2—E&——Q. Novv

I-'+'= l»ln —1) cosg„+
I 1)ln)»ng- (1»1)

C ( &= —I2)ln —1) sing„+ I1&ln&cosg„, (II22)

where

and the density matrix pr(t), which describes the state
of the Geld, only, is the projection of p onto the space of
the Geld variables.

(nl pr(t) I
n')= P (mnl p(t) lmn'). (II33)

tan28. =2~an/(~ —a) .

The time-development matrix

(II23)
The net change of the field thus consists of a linear
transformation

U(t, t') = U(t —t') = expl —iHo(t —t')) (II24)

has the matrix elements for m&0 ol

(nl pr(t) In' &= Z(nn'IGlkk')(kl pr(0) Ik'& (II34)

(2, n 1I UI2, —n —1)=a„=cos'g„e '""'+"
+sin'8 e '""' " (II25a)

(2, n —1I UI1, n)= b„=sing„cosg„

XI e-*"-' "—e-'"-"' j (II25b)

pr(t) =G(t)pr(0),

( n'InGIkk'&= P (m"nI Ulmk&

X(m'k'
I

U-~ Im"n'&~„.. .
(II35)

(1, n
I Ul 2, n —1)=b, (II25c)

(1,nl UI l,n&=e„=cos'8 e '""' "
+sin'g„e '""'+" (II25d)

where we have written for brevity

~- =(ml p~(0 (II36)
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Fzo. 1. p(E 8+)/(2y/p)' —nf (sohd) and DE )(E+)/(27/ll)2 —ng (dashed) as functions of (n+1)'~'yf are compared for the case of
stimulation by a pure coherent state with n= 10.
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FIG. 2. Same as Fig. 1 except that n = 100.
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The only nonvanishing elements of G are easily seen
to be

(nn'IGlnn')=an+llln'+1 o22+cncn' oilq

(nn'
I
G

I n+1, n') = b„+la„+l*o'12,

(nn'
I
G

I n, n'+1) =a.~lb;+l*o 12,

&nn'IGln) n' 1)=c b„.*o.ls, —

&nn'iGin —1, n')=b c

&nn I Gin+1 n )=bn+lb '+1 +11

(nn'I G
I
n —1, n' —1&=b.b„*~22.

(II37a)

(II37b)

(II37c)

(II37d)

(II37e)

(II37f)

(II37g)

These relations hold for all quantum numbers n if we
understand that Cp is not defined by (II25d) but by
Cp= exp( —iolpt).

The density operator for a pure coherent state is then

pr= ln&&nl = 2 (nln'!)"'
= P ln&(nl pain'&(n'I . (III5)

nnI

%e are interested in computing the stimulated emission
(or absorption) of a TLS by a field initially described by
the density matrix (III5), so that initially

(E—E+)(0)=(E-)(0)(Et &(0) . (III6)

In the Schrodinger representation, from Eq. (118)

&E &(t)=t [jo (t)E+$= —(2y/p)
&&2-(n+1)"'(nl pr(f) in+1& (III7)

III. INTRODUCTION OF THE GLAUBER STATES Also

an6
(III2)

In the number representation, the coherent state is
given by

(III3)

so that
(III4)

A pure coherent state may be defined by the property'
Writing out Eq. (II34) explicitly shows that

E„+(x)in)= B„(x)in) (III1)
(nips(f)ln')

( IE, ( )=( lb.*(*) =n»Lb~, b„.+,+&n+1I p, (0) in'y1. )
+c-c"'&nl pf(0)!n') j
+012I bn+ln '+1 (n+1 I pr(0) In'&

+c-b"*&n
I pr(0) in' —1&j

in&= 2 (s 1 1"n"Iv'nl) ln&
+o„La~lb„+1*(nI pr(0) I

n +1)
nm +b:- *(n—1l pr(0) ln') j

+o 22 I nn+ lion'+1 (n I P f (o) I
n'&

+b-b- *(n—1IP (o) ln' —1&3.
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Fxo. 3. [(E E+)/(2y/&4)' —nj as a function of (n+1)'~'yx is plotted for the two cases of initial stimulation by a pure coherent Geld
(solid) and by a "chaotic" Geld (dashed), both for 8=1. LThe insert compares the weighting functions of the transition probabiTity
sin'(I+1)'~'yt for these two cases.j
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Fxo. 4. p(E E+)/(27/xl)s Nj is shown a—s a function of (n+1)'~'7I for initial stimulation by a "chaotic" source with n = 10.

Sx(n,yt) —= Q (e "n"/n!) sin'(n+1)x~'7t (III13)
n=o

and

(E )(f)=- (2v/. )-"'- S,(-,vf), (III14)

n+2~ »s

Ss(n,7t) =icos(n+—1)x~'yt cos(n+2)xlsvt+
n n+1i

@g7L

+sin(n+1)'&svt sin(n+2)'lsyt . (11115)
et

Of interest is the comparison of the two expressions

(E E+)(t) and (E )(E+)(t), where

(E-)(E+)(t)= (2y/p)s(n+n (Sss—1)j, (III16)

e start the TLS system o6 in its upper state, and ask
how the initially coherent field gets amplified. Then
0 22 1) 0'&& 0 0 ]2 The quantities u„a„*,b „b~ *, and
c„c„*are easily worked out to give

a„a„.*=e+'"'"' "& 'PcosP„t cosP f—i cos28„sinP„t cosP„ f

—i cos28„. cosP„t sinP„ t

+cos28 cos28„. sinP„t sinP„ tj, (III11a)

b„$„.*=e+'"&"' "&'sin28„sin28„sinP„t sinP„t, (III11b)

e„e„,*=e+'~I"' "& '$cosp„t —cosp„ t+i cos28„sina t cosp„ t

+i cos28„cosp„t sinp t

+cos28„cos28„.sinp„t sinp„ t). (III11c)

Using Eq. (III11) in (III10), gives for the case of reso-

nance, co=0

(E-E ).(f}=(2~/I ) Ln+S, (n,&f)), (11112)

and where (xx~s has been identified as n, the average
number of photons. Notice that there is no spontaneous
emission term in (E )(E+)(f) while spontaneous emission

(n —+ 0) is predicted by

(E E+)(t) = sinsyt.
n-+0

(Notice that in general one cannot write (E E+)
=(E E+)»,~c+(E E+);„s„~s.) That the Geld remains
zero even though (E E+) is nonzero is a general property
of the system whenever 0.~2

——02~——0, that is, where there
is initially no coherence between the states of the TLS;
there is nothing to "tell" the field what phase to have.
The expression for (E E+) has an intuitively simple

physical content. It is the transition probability for
emitting a photon into the mode given that there are e
photons initially, and this is then weighted by a
Poisson distribution.

It is also of interest to compare the corresponding
expressions (E E+);„,and (E )(E+);„,with the above for
the situation when the density matrix of the field is
initially diagonal in the I representation, the TLS again
initially in its excited state and the cavity tuned to
resonance. For p given by a Gaussian superposition' of
density operators of pure states,

pr(0) xP(xx) lxx)(nldsn= —e I ~lxx)(xxl

= (1+n) x Q (n/(1+n))" ~n)(n~,

dsxx=d(Ren)d(Imu). (III17)
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Because of the appearance of factors like sin(n+ 1)'~spt,

the sums S~, S~, and S3 seem to defy expression in closed
form. If gn is large we notice that the weighting factor
in Si,s, E(n) =e "n"/n! will peak at a value of n=n,
with a dispersion ((n'), n—')'I'=n'I T. hus we can ex-
pand the square root, perform the resulting sum, and
obtain

e-"n" (n—n)—
sin' (n+1)'" 1+ yt

~f 2(n+1)
—s —s cosL(n+1)'i'2yt]&(exp) —(yt)'/2j, (III21)

Note that p is diagonal in the n representation whenever
P (n) =P(~ o.

~ ), that is, whenever there is no information
regarding the phase of the perturbing field. Equation
(III17) is appropriate whenever the perturbing field is
made up of a large Dumber of independent radiators and
obeys the central-limit theorem, for example, a discharge
lamp, a blackbody radiator Pn= (e"~s~—1) 'j, or a
collection of many independent lasers all at the same
frequency. As expected,

(11118)
X g (n/(1+n) )"sin'(n+1)'I'yt

and

(E )'-(E')'-(t) —=o. (m19)

The case for pq(0) given by pr(0) = 8„-,„{that is, initially
the field has exactly n photons) gives

(E E+); = (2y/p)'Pn+sin'(n+1)'~'ytj,
(E-)(E+)=O. {11120)

This expression agrees with the semiclassical result in a
more transparent way than, say, (11113).

v'n+ i Tt—
Fzo. 5. P(E 8+)/(2y/p)' —ng is shown as a function of (n+1)'~'yt

for initial stimulation by a pure coherent state arith 8=3.

Si—P

which will be valid as long as yt«+n. Notice that Si
approaches the value 0.5 in a manner independent of n.
Figures 1 and 2 show the two quantities Si=(E E+),/—
(2y/ti)' —n and n(Sss —1) as a function of (n+1)'~syt,
for the two cases n= 10, 10'. Thus, a Geld initially in a
coherent state will stimulate emission which is also co-
herent, at least to first order, for "times" yt(&1. SI
approaches the value 0.5 for pt))1. Figure 3 shows the
two quantities (E E+),/L(2y/p)' —nj=Si (solid) and
P(E E+);„/(2y/p)' —nj=Ss (dashed) for the case n=1.
Also shown is a comparison of the two "weighting" fac-
tors e Vs"/n! and (1+n) 'fn/(1+n)g" for n= 1. It is
somewhat surprising to notice the very close correspond-
ence between S~ and S3 in view of the difference in these
two weighting factors. There is almost no difference in
the eGects of a coherent source and a chaotic source for
n= 1. In Fig. 4 the function S3 for n=10 is shown. As
might be expected, the function approaches the value
0.5 for yt))1, and the difference between this and Fig. 1
is apparent.

Figure 5 shows a transitional region between n=1
and n= 10. The physical meaning is obscure.
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