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Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts*
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The broadening of spectral lines due to dipole-dipole interactions with ground-state atoms of the same
element is calculated with the impact and classical path approximations. Summation over all contributing
intermediate states accounts for the multiplicity of the levels involved and results in a width proportional
to the geometrical mean of absorption and emission oscillator strengths. Higher multipole interactions
are shown to be almost always negligible, and for Lyman-0. 'the iterated solution of the time-dependent
Schrodinger equation describing the collisions is extended to fourth order. Estimated errors of its calculated
width and of the widths of other lines are about 5% in the validity regime of the impact approximation,
apart from any uncertainties in oscillator strengths and statistical weight factors.

impact-broadening theories' ' which in the case of Stark
broadening (dipole-monopole interactions) have been
found to give the best agreement with experiment. ' "
In these theories weak interactions from distant colli-
sions are treated exactly, and the necessary cutoff at
small impact parameters and the contribution of close
collisions are estimated in a self-consistent manner.

Holtsmark's approach to the problem has been con-
tinued by Mead and his co-workers" "in the sense that
actual results are only obtained in the limit of infinite
atomic mass, which is equivalent to Holtsmark s quasi-
static approximation. Theirs and the present work are
therefore complementary, and it depends on the experi-
mental situation which of the two theories is applicable.
(Appropriate validity criteria are discussed in Sec. 5.)
Reck et al. do account for the multiplicity of the levels
(whose importance was first realized by Foley" ) by
considering spin-orbit interactions, but their contention
that the binary collision treatment may never be valid
near the line center of self-broadened lines is not borne
out for pure impact broadening.

To disprove the validity of their contention for this
special case consider a system consisting of two atoms
described by a symmetrized wave function so that ex-
cited and ground-state atoms remain unspecified. (This
description is adequate as long as Doppler effects can be
neglected, because it then makes no difference whether
or not the excited atom is, e.g., moving toward or away
from the observer. ) For the dipole-dipole interaction
and the case of resonance the impact-broadening
operator introduced in the next section can now be
shown to have only diagonal matrix elements in the
above representation. This follows because the operator
as defined in Eq. (1) involves an average over relative
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ESONANCE broadening (also called self-broaden-
ing) arises when upper or lower levels of the spec-

tral line have allowed dipole transitions to the ground
state, and when the radiating atom (radiator) is sur-
rounded by like atoms in the ground state (perturbers).
The problem of resonance broadening of spectral lines
was first investigated, as early as 1925, by Holtsmark'
who assumed the broadening to arise from the coupling
of stationary harmonic oscillators through their dipole
fields and obtained the linewidth from the rms deviation
of the various frequencies from the unperturbed fre-
quency. The first estimate of the effects of collisions

(impacts) between radiators a,nd perturbers on self-

broadening was made by Keisskopf in 1933.' He as-
sumed that only strong collisions cause line broadening,
namely, those which result in phase shifts larger than 1
of the emitted radiation. Furssow and Wlassow, ' in
1936, considered in addition the effects of weak (or
distant) collisions which contributed 25'Pq of the total
width. Byron and Foley' recently calculated self-

broadening widths using Anderson's impact theory. '
They diagonalize the time integral of the interaction
Hamiltonian rather than this Hamiltonian itself, using
an especially convenient but time-independent coordi-
nate system, a procedure similar to one which under-
estimates excitation-transfer cross sections' by about a
factor of. 1.5. (Calcula, tions of excitation-relaxation cross
sections' using irreducible tensors may well be subject
to similar errors. ) The present paper is based on recent
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2. APPROXIMIMATE CALCULATION' OF
THE IMPACT WIDTH r (t) = y+ vt.
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using Eq. (5) and inserting intermediate states. Kith
additional relations for the averages like (p,'}=1xp',

{p,2p„2}=2p', etc. , this can be averaged over angles,
leading to

second-order result for weak collisions. The two regimes
are separated by that value of p (Keisskopf radius) for
which the second-order result (the bracketed term) as-
sumes the value 1.In this manner follows approximately

+Go t2

(ll dt, V(t,) li)(il dt, V(t ) ll& = (~'p') —' 7 g
1/2 .~2f (g ) 1/2 ~2f

3 g, m~ kg, i m~
(9)

X (10/9)(&l ldli ) &2 ldll ))(&12 Idl22» &22 ldl12))

—(2/9)(&l ldl2) &i.ldli. ))(&i.ldll. ) &i.ldll. )),
(7)

Weak and strong collisions contribute equ, ally to this
result, and the width is independent of the perturber
velocity distribution, i.e., temperature. (Actually Weiss-
kopf equated the magnitude of the first-order term to
1. The definition of the limiting radiu, s in terms of the
second-order term is due to Anderson. ')

where now t„and i„designate initial and intermediate
states of the radiator and l„and i~ the corresponding
states of the pertu, rber. Also, matrix elements like
(l„ld.li„)&l,ld*li )(' ld*ll„)(2„ld,ll, ) were omitted as
they vanish on account of the usual selection rules
for dipole transitions.

Equation (7) is of the form IAI'IBI'(10/9 —(2/9)
Xcos28) with t/ being the angle between A and B.
Actually required is the sum of such an expression over
intermediate states (magnetic quantum numbers), each
term involving another angle. As there is no preferred
direction in the problem, this amounts to replacing the
term (2/9) cos29 by its average over the sphere, i.e.,
by 2/27, and then summing (28/27)

I
Al'I Bl'. Further-

more, since /, is the perturbed excited state and i„ the
ground state, (l„l d li „) &i„l d

I
l„) is evidently propor-

tional to the emission oscillator strength f, of the line
corresponding to this transition. On the other hand, l„
is the ground state and the i„are all excited states of the
same energy as the perturbed state so that {l„ldli„)
~ (i„ldl l~) is proportional to the absorption oscillator
strength f, of the same line. With these considerations
and using Eqs. (1), (2), and (7), the linewidth becomes
to second order in the resonance dipole-dipole interaction

-7 g ~2f 2-
21/= 22' 2/f (1/)d2/ pdp ———

3 g, slmlp

The angular frequency co is that of the resonance line,
and f, was expressed in terms of f, and the statistical
weights of "absorbing" and "emitting"' states g and g„
respectively. (See Ref. 5 for a more detailed derivation
of the second-order term. )

The p integral diverges at small impact parameters.
However, the bracketed term in Eq. (8) constitutes ac-
cording to Eqs. (1) and (2) the first nonvanishing con-
tribution to a sum representing ((ll1—Sll)}, S being
the S matrix for a single collision. For strong (close)
collisions the magnitude of the sum may always be as-
sumed to oscillate rapidly between 2 and 0 as p de-
creases. It is therefore customary to use the mean value,
namely, ((l I

1—Sl l)}= 1 for strong collisions and the

3. EFFECTS OF HIGHER MULTIPOLE
INTERACTIONS

Within the framework of the impact approximation,
there are two higher order effects which must be con-
sidered to assess the accuracy of the resonance widths
estimated in the preceding section. (When extremely
small oscillator strengths are involved, van der Waals
broadening might also be important which, however,
is not simply additive when caused by the same
atoms. ' ") It is both necessary to estimate the corrections
du, e to higher than second-order terms in the Dyson
expansion in Eq. (1) and to discuss contributions to the
broadening by higher multipole than dipole-dipole
interactions. For the sake of concreteness, both of these
corrections will be evaluated for I yman-e. The con-
clusions are then generalized to arrive at a more accurate
expression for the resonance width of any line, or are
used to estimate remaining uncertainties in this width.

The next term in the multipole expansion for the
interaction Hamiltonian following the dipole-dipole
term in Eq. (3) is the dipole-quadrupole term. As a rule
its matrix elements vanish becau, se selection rules for
dipole and quadrupole transitions and the condition of
resonance between radiator and perturber states cannot
be fulfilled simultaneously. However, for hydrogen the
degeneracy of S and P states allows fulfillment of all
these requirements, e.g., when initial and final radiator
states and intermediate perturber states for the second-
order term in Eq. (1) are 210 and 200, respectively, in
the elm representation. The radiator thus provides a
dipole moment in the s direction which interacts with
the quadrupole moment of the perturber. The relevant
terms in the interaction Hamiltonian are accordingly

V"=—(3/~lr(t)
I
')r, (t)d„,(d.'+l I

d. l') (10)

where, e.g., d„, is the s component of the radiator dipole-
moment operator. Integrated over one collision this
be& omes

p.d.*(d.'+2 I d. l')
ep4v
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using Eq. (4). With
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In terms of the %eisskopf radiu, s pp as defined by Eq.
(15) the linewidth is thus from Eqs. (1), (2), (13),
and (19)

W=7llV'V pi +2
(Po Po

(20)

w = 2~Evpp'(1 ——,
' p), (21)

or, employing Eq. (9) for the approximate width, namely
m = 2zN~pp',

g
1Io eof

m=2. 24 (
—
) W

ge mM
(22)

(The appropriate f value for Lyman-n is f,=0.4162,
Wltll g~/ga= o.)

%'ritten in this form the improved formula for the
resona, nce impact (half) half-width (in angularfrequency
units) should hold for any line, because the fourth-order
term can be expressed in terms of oscillator strengths
and statistical weight factors as well. One might perhaps
expect a weak additional dependence on "angular"
factors like the cos'0 term in the second-order term
which was discussed below Eq. (7). However, even this
term has only a minute inhuence on the half-width.
Although it contributes o of the {1—S}matrix element,
its effect on the width is less than 0.1%, i.e., entirely
negligible. This can be seen from Eq. (20) for o= 0, now

using (pp/pi)'(1&1/15) = 1.
Inclusion of the fourth-order term has changed the

impact width by 10%.Terms of still higher order should

accordingly aGect the result only by about 1%, while

higher multipole interactions (see the preceding section)
and any subtle details of the matrix elements, which can-
not simply be expressed in terms of oscillator strengths
and statistical weights, are still less critical. Combined
errors of the numerical factor in Eq. (22) from these
various sources are therefore probably below 2%. Un-
certainties stemming from the somewhat arbitrary
choice of p~ might seem more serious. However, errors in
weak and strong collision terms tend to compensate each
other, as was discussed below Eq. (20), and ought to be
of comparable magnitude. Remaining errors in the width
should therefore be of the order of the error in the correc-
tions to the weak collision term, leading one to believe
that the total error in, the coeKcient of the impact
formula, i.e., of Eq. (22), is probably near 5%. This

—2~$fpp 2

2 po& 2 pi 6 pi)

Here the (nonessential) velocity avera, ge was omitted.
Also, pi ——po should be a rather good choice. (There

{(l l
1—S

l l}} lies between 1—o and 1, which suggests
that the strong collision term is overestimated,

{(l
l
1—S

l l}}at p = pp being below its mes, n value 1 for
p( pp, while the weak collision term is clearly underesti-
mated. ) An improved expression for the width is thus

error estimate is corroborated by a recent calculation'
of the 5-E excitation-transfer cross section which exceeds
the valu. e corresponding to Eq. (22) by 6%.

The small sensitivity to the actual choice of the
Keisskopf radius is a particular feature of resonance
broadening. Here errors in strong and weak collision
terms from changes in the %'eisskopf radius compensate
each other to first order in this change, because both
terms are equal to each other in the approximate theory.

7g) I (ef ) I

3g&l Emrov)
(23)

As a rule, resonance widths are so small that one is only
interested in values of h~ larger than m. The relevant
(most restrictive) validity criterion is then

(ga)'I Irmco )'I'(kT)'I
l~ l«~/pa=i —

l

Eg.i ke'f.) 5 M ) (24)

where 3f is the mass of the atoms and T their kinetic
temperature.

As an example, consider the experiment of Kuhn and
Vaughan" in which the resonance broadening of helium

(g./ge= 3, rp=3X 10" sec ' f =0 3, %=6&&10—" g)
was measured in a liquid-helium-cooled discharge
(T=12'K). Substitution of these parameters into Eq.
(24) yields

l

hapl�

«10" sec ' or, in wave number units,

'4 H. G. Kuhn and J. M. Vaughan, Proc. Roy. Soc. (London)
A277, 297 (1964).

S. VALIDITY CRITERIA AND COMPARISON
WITH PREVIOUS RESULTS

The estima, ted theoretical accuracy of 5% for the
width of resonance broadened lines as given by Eq. (22)
and the representation of their profiles through un-
shifted Lorentzian shapes is subject to the condition
that the impact approximation be valid. This requires
fulfillment of two criteria, '' first the time between
effective collisions, which is of the order of the
inverse of the linewidth (damping constant), must be
much larger than the duration of an effective collision,
which is estimated by the ratio of Keisskopf radius and
thermal velocity e. Second, the times contributing to
the I'ourier integral which gives the line shape must be
much larger than the duration of an effective collision.
(These times are of the order of the inverse of the fre-
quency separation Aa& from the line center. ) Fulfillment
of the first criterion implies that the average and long-
time behavior of the time-dependent wave functions
does not depend on the details of the collisions but rather
only on the net change during a collision as described by
the 5 matrix. The second criterion then decides that the
line shape (or the interesting part of it) is indeed deter-
mined by this long-time behavior.

Both criteria can be combined into (v/pp)))Max(re,
l4col) with pp estimated by
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jhi ((&O.S cm '. The values of (hi [ covered by the
measured pro6les are about 0.1 cm ', i.e., the impact
approximation is applicable, even though small errors
from the only marginal fulfillment of the validity crite-
rion cannot be ruled out.

Actually measured in this experiment were the profiles
of a line whose lower level combined with the ground
state and whose upper level was metastable. )The
relevant oscillator strength, statistical weights, and
frequency entering Eq. (22) are still those appropriate
for the resonance line, though. $ Besides resonance
broadening, natural and Doppler broadening were as-
sumed to be present. The latter was separated by analyz-
ing the profiles in terms of Voigt functions. (This pro-
cedure is not strictly applicable, as resonance and
Doppler broadening are not entirely independent of each
other. ) Then the width of the Lorentzian contribution
plotted as function of density was interpreted as the sum
of natural broadening (giving rise to a constant term)
and resonance broad. ening (yielding a term linear in the
density). Finally, oscillator strengths for the resonance
line were deduced from both terms, namely f,=0.38
from. the natural width and similar values from the
resonance-broadening contribution. Using Eq. (22) the
latter yields f,=0.22, i.e., taking mean values one
obtains f,=0.30, which agrees rather well with theory"
(f,=0.276).

No other experiments seem to exist in which resonance
broadening could be well isolated and in which oscil-
lator strengths and densities were known reasonably
well. (Note also that in experiments with resonance
lines proper, there is always considerable danger of
self-absorption in boundary layers. ) Detailed compari-
son with previous impact theories is probably not too
meaningful either as they were based on overly simplified
models. [The estimate in Ref. 9, Eq. (4-104), is an
exception but could certainly not be claimed to be at all
as accurate as the present result. j However, to demon-
strate the amoUnt of disagreement with previous calcu-

"B Schiff and . C. L. Pekeris, Phys. Rev. 134, A638 (1964).

lations, it is instructive to compare numerical factors
obtained by various authors corresponding to the factor
2.74 in Eq. (22). These factors are, e.g., 1.00, 1.33, and
1.81 in Refs. 2, 3, and 4, respectively. (Unsold" esti-
mates 1.57, and Ref. 9 gave 3.00.) Statistical weight
factors were almost always neglected, except in Refs.
4 and 9. (As mentioned before, they had first been
considered in Ref. 13 where, however, the above factor
was much too large. )

Additional experiments in which resonance broaden-
ing of optically thin lines is a well-isolated mechanism
and in which the required oscillator strengths, etc., are
well known from theory or other experiments are needed
to verify the estimated accuracy of the present calcula-
tions, i.e., of Eq. (22). Preferably they should span a
range of conditions, both well in the validity regime of
the impact approximation and near its limits of validity.
Thereafter, and perhaps also meanwhile, the present
results will quite likely find their most important appli. —

cation in the determination of resonance-line oscillator
strengths from resonance widths of longer wavelength
lines as in the experiments of Kuhn, Stacey, and
Vaughan. ""Special care should be exercised at low
densities where Doppler and resonance broadening are
comparable. Then the mean free path between excita-
tion transfer collisions is of the same order as the wave-
length of the emitted radiation so that Doppler effects
may give a contribution to the Lorentzian width. "
These excitation transfer collisions do not result in any
phase shifts of the emitted radiation for resonance dipole-
dipole interactions, but tend to change its polarization.
Depending on multiplicities, therefore, only a more or
less important fraction of these collisions need be con-
sidered as causing collisional narrowing of the Doppler
core and enhancing the Lorentzian component through
Doppler effects.

"A. Unsold, Physik des Sternutmosphdren (Springer-Verlag,
Berlin, 1955), 2nd ed."D. N. Stacey and J.M. Vaughan, Phys. Letters 11,103 (1964).

"L.Galatry, Phys. Rev. 122, 1218 (1961).


