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Inliuence of Screening on the Atomic Photoeffect*t
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Veiversi]y of Notre Dame, Notre Dame, Indiana

{Received 13 May 1965)

The atomic photoeGect in a screened Coulomb Geld is considered. Numerical calculations of the diGerential
and total cross sections for the E and L shells are given. Screening is introduced by including an exponential
damping term in the potential. The bound-state wave function and the screening parameter X are deter-
mined by using a variational technique to Gt the experimental ionization energy of the shell under con-
sideration. The continuum electron is described by a partial-wave decomposition, and the interaction with
the radiation Geld is treated in lowest order perturbation theory. A numerical program is developed to
obtain the radial part of the continuum wave function. The cross sections are computed numerically and
corrections to pure-Coulomb-Geld results are found to be small for the E sheH but signiGcant for the L shell.
Results for ) =0 are obtained and found to be in good agreement with previous theoretical work. This serves
as a check on the accuracy of the numerical computations. A separate calculation using relativistic Hartree
wave functions and potentials is carried out for mercury. Comparison of the results of this test calculation
with the simpliGed exponential model indicates that the effects of screening are accounted for reasonably
well by the model.

I. INTRODUCTION

ECENTLY detailed numerical calculations of
differential and total cross sections for the atomic

photoeftect were reported by Pratt et a/. ,' who con-
sidered the E shell using an unscreened Coulomb
potential. These E-shell results were found to be in
good agreement with previous calculations and with
experiments. Ailing and Johnson' have extended the
work done in this field to the L shell and have found
some discrepancies with the scant experimental data
available for this shell. These discrepancies were
assumed to be the result of the neglect of screening,
which should modify the I.-shell cross sections signif-
icantly. The calculations done here, which cover nuclei
and photon energies of possible future experimental

* This work was supported in part by the U. S. Atomic Energy
Commission.

t Based on a doctoral dissertation submitted by one of us
(J.J.M.) to the Department of Physics, University of Notre
Dame, Notre Dame, Indiana.

' R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys.
Rev. 134, A898 {1964).Another numerical calculation has been
done by S. Hultberg, B. Nagel, and P. Olsson, Arkiv Fysik 20,
555 (1961).

~%. R. Ailing and %. R. Johnson (to be published). The
relativistic L-shell Born approximation is given by M. Gavrila,
Phys. Rev. 124, 1132 (1961).

interest, give quantitative predictions of the eGect of
screening on the photoeGect. I'"or the sake of simplicity
we restrict our consideration to central-field potentials,
in particular to those of the form V(r) = —(tsZ/r)e ~'.

The limit X —+0 a6ords a check of our results with
previous pure-Coulomb-potential calculations. Ke as-
sume that the bound-state and continuum electrons
interact only with the screened potential. Section II
will include a development of the general formalism.
In Sec. III a discussion is made of the numerical
procedures used to evaluate the screening parameters,
wave functions, phase shifts, and radial integrals.
Programs to determine these quantities were written for
the Notre Dame UNIVAC-1107 computer. These
programs were constructed so that either the screened
or the unscreened cross section could be evaluated by
simply changing parameters. Because of this simple
check an extensive error analysis will not be given.
The new results for the screened Coulomb field are
presented in Sec. IV where comparisons with experiment
and with the unscreened calculations are made. The
calculations cover the energy region 81 to 1332 keV
and include 8=47, 82, and 92.

A calculation using relativistic Hartree wave func-
tions and potentials for mercury, Z= 80, with an energy
of 354 keV is also presented in Sec. IV.

Copyright 1965 by The American Physical Society.
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II. GENERAL FORMALISM with
-~,(x+-,' —m)- 't'

A standard partial-wave decomposition of the
photoelectric amplitude for both the E and I. shells is
carried out below. The K shell expansion is essentially
identical with that obtained by Pratt et al. ' Ke consider
an incident photon of energy ~ interacting with an
electron bound in a spherically symmetric central field.
The radiation interaction is treated in lowest order
perturbation theory; thus we neglect eRects of relative
order o,=1 137. All relativistic eRects are included by
treating the interactions of the bound-state and
continuum electrons with the potential in an exact
manner. Ke write our differential cross section in the
form'

C.„+=C(l,'j;-m ——,', —,') = —g.
2l+1

g, (x+-,'+m)
C,„-=C(l-;j;m+-', ,

——,) =
2l+1

The symbol C(l,l.l~, m~m~) denotes the Clebsch-Gordan
coefIicient as defined by Rose. 4 Throughout we use the
following notation, giving the angular-momentum
quantum numbers as functions of x:

j=l—~ for x)0,l=x )

for x&0.
dg- o. Pt'V

dQ 2m cv

with

(1)
We will also use i'(x) =I(—x), k= ~xj, g =x/k. The
wave function is normalized by requiring that

Mf; —— dna'a ee'"'P, , (2)
r'dr(f, '+gg ') =1.

where (p, iIV) = four-momentum of Anal electron, (k,ice)
= four-momentum of incident electron, Our continuum is described by

o being the Pauli spin matrices, and ~ a unit vector
specifying the polarization direction of the incident
photon. Ke will consider the incident photon beam to
be unpolarized and will count all electrons coming out,
regardless of their spins. Therefore we must average
over polarization directions and sum over final electron
spins. Since we are interested in the cross section for a
particular shell or subshell we sum over all electrons in
the shell under consideration. In Eq. (1), P represents
the polarization and spin sums. The wave function f;
describes the bound-state electrons of energy lVB(1
and ttft represents the Hermitian adjoint of the contin-
uum wave function iaaf which is a solution to Dirac s
equation for energy W) 1 having the asymptotic form
of a plane wave plus an incoming spherical wave. The
continuum wave function is written as a sum over
partial waves.

In the sequel we will use zero subscripts to denote the
bound state and barred subscripts for the radiation field.
Quantities without subscripts refer to the continuum.

The bound-state wave function is given by

where v is the large component of the plane-wave spinor
and the x sum runs over all nonzero integers. The radial
functions are normalized such that

f, —+
r~oo

-n —1-&~~ 1—sin(pr+8, ) .
21V pr

e'~'= P (2[+1)i'j i ((gr)Pi(cose), (10)

where ji(&or) is a spherical Bessel function of order L

The angular integration in Eq. (2) is straightforward
when expressions (3), (8), and (10) are used. The
matrix element can then be expressed in terms of the
radial integrals

Choosing k along the z axis the retardation factor of
the radiation field may be expanded as

where

gso gp Irtp

*o~—~o m.o

I„,i i ' r2drj i(~r)g,*——(Pr)f„(r),
0

J„,i=i' r'drji(&ur)f *(Pr)g, (r).

' We use natural units 4=m, =c=1.

4 M. E. Rose, elementary T/theory of Angular Momentum (John
Wiley R Sons, Inc. , New York, 1957).His spherical harmonics are
used as well.
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TABLE I. Bound-state wave-function parameters for Coulomb potential.

Shell Qp Co Cl

Lair

(1 ~2@2)1/2

(1 ~2Z2)1/2

(1 ~2@2)1/2

{4 ~2Z2) 1/2

2H'gg
2WgP+5'~ —1

W& (2Wh+ 1)

Wa (28'a —1)

2 Wg2 —8'g —1

r(2&+1)
1/2

5'g (2Wg —1)F (2y+1)

1/2

N Il(2W +l)r(2&+1)

r {2&+1)

9'hen the spin and polarization sums are done in Kq.
(1) the differential cross section can be written in the
compact form

der PtV—=4o 2 I IF-.(H) I'+ IG-.(H) I'1,
40 Q7

russo

F..(H) =2 -Is,+z's.., .,+*(z—i)s„. ..
k

(A) The Bound State

The bound-state radial functions are solutions to
Dirac's radial equations

1+IV —V(
))—(xp/r)

X =0, 15

where
+&(&—2)S o, $]-"*Q,(&&p)Fl"'"'*(cosH), (13) G, (r) = rg„(r), F„(r)= rf„(r) . (16)

G, (H) =p ~, 'eQ, (m, )F,-o+:( o,H) . The solutions for the E and I. shells in a pure Coulomb
potential V(r) = nZ jr are we—ll known and of the formP

Explicit expressions for the Q's in terms of the radial
integrals I and J are given for the A. and L shells in
the Appendix. Equations (13) as given are valid only
for these shells. All Q's not given are zero due to selection
rules. 4sing this notation we finally arrive at the
remarkably simple expression for the total cross section

(14)
+&'(&'—1)

I Q*(2) I'+ &'(&'—1) (&'—4)
I Q*(p) I

'j

III. NUMERICAL EVALUATION OF THE
RADIAL INTEGRALS

The problem is essentially completed once the various
radial integrals I and J are computed and the phase
shifts 8 are found. In Pratt's work' the bound-state
and continuum radial wave functions were determined
numerically. Ailing and Johnson-' were able to solve
analytically for the radial integrals using well-known
expressions for the wave functions. It is necessary here
to treat the entire problem numerically because of the
lack of analytic solutions for screened potentials. The
discussion of this work will be separated into three
parts covering the bound state, continuum, and radial
integral problems,

G (r) = t'(1+We)'I'(2pr) &e &'(cp cqr), —
F„(r)= &Y(1—5'e)'~ (2pr) &e ""(ap—a&r),

(17)

where the values of the parameters are given in Table I.
To introduce screening into the photoelectric problem

one chooses a model for the potential and solves for the
bound-state wave functions numerically. Unessential
mathematical difFiculties are avoided by using an
exponentially damped Coulomb potential

M. E. Rose, Retalivistic I':Iectron Theory (John Wiley 8z Sons,
Inc. , New York, 1961), p. 179. A diferent phase convention for
the radial wave functions is adopted here.

~ R. D. Hill, E.L. Church, and J. Q'. Mihelich, Rev. Mod. Phys.
10, 523 (1952}.

V(r) = —(nZ!r)e

The parameter /I is chosen so that computed values of
ionization energies

Igg
= 1—8'g

agree with the experimental energies tabulated in Hill,
Church, and Mihelich. ' Since photoelectric cross
sections are very sensitive to lg, any screening model
must reproduce its experimental value to yield reliable
results. Ke choose the bound-state wave functions to
have the same functional form as Eqs. (17), but treat
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TABLE II. Screening parameters X computed using the varia-
tional method to fit experimental binding energies compared with
the Fermi-Thomas parameter X=1.12m Z'&.

92
82
47

0.0527
0.0468
0.0333

0.0421
0.0393
0.0286

Lzz

0.0438
0.0407
0.0296

Lzzz

0.0421
0.0396
0.0294

Fermi-
Thomas

0.0369
0.0355
0.0295

where H(r) is the radial Hamiltonian for the bound
state with V (r) given by Eq. (18).The integral in (20)
is done analytically and gives the binding energy as a
function of the two variational parameters p, and y
and the screening parameter X. The variations of (Ie)
with respect to p, and y give the following three nonlinear
equations

(Iri) =Ie (experiments, l),
B(I.)/B.=o,
B(IIi)/By =0,

which are solved numerically using a repeating linear
interpolation approximation until all three parameters
have converged to within 1 part in 10'. The remaining
coeKcients are obtained by using Table I. Various
other parameterizations were considered; all yielded
screening parameters which agreed to within 1 part in
10'. Table II gives a list of the values of X used in
evaluating the E- and L-shell cross sections. The
Fermi-Thomas parameter

p, and y as variational parameters. The coei%cients X,
8'g, co, c~, uo, and uz are then given as functions of p,

and y according to Table I.
The expectation value of the ionization energy is

given by
G*,(r) ' G (r)y

(Ie)= 1— dr H (r) i, (20)
F„(r) F~(r)/

(B) The Continuum State

The continuum radial functions are also solutions to
Eqs. (15) with W& replaced by W= 1+co—I&(expt. );
they are normalized according to Eqs. (9). The proce-
dure used for solving this set of coupled equations is to
integrate them numerically to a point ro chosen so
large that the potential is negligible. At this point the
radial functions are matched to free-Geld solutions
using the relations

g*(pro) =
t (W+ 1)/2W)'"(~f. (pro) —&~.(p o)),

f*(P o) = —L(W—1)/2W)"" (23)
x(~i, (p,)—a~. ,(pr.)),

where j, and n are spherical Bessel functions. The
coeKcients A and 8 are determined by the matching
procedure. If we let

A =C cosLB,+-', (x+1)7r),
B=C sinLB.+-', (x+1)7r),

the asymptotic solutions are

g, ( pr) - L(W+1)/2W)"'(C/pr)cos(pr+B ),
(25)

f.(pr): L(W—1)/2W)imam (C/ pr)sin (pr+5.) .

In order to investigate the errors introduced by match-
ing at the point ro we consider a transformation given
by Rose'

g.(P ) = L(W+ 1)/2W)'"(C(r)/pr)cos(pr+Ii*(r)),

f,(pr) = L(W—1)/2W)'i'(C(r)/pr)sin(pr+5, (r)). (26)

Using (26), the radial equations (15) can be rewritten

1dC x QZ
= ——cos2(pr+8 )+ e ""sin2(pr+B, ),

Cdr r r
(15')

x QZ
= ——sin2(pr+5, )+ e ""LW+cos2(pr+Ii,)).

XpT——1.12nZ'f' (22)

TABLE III. The bound-state parameters p, and Wz defined in
Table I for Z=82. The experimental 1—I~ would equal Wg
{Coulomb) if screening effects were not significant in lead.

Numerical Coulomb Numerical
Shell p, p, Wg

K 0.5970 0.5984 0.8025
Lz 0.3080 0.3153 0.9522
Lz I 0.3081 0.3153 0.9519

0.2893 0.2992 0.9573

Coulomb
8'g

0.8012
0.9490
0.9490
0.9542

Experi-

mentall
1 Ig
0.8279
0.9690
0.9703
0.9745

is included for comparison. Table III includes a
representative set of numerically computed parameters
and compares them with the corresponding values for
the pure-Coulomb-field parameters.

TABLE IV. Unscreened Lzz shell total cross sections in barns for
uranium. (1) Present work, (2) Ailing and Johnson (Ref. 2).

(keV)

81
103
279
354
412
663

1332

320.2
163.8

9.704
5.103
3.420
1.055
0.236

(2)

322.6
162.6

9.710
5.102
3.422
1.055
0.236

7 M. E. Rose, Phys. Rev. 82, 470 (1951}.

When these equations are matched to free-Geld solutions
at ro one sees that oscillations of the order

hC/C= (aZ/pr )e ""', AB,= (aZ/pro)e ""(W+1) (27)
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TABLE V. E- and L-shell total cross sections in barns for uranium. (1) Present work with screening, (2) Pratt et al. (Ref. 1) v ithout
screening, (3) Ailing and Johnson {Ref.2) without screening.

A. shell LI shell LII shell LIII shell

cy (keV)

81
103
135
167
208
279
354
412
662

1000
1332

~ ~ ~

153.1
84.99
58.99
20.04
8.501
4.884

(2)

155.
~ ~ ~

59.9
20.4

~ ~ ~

4.93

(1)

367.3
208.5
108.7
64.65
37.74
18.44
10.43
7.302
2.520
1.071
0.614

382.4
219.0

~ ~ ~

19.86
11.25
7.891
2.72?
~ ~ ~

0.665

300.3
150.1
68.58
37.11
19.80
8.675
4.528
3.024
0.923
0.365
0.205

{3)

322.6
162.6

~ ~ ~

9.710
5.102
3.422
1.055
~ ~ ~

0.236

263.2
122.3
51.56
26.25
13.19
5.357
2.647
1.711
0.481
0.180
0.098

{3)

29?.6
139.4

~ 1 ~

6.213
3.070
1.984
0.555
~ ~ ~

0.112

are being neglected. For the results quoted here ro was
chosen equal to 120. The worst errors that arise in the
screened calculations are for the L shell with co=81
l.eV, Z=47 in which case the oscillations are of the
order of 1 part in 104.

To integrate the continuum functions out to ro, the
coupled first-order equations (15) were reduced to two
second-order uncoupled equations. A axed-interval,
five-point integration procedure given by Kopals was
used with step size h. His analysis for error propagation
indicates that the integration be started at a point
r, = jh, where j&~k, in order that errors be bounded.
In fact j= 2k was used here. A power series was devel-
oped to take the wave functions from r=0 to r=r, .
Step sizes of h=0.0625 and 0.125 are considered. The
disagreement in results for the two step sizes is less
than the errors introduced by the 6tting process at r().
For this reason 5= 0.125 is used in results quoted here.

(C) The Radial Integrais

The radial integrals I and J are evaluated using
Simpson's rule with step size h. Contributions beyond
pr = 20 are neglected since the bound-state wave
function has decreased by a factor of at least 10—7

from its maximum value. The two step sizes were used
in selected cases and yield results which agree to four

significant figures up to an energy of 412 keV. Agree-
ment deteriorated somewhat at higher energies. The
Bessel functions used were generated in double precision
using the method of Corbato and Uretsky. '

IV. RESULTS

(A) Theoretical Comparisons

Table IV includes Lzz-shell total cross sections for
A. =O, Z=92, and compares them with the results of
Ailing and Johnson. "" The disagreement is largest at
small photon energies and vanishes at higher energies.
This can be attributed to the fact that the oscillations
referred to in Eq. (32) are not negligible for X =0 and
small electron momentum. However, when A, is not equal
to zero we can expect such discrepancies to disappear.
In addition, the agreement of results at high energies
implies that the integration mesh is fine enough to
yield at least three significant 6gures for the screened
cross sections given here. Results for the unscreened E,
Lz„and Lzzz shells show much the same agreement with
previous computations. "

Table V compares E- and L-shell total cross sections
with screening to previous unscreened calculations for
uranium. One notices that screening uniformly decreases
the total cross section. Percent reductions are relatively
independent of energy for the range considered and are
of the order of 1, 7, 11, and 14% for the K, Lr, Lrr,
and Lzzz shells of uranium.

Table VI lists new results for silver (Z=47) and
lead (Z=82). Percent reductions for these nuclei are
approximately 2, 25, 32, and 28%, for the IC, Lr, L»,
and Lr» shells of silver and 1, 10, 15, and 16% for the
E, Lz, Lzz, and Lzzz shells of lead.

The new results indicate that E-shell screening is
negligible as had been anticipated. L-shell screening

TABLE VI. Screened total cross sections in barns for the E and L shells of lead and silver.

co {keV)

81
103
279
354

~ ~ ~

99.95
54.40

LI

256.7
142.1
11.46
6.354

LII

149.3
72.25
3.737
1.910

146.4
66.89
2.774
1.360

~ ~ ~

10.21
5.283

32.13
16.33
0.974
0.510

Lrr

4.602
2.006
0.072
0.034

6.537
2.783
0.093
0.044

' Z. Kopal, Numerical Aealysis (Chapman and Hall Ltd. , London, 1961), Sec. IV-K.' F. J. Corbato and J. L. Uretsky, J. Assoc. Comp. Mach. 6, 366 (1959).



A6 J. J. M ATES E A N D 9/. R. J OH NSON

Ltt

Z= 92
cu =)03 keV

TABLE VII. Ratio of total cross sections for the E and I shells of
uranium. {1)Present work, (2} Ailing and Johnson (Ref. 2).

cg (keV)
(1)
(2)

279
4.61
4.31

354
4.82
4.41

412 662
4.90 5.08
4.48 4.65

1000 1332
5.26 5.38

~ ~ 488

20

D
L

lS
t:
O
03

t,)g IO

Fro. 1. Calcula-
tions of L-shell an-
gular distributions
for uranium Z =92
and photon energy
co= 103 keV.

0 30 60 90 l20 )SO l80
t9 (degrees&

effects become more important for low-Z elements.
This can be explained by the fact that the inner-electron
screening reduces the nuclear charge seeen by L-shell
electrons. This reduction is relatively independent of Z
and therefore yields a larger percent effect for low-Z
elements.

9'ith one exception screening effects increase slightly
as one progresses through the L shells. This is a reAec-
tion of the fact that the mean radius of the bound-state
electron increases slightly in going from L~ to Li~~ and
therefore a small increase in the effect of screening is
expected.

S. Hultberg, Arkiv. Fysik 15, 307 (1959).
"Z. Sujkowski, Arkiv Fysik 20, 269 (1961}.
' S. Colgate, Phys. Rev. 87, 592 (1952).

(3) Comparison with Experiment

(i) Angular distributions

Experimental E-shell angular distributions have been
obtained for uranium by Hultberg" at 412, 662, and
1332 keV and Sujkowski" at 279 keV. Sujkowski's
result is in good agreement with unscreened calculations
except at forward angles where his result is too large.
The present work does not indicate any significant
changes in E-shell angular distributions.

Uncorrected L-shell angular distributions have been
obtained by Sujkowski" for uranium at a photon energy
of 103 keV. Figure 1 shows the present results for this
case. In general screening does not affect the shape of
the angular distribution. Roughly there is a uniform
percentage reduction in the angular distribution from 0
to 180'.

(ii) Total Cross Sections

Colgate'-' has measured total cross sections for the
E shell of uranium. His results are 58.6, 19.9, and 4.7 b
for photon energies of 412, 662, and 1332 keV, respec-
tively. These are in slightly better agreement with
screened results as comparison with Table V indicates.

Total cross sections for the L shell have not been
measured. Hultberg, "however, has measured the ratio
crz, o-L, for uranium in the energy range 412 to 1332 keV.
He finds the ratio to be essentially independent of
energy and equal to 5.3&0.2. Table VII gives this
ratio from the new calculation as well as Ailing and
Johnson's unscreened results. '-

The photon energies 81, 103, and 279 keV correspond
to Sujkowski's" experimental energies for Z=92. He
has measured the ratio (a r+ or„)/o. r„, for 103 keV.
His value is 3.03&0.15.This is to be compared with the
new result of 2.93 and the unscreened result of Ailing
and Johnson of 2.74. Figure 2 contains other experi-
mental points" "for this ratio and compares them with
screened and unscreened predictions. It is hoped
that future experiments will reduce the error bars.
Sujkowski" has also measured the quantity 0 I„t az„,
for 81 keV and gives a value of 0.92&0.15. The new
result of 1.14 is in poorer agreement than Ailing and
Johnson's result. of 1.08.

Z ~ SR

j experimentol ( Sujkowski )

experimental (Herrlonder et al' )

sc

b
+b 3-
b

unscreened (Allinll and Johnson* )
2 o

FIG. 2. Comparison
of ratios of L-subshell
cross sections com-
puted using screened
and unscreened wave
functions with exper-
iment.

I t I I

60 l00 140 l 80 220 260
to {keV)

"C. J. Herrlander, R. Stockendal, and R. K. Gupta, Arkiv.
Fysik 17, 315 {1960).

' D. F. Mayers, Proc. Roy. Soc. (London) 241, 93 (1957).

(C) Hartree Calculation

As a final check on the model, cross sections are
computed for mercury, Z=80, at co=354 keV using
relativistic Hartree wave functions and potentials. "
The tabulated wave functions for the bound state are
numerically interpolated. Corrections are made to the
potential for the absence of the photoelectron and the
tabulated values are fit to

V(r)= —(n(r)[1+79(te "'"+(1—t)e "'")7 (28)
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TABLE VIII. Hartree potential parameters. (8) I.rr shell:

0.7110
0.0202
0.)103
0.0458

0.7795
0.0221
0.1555
0.0387

0.7761
0.0220
0.1493
0.0401

0.7789
0.0221
0.1533
0,0391

Qz(2) = [1/(2l +1)][Jz 1 1+1 Jz 1 1

Q*(—2) =I., 1,1+L1/(2/'+1)]
X [/'J. , 1,1-1+(/'+1) J., 1,1+1].

(C) I-F11 shell:

The values for t, AI, and X2 for the various shells are
given in Table VIII. The screening parameter A, is
included for comparison.

The single term potential model is an adequate
representation of the Hartree potential in the bound-
state region. The two disagree by about 1% at the
location of the wave-function maximum. Since this
region contributes the dominant portion to the radial
integrals the model should predict screening effects
reasonably accurately.

TABLE IX. Total cross section for Z= 80, ~ =354 keV in barns.

LII

(3/2)"'
*(2)= [(2/ —1)I,, 2 1i2

(2l+3) (2/+ 1) (2l—1)

—2 (2l+1)I, 2, 1+ (2l+3)I, , 1,],
(r|/2) 1r 2

Q*(2)= [(/+2) (2/ —1)I*,—., 1+2
(2l+ 3) (2l+ 1) (2/ —1)

—(2l+1)I, 2, 1
—(/ —1)(2l+3)I. . . ,]

+ [Jz,—2, 1'+1 Jg,—2, 1'—1] )
(2)'i2 (2l'+1)

Coulomb
Screened
Hartree

49.82
49.37
49.1

6.409
5.703
5.73

1.892
1.594
1.57

1.403
1.176
1.10

(~/2)"'
Q*(—2)=- (l+ 1)(l+ 2) (2/ —1)

(2/+3) (2l+ 1) (2/ —1)

Table IX lists the total cross sections computed.
The estimated accuracy of the calculations using
Hartree functions is 1—2%.
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(2) K a22d I.r shell:

Q, (-,') = [1/(2/+ 1)][I, , 1+,—I. . . ,],
Q*(—2) =J*,-1,1 +[1/(2/+ 1)]
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