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TEMPERATURE DISTRIBUTION IN SOLIDS DURING
HEATING OR COOLING.

8Y E. D. WILLIAMSON AND L. H. ADAMS.

SYNOPSIS.

Temperature distribution in solids; surface heated at uniform rate. Equations
are derived for the following typical shapes: (x) Rectangular parallelopiped, (xa)
Long rectangular rod. (xb) Very thin slab. (a) Cylinder. (2a) Long cylindrical
rod. (3) Sphere. (4a) Cylindrical tube heated only outside. (4b) Cylindrical
tube heated both inside and outside. (5) Spherical shell heated only outside.
Results calculated from these equations are tabulated and in some cases shown

graphically. These numerical results may be readily applied to the case of similar
solids of any size and diffusivity.

Temperature distribution in solids; surface suddenly cooled or heated. Equations
are derived for the foOowing shapes: (x) Rectangular parallelopiped. (xa) Long
rectangular rod. (Ib) Very thin slab. (z) Cylinder. (za) Long cylindrical rod.
(3) Sphere. The distribution inside a sphere at various instants is computed and
also the temperature at the center of a slab, square bar, cube, long cylinder, and

sphere as a function of the time. These numerical results may be readily applied
to the case of similar solids of any size and diffusivity.

Thermal dkgusArity; method of measurement involving determination of tempera-
ture-time relation at the center of a symmetrical solid whose surface is heated
either at a uniform rate or very suddenly. The convenience of this method is

pointed out, but practical details are not considered. The equations given are in
convenient form for such uses.

N deciding on the best methods of carrying out various operations in

the manufacture of optical glass we found it necessary to have some

idea of the temperature gradients in the pieces during heat treatment.
While great precision in absolute magnitudes is generally of minor

importance in such cases, the only way to gain insight into the question
of the variation of the temperature differences with the shape and
dimensions of the blocks and the method of heating is actually to work
out numerical examples.

While the authors' main interest at the time was in the application
to glass manufacture, the equations are perfectly general, as are also all

the qualitative deductions made. The numerical computations can be
applied to other cases with a very little manipulation owing to the fact
that the only physical constant used (a, the so-called diffusivity constant),
occurs, at least when it occurs in any complicated term, multiplied by
the time. Hence the values of these terms for different substances are
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the same at equal values of the product of the time by the di8'usivity

constant.
The formulas given also indicate methods for the accurate determina-

tion of the heat conductivity of solids. For instance, anticipating a
little, one of the last equations is for calculating the temperature at the
center of a cylinder which is initially at a uniform temperature and is

plunged into a well-stirred constant temperature bath. The tempera-
ture would not be appreciably disturbed by the presence of a small
axial hole as the temperature gradient across the axis is zero. A thermo-
couple may therefore be introduced and the temperature measurements
made which serve to compute the constant required.

The ordinary text-books' dealing with heat conduction indicate the
necessary mathematical transformations for the discussion of the prob-
lems, but there is a lack of actual detailed results available for practical
reference. In the following pages will be found a synopsis of what we
have found of actual use to us.

Solids of the following shapes are considered: (t) Brick (rectangular
parallelopiped). (Ia) Rod of rectangular section, or brick with two
opposite faces insulated. (Ib) Infinite slab, thin plate, or brick with two
pairs of opposite faces insulated. (2) Cylinder. (2a) Rod of cylindrical
section or cylinder with the flat ends thermally insulated. (3) Sphere.

Two modes of heating are considered: (A) Heating of the surface at
a uniform rate. (8) Sudden change of surface temperature, as, for
instance, by plunging the block into a constant temperature bath.

In both cases the initial temperature is taken as being uniform

throughout.

MATHEMATICAL DISCUSSION.

¹menckture.
eo = difference, from the initial temperature, of the point (x, y, s) at

time t seconds from start.
a = diffusivity constant in cm. ' per second.
h = number of degrees that the surface changes per second.
t = time in seconds.

The forms' of the differential equations for heat conduction suggest
~E. g. , Ingersoll and Zobel, Mathematical Theory of Heat Conduction, Ginn R Co.

Byerly, Fourier's Series and Spherical Harmonics, Ginn 8z Co. Carslaw, Introduction to
Fourier's Series and Integrals, Macmillan Co.

a8 a'8 a'8 a'8
g Case (r)

ae age z ae age
Case (2) + +, fx radial, z axial]

a$ axg x ax az'

a(xe) ag(xe)
Case (3) = a [x radialj

a~ axg
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that a likely solution may be made up of terms which are the product
of an exponential function of the time and a trigonometrical function of
the coordinates except in case (2) which is likely to require Bessel's
functions. The values of such functions are, however, tabulated in

readily accessible form and therefore it is a simple matter to compute
particular examples when the equations are known.

EQUATIONS FOR CASE OF LINEAR HEATING.

In the case of linear heating of the surface, if the suggested form

apply, the time term must be of the shape (I —e ') since 8 must vanish
for t = o and must approach a limiting steady state, as t increases, in

which all parts of the body change uniformly h degrees per second.
Case I.—Brick shape (rectangular parallelopiped). —In the discussion

of this it is simplest to take the origin of coordinates' at the corner of the
block. Let 2a, 2b, 2c be the dimensions of the block. The conditions
give tt = o when t = o and e = ttt over the surface (x = o, x = 2o,

y = o, y = 2b, s = o, s = zc). The suggested form of solution is
therefore

~ m~x n~y p~s
0 = bt + Zf(nt, n, p) sin sin sin —(z —e ').

u b c

where m, n and p are any integers. However many or few terms are
included under the Z sign, the whole expression satisfies the above-
mentioned conditions. It remains to be seen whether values can be
found for a and f(nt, n, p) so that the combination of terms satisfies
the diAerential equation

88 8~8—= ft. Z —.
Bt Bx2

Equating the values of these differentials leads to

~ m~x n~y p~s
lt + Zae 'f(nt, n, P—) sin ——sin sin—

2S 2b 2c

m'~' e'~' p'~' m~x . e~y p~s=——zZf(nt, n, p), , +, +—, sin ——sin sin —(t —e ').4c' 4b' 4c' 2c 2b 2c

On either side of this identity we have two parts, one containing e—'

If it be desired to change the origin to the center of the block the only change necessary
is to put X + a for x, F + b for y and Z + t. for s, and note that

sin (zest + r}s.(X +a), (2m + x)~X
2C a
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and the other not. Equating these separately yieMs

mxx . nay . pcs
Ze(e (f(n(, n, p) sin ———sin - sin

2e 2b 2c

m'~' e'~' p'~' m"x nay p~z= ((Zf(m, n, p} — +—+ sin sin sin —e ", (4)4c' 4b' 4c' 2u 2b 2c

p2~2 m~x n ~y p~g
h = —((Zf(rn, n, p) + + — sin sin —sin —. (5)4c2 4b' 4c' 20 2b 2c

'

(4) yields
m2x' n2~2 P'x'

62 4b2 4c2

But to evaluate (5) we need to make use of the trigonometric series

7r . ~x I . 37' I . 5~x—= sin —+ -sin —+-sin +, etc.
26 3 2$ 5 2C

Multiplying together three such series for x, y and s yields

7r3

64

~ m"x n~y p~s
sin sin sin-2$2b 2c

where m, n and p take the values of every odd integer. Equation (5)
reduces to this if f(m, n, p) be put equal to

7r' m' ' n' ' p'~'
mnp + b2 +

(7)

(6}and (7) give the required values of n and f(tn, n, p).
Substitution of these values in the suggested form of solution gives

64/ m=an

e=ae—
KX m=1

n=l
p=l

(2m —1)nx . (2n —r)7' . (2p —I)ns
sin sin sin

2$ 2b 2c
{2m —x)'~'

(2m —t) (2n —r)(2p —r)
4@2

(g)
(2n —Z)2~2 (2p —Z}2'

4b' 4c'
(2m-(pe& (2e-IFw& (2p—o&w&)

4a& 4b& 4e~

the form of the constants having been so changed that m, n and p take
all integral values from r to ~.
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Case su (rectangular rod).—This may be treated separately or deduced

from the above by assuming c large as compared with a and b.

I6h mrs} S 00

e = at-
m, n=l

(2m —r)~x . (2n —r) ~y
sin sin

2a 2b

(2m —z)'}r' (2n —z)'}r'
(2m —t) (2N —i)

4a
—+ (9)

t2va —1}&yr& (2a-1}&w&
)4ag 45&,—+

Case zb (thin slab).—This may also be treated separately or deduced
from the above by assuming b and c large as compared with a, giving

(2m —z) ~x
sin

4h
"=" 2a

8 = ht ——g
(sm —t)

4a2

When t becomes sufficiently large (the exact time wi11 be considered
later) the exponential term may be dropped out of any of these equa-
tions. When this state is reached differentiation yields

828
Z —= h.

Bx

Every portion is heating uniformly at k degrees per second (steady state).
These simpli6ed differential equations in the case of the slab have as

solution

h x2
8 = ht —— ax —— (rz)

as can be immediately verified by differentiation.
Those familiar with Fourier's method of expansion will see the identity

of the forms; otherwise this may serve as a proof of the expansion,

x' z6a2 ~ x . {2m —I)~xax- sln
~ (2' —Z)' 2a

between x = o and x = a.
Case z (cylinder). —Let a = radius of cylinder and 2b = length of

axis. Let the origin of coordinates be at the center, Reasoning similar



IQ4 ERSKINE D. WILLIAMSON AND LZASON H. ADAMS. t
SjgcoND
slmls.

to the above leads to the equation

Q its& ss oo I8=ht ——g-
( — ))) (—,).

&, ) J,(R.)

X Jp sin
~

~

R„x . (2»& —r) x(s + h) —.[ ",'+(~'"-,',"")],
8 2b

In this the 8„'sare the roots of Jo(x) = o and the values are given in a
table in Byerly. Tables of the values of Jp(x) and JI(x) are also given

there, and in Gray and Matthew, Treatise on Bessel's Functions.
For those who wish to verify the formula it may be mentioned that

only the following very elementary properties of Bessel's functions are
required

x' x'
Jp(x) = r ——,+, , —. . .+, etc.

dJp(x) = —Jg(x),dx
&IJ)(x) I

dx
= J,(x) ——J,(x),x

Case za (cylindrical rod).—When b becomes large compared with a
the above equation reduces to

which simplifies to

e=ht (a& —x')+ — Q~&~ ~ Jo
"

e
4x n=l Rl I a

The same remarks as regards this simplification apply (»»&tat&s m»to»d&s)

as in the case Ib.
Case 3 (sphere). —Let a be the radius of the sphere and let the origin

be at the center. The same method gives

8 = ht-
~=~ m'x'( —z)"+' x a

The only difference in proof from Case (t) is that x8 takes the place of 8.
Simplification yields
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The similarity of the equations for cases Ib, 2a and g cannot have escaped
the reader's attention. For the sake of comparison we move the origin
of coordinates to the center of the slab for case Ib and write the equa-
tions in the same form:

h
Inf. Slab. 8 = ht ——(a' —x'}

2K

2ha' =' I xQ~&t x+- P, , e "' cos Q„—. (t5)
=i 0-'( —&} +' a

h
lnf. Cylinder. 8 = hl ——(a' —x')

2ha2 Is=00 rtR~&t x
, z J,(z } a

h
Sphere. 8 = ht, ——(a' —x')

6':

2ha'+ g &, „+-,e " —sin 5„—. (ty)„,S'(—r} +i x a

In these formulae Q and S are written for the sake of brevity for
[(2m —t) x)/2, and tax respectively.

In conclusion of this section, as special cases, found useful in some
practical problems, the heating of a hollow tube and spherical shell
will be considered briefly. The complete discussion of these problems
is somewhat more difFicult than of those already attempted, but for most
purposes it is only necessary to consider the solution for the steady state
with linear cooling. For this case the equations are, for the tube:

and the solution is
hx'

8 = ht +—+ Cgln x + C2
4':

Cl and C2 being constants of integration.
Case (4a) Suppose heat transfer to take place only at the outside.
This yields as conditions

8 = hi at x' = a and
88

0 at X assBx

where a~ and a are the internal and external radii.
The equation becomes

k(x' —a') kaP a
e =h&+ —+—ln —.

2K X
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Case (4b) .S—uppose heat transfer takes place equally outside and

inside.
The conditions then are

8=ht at x=a and

The equation for this case becomes

x = ay.

x x
aP log- —a' log-

hx2 a aq
8 =ht+ —+h

4z
4a log—

aI

For very thin tubes either of these last two equations reduces to the
case of' a thin slab as given at the beginning of the paper, but for a tube
whose internal bore is very small each approximates to the case of a
solid cylinder.

Case (5).—Similar reasoning leads, in the case of a spherical shell

heated linearly on the outer surface, to the following equation for the
steady state:

h(x' —a') haI3 I
8 = ht+ — -+—

6~ 3~ x a (2o)

where aI is the internal radius.
Before making any comments on these equations we give in Tables

I., II., III. and IV. the results of a number of numerical calculations
from equations (r5), (r6) and (r7).

The character of the temperature distribution in a few cases is illus-

trated graphically in the curves of Figs. I and 2.
Calcmlated Values' of 8.—We have taken Ic equal to o.oo4 cm. ' per sec.

which is an average value for glass. h in each case is taken as o.I deg.
per sec.

TABLE I.
Shouting temperature distribution in a slab of glass, 2 crn. thick, heated at a rate of O. i deg. per

second. x/a is the fractional distance from the center, 8 is the temperature, t is
the time in seconds, and A and B are constants of equation 21. (» = 0.004.)

w/a.
t =5O. t = IOO+ I

s. e.

t = goo.

B.

I = Isoooe

0.000 12.50
I

0.333 11.11
0.500 9.38
0.667 6.95
0.800 4.50 '

1.000 0.00

7.87 0.37
6.82 0.71
5.57 1.19
3.94 1.99
2.43 2.93
0.00 5.00

4.81 2.31
4,16 3.05
3.40 4.02
2.40 5.45
1.49 6.99
0.00 10.00

1.79 9.29
1.55 10.44
1.27 11.89
0.90 13.95
0.55 16.05
0.00 20.00

0.093 37.59
0.080 38.97
0.066 40.69
0.046 43.20
0.029 45.53
0.000

~

50.00

0.0008
.0007
.0005
.0004
.0002

0.0000

87.50
88.89
90.62
93.05
95.50

200.00

' A convenient table of values of e * will be found in Seeker and Van Ostrand's "Hyper
bolic Functions. " (Published by the Smithsonian Institution. )
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TAaLE II.
Similar to Table I. but for a slab 10 cm. thick.

w/a. A.
t = 500.

tsar

IsOOOe

B. ~ e.

It=3sOOOo

B.

t=5s000. t= IOs000.

B.
i

e.

0 3125
.333 2/7. 8
.500 234.4
.667 173.6
.800 112.5

1.000 0.0

262.7
229.3
188.5
134,3
83.4
0.0

0.2
1.5
4.1

10.7
20.9
50.0

,
, 217.0 4.5
188.2 10.4
153.8 19.4
108.9 35.3
67.3 54.8
0.0 100.0

146.4
126.8
103.5

33.9
49.0
69.1

73;2 99.6
45.2 132.7
0.0 200.0

44.8 232.3
38.8 ' 261.0
31.7 297.3
22.4 348.8
13.8 401.3
0.0 500.0

6.22 693.7
5.39 727.6
4.4o 77o.o
3.11 829.5
1.92 889.4
0.00 1000.0

TAar. E III.
Similar to Table I., but for an infinitely long cylinder of radius 5 cm.

t = 500. t = I,OOO.

B.

t = 2s000+ t =5s000.

B. , e

0
.333
.500
,667
~ 80O

1.000

156.3 107.1
138.9 91.6
117.2 73.3
86.8 50.2
56.3 29.8
0.0 0.0

0.8 68.6 12.3 27.2 70.9
2.7 58.0 19.1 22.8 83.9
6.1 45.9 28.7 18.2 101.0

13.4 31.1 44.3 12.3 125.5
23.5 18.4 62.1 7.3 151.0
50.0 0.0 100.0 0.0 200.0

1.70 345.4
1.44 362.5
1.14 383.9
0.77 414.0
0.46 444.2

0.00 500.0

TABLE IV.
Similar to Table I., but for a sphere 5 cm. in radius.

x/a.
& = IOOo

e. B.

t = Is000+

e.

t = a,000.

B. e.

t = 58000.

0 104.2 94.2 0
.333 92,6 82.6 0
.500 78.1 68.1 l 0
.667 57.9 48.1 0.2
,800 37.5 28.9 1.4

1.000 0.0 0.0 10.0

56.9
47.1
36.2
23,5
13.3
0.0

2.7
4.5
8.1

15.6
25.8
50.0

26.1

21.6
16.6
10.8
6.1
0.0

21.9
29.0 '

38.5
52.9
68.6

100.0
i

5.38 101.2
4.45 111.9
3.43 125.3
2.23 144.3
1.26 163.8
O.OO l 2OO. O

0.05 395.8
0.04 407.4
0.03 421.9
0.02 442.1
0.01 462.5
0.00 500.0

The columns headed A give the value of the quadratic term in the
equation (rS, z6 or ry, according to the solid referred to) and under 8
the values of the last term a.e tabulated, i. e.,

s = h~ —A+8. (2I}

a/o denotes the fractional distance from center to surface. 8 is the
temperature.
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Fig. 1.
Diagram to illustrate distribution of

temperature in a slab, the surfaces of which
are heated at a uniform rate of o.r deg. per
sec. The solid lines show the temperature
prevailing throughout a slab 2 cm. thick, $0,
2oo and 5oo seconds respectively after the
heating is begun. For the sake of compari-
son there is included the dotted curve which
shows the temperature distribution at the
end of goo sec. in a slab xo cm. thick which
is heated at the same rate. The value of a,
the difFusivity, is taken as o.oo4 and the slabs
are assumed to be initially at a uniform

temperature.

20

IP ~ A W a2 O g2 $4 e8 .8DI». FRO& mINTzR, x/a

Flg. 2.
Curves showing distribution of tempera-

ture after 2ooo sec. in the "unidimensional"
solids (x) sphere, (2) cylinder of infinite

length, and (3) slab. The heating rate is
o.r deg. per sec. , the difFusivity is o.oo4, the
diameter (or thickness) is xo cm. and the
solids are initially at a uniform temperature
throughout.

ADAPTATION OF THESE TABLES TO OTHER NUMERICAL VALUES.

I. Change of Rate of Hea6eg. —8 and h are directly proportional,
therefore simple multiplication solves this problem. In other words,
for a given solid the lag of any point behind the surface temperature is a
time lag.
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II. Chastgs af Dimensions I.f—it were not for the exponent in the
exponential terms 8 would also be directly proportional to c'. This
may be allowed for by changing the time so that by multiplying the
values of 8 by aI2ta' we get the values corresponding for the new dimen-
sions at a time equal to a«'/a' t.

III. Change of Digus~v&y. —The same remarks apply to K save that
the proportion is inversed. It is therefore necessary to multiply the 8

columns by «/~& to get the values at a time equal to s/~& t.
In general' if the letters with subscripts apply to the new case

hIaP~ GI K

8i = 0 —,— at the time tI = t,
hu'Kg 6 Ki

For the three simple cases the temperature differences at the steady state
h/2s (a' —x'), etc. , depend on the thickness but the gradients h/s,

h/2s, h/gs do not. This evidently means that the temperature distri-
bution in the central inch of say a six-inch slab is the same as in a single
one-inch slab, provided A, and K are the same for the two slabs. It
follows that in a well-regulated furnace for the case of uniform heating
or cooling it is futile to cover slabs of material with sand or other such
material in the hope of altering the temperature gradient, as only the
lag behind the furnace will be aA'ected and not the actual distribution
in the slabs.

At all save the shortest times it is only necessary to use one term of
the series in calculating 8 of equation (2r) and hence it is an easy matter
to find, for instance, when the value of 0 at the center will be within one

per cent. of the value at the steady state.
We have only to consider the 6rst term in 13 and equate it to o.or A.

This gives in the three simple cases for the values u = 5, K = 0.004

Slab

hence $ = I r, 76o secs.

I6cPk ——
g kc

e '"' = o.or —,
'r K 2K

' By multiplying both sides of equations (8) to (r7) inclusive by a/ka' it is readily seen
that the equations may be considered as determining «8(ha' as a function of tent/a' and s(a,
all of which are dimensionless quantities. To illustrate the use of Tables I, II, III, and IV
for different values of h, tg, e'and t let us take the following example: for a slab, when x/a
= o.s, t= xoo, a= o.oo4, h= O. r and a z, according to Table I, 8= 4.o2. Thereforewhen
x/a~ o.s tg& o.ooS, hi= o.2, and aI= 5, it follows that

0.2 X 2$ )( 0.004
8 =4.o2 = zoo.s

O.z X z X o,oo8
at the time

2g X o.oo4
t ~ xoo = I250.I X 0.008

Likewise, Tables I, II, III, and IV can be. converted into tables for new values of Ig, tg and a
multiplying f and 8 by the factors given in the text. The factor for 8 also applies to A and B.
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Similarly
Cylinder
Sphere

t = 5,o8o secs.
t = g,o40 secs.

Comparison with the tables will show that this fits the facts.
In calculation we found that after t had a value only one hundredth

of these values only one term was needed in the calculation of 8 to an
accuracy of about one per cent.

EQUATIONS FOR SUDDEN CHANGE OF SURFACE TEMPERATURE.

The other method of heating considered is by sudden change of the
surface from one temperature to another of a solid originally at a uniform

temperature. This approximates to a number of physical problems,
such as the cooling of the earth, or the cooling of a solid which is plunged
into an ice bath.

The equations for such a case can be deduced by the use of exactly
the same relations as in the previous discussion. We therefore merely
give the equations without comment. The verification is simple by the
methods already shown.

In the equations 8 is used as before for the temperature at any point.
80 is the original uniform temperature and 81 is the new temperature of
the surface. In all cases the origin is at the center.
(I) Brick shape

(2(r( —()xx (2r( —z) (ry (2P —z) (rs
8 —81 64"' ~ "cos -- cos Cos

2C 2b 2C

(2m —I) (2n —I) (2P —I) (—I)"+"+ +'

(2~-lP~~ (2n —1)~n ~ (2p—lge&x
K + . + ) C4a2XeX 4Y- 4(,&

(Ie} Rectangular rod.

(2nz —r) (rx (2m —i) (ry
6m e icos

80 8] Ã —1 {251 —I) (2n —I)( —I)"+"+'

(2sa —1)&e (2a—(14r&)
4a9 4'XeX

~k

S

(Ib} Slab.

(22)

8 —8(

~0 —6
(2) Cylinder.

{2'—I)m.X
cos r (2m —1)&a& x2C

e
(2m —I) ( —I)~+'

(2t& (2sa—1)&w&)
(25)

+ tXe

8 —81 8 '~" {—I)"+' Jo(R x/a) (2m —I)7ry
COS

e, —e, ~„„,2m —I RJ(E) 2G
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(g) Sphere. '

H —
Hg = 2

Hp —
Hg

(m) Cylindrical rod.

„„Jp„,R„Jg(tt)' (26)

C, fSKX„—sin sos~~~
H —Hg2~ au eg

HP —Hl x„,m( —I)"+' (27)

The last equation is given in Byerly (p. r r6, ex. s).
The next table gives the values of (8 —eg)/(Hp —eg) (= F) for a

sphere for different distances from the center and for different values
of zt/rpP

TABLE V.
Table for calculating the temperature at any time of any point in a sphere originally at a uniform

temperature the surface of which is suddenly changed to another temperature.

8 —8y
Values of I

80 —8i

I

~/~ l«g/~&
=«000«

«t/us «t/us «t/as «t/as «t/rs& «t/a& I«t/a~ «t/a& «t/as
ss«0040. ~«OI60«ss'«0360« ~»0640 =«IOOO =»I960 = Rsp60» =«4000. = PsP ~

.0000 1.0000i1.0000 1.0000

.0500 1.0000' 00001,0000 1.
,2500 1.0000'1.0000 .9997
.3333 1.0000 1.0000 .9994
.5000 1.0000 1.0000 .9896
,66671.0000 .9997 .9063
.75001.0000 .9931 .7921
.95001.0000 .3935 .1791

1.0000 1.0000 0.0000,0.0000

.9943

.9938

.9790

.9611
~ 8752
.6788
.5312
.1030

0.0000

.9103

.90/9

.8577

.8133

.6755

.4727

.3537

.0644
0.0000

.7071

.7046

.6466

.6005

.4745

.3162

.2319

.0411
0.0000

.2881

.2869

.2596

.2386

.1840

.1197

.0869

.0152
0.0000

.1598

.1590

.1439
~ 1321
.1018
.0661
.0480
.0084

0.0000,

.0386 0.0000

.0385 0.0000
0347 l0.0000

~0319 0.0000
.0246 0.0000
.0160 0.0000
.0116 0.0000
.0020 0.0000

0.0000 0.0000

For a sphere of glass where a = o.oo4 and u = Io, the columns give
the temperature distribution at o, Ioo, 4oo, 9oo, I,6oo, 2,5oo, 4,9oo,
64oo, Io,ooo seconds respectively. On the other hand, for a similar
sphere where a' = I,ooo, the successive times would be o, I,ooo, 4,ooo,

I The equations for cases (rb), (aa) and (3) closely resemble the final term in the corre-
sponding equations for linear cooling. This is brought out more clearly by writing them in
the shortened notation used above. They become:

(zb}

{2a)

sos= 00 Qsp2 tI Q xs=~ % e &' cos
Q ( I)Prs+7, a

m=so «It &t R
e I' Jp

m=~ R JI(R ) a
28=00 «S~&tI a . S~xa~ —sin —

~
m, =x Ss ( —z)~+' x a

{&8)

(3o)
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etc. For the earth, if the diffusivity constant be about o.oo8, the times
would be o, 6.4 X io' years, 25.6 X Io' years, etc.

The curves of Fig. g were obtained by plotting the fractional tempera-
ture difference (8 —8&)/(8« —8~) in a sphere, against the distance from
the center x/a expressed in fractional parts of the radius for different
values of «t/a'. In Fig. '4, on the other hand, (8 —8~)/(8« —8,) is plotted
against «//a' for different values of x/a.

~«

oo/

/'

/
/1 I

Qoof

I i

o .4 I.o
DtST. FROM CENTER, x/Q

Fig. 3.
Diagram to show variation of temperature H in a solid sphere after the temperature of

the surface has been suddenly changed from Ha to Hi (temperature of sphere originally uni-

form throughout). The ordinate is the fractional temperature difference. (H —Hi) j(Ho —Hi),

and the abscissa is the distance from the center expressed as fractional parts of the radius.
The successive curves are for various values of «t/a~, the diffusivity multiplied by the time
and divided by the square of the radius. Example: find the temperature in the center of a
sphere of glass (24 cm. in diam. ) originally at zoo', after being placed for x hour (= 3,6oo
sec.) in a well-stirred bath at o'; take ~ = o.oo4, hence fft/a' = o.r, then from the appropriate
curve it is seen that (H —Hi)/(Ho —Hi) = o.7r. Hence H = 7z .

It will be noticed that equations (22)—(27) are considerably less in-

volved than those used for the uniform heating case. In particular, the
more involved are products of the less involved, e. g. , for Case (2) the
equation is simply the product of those for (tb) and (so) which are the
simplest ones. It is therefore only necessary to calculate for (zb) and

{2a), and the other follows.

Very frequently it is only the temperature at the center that is re-

quired, so we have calculated this for a few cases. When x = o all the
cosine and Jo terms are equal to unity, so the equations reduce to com-

paratively simple forms containing only the exponentials as variables.

i In plotting (H —Hi)/(Ho —Hi) against t or xt/a', it is convenient to use "semi-log, " paper.
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(zb) Slab, at center.

g e 4
na=w

( z}~+i (isa-1)Res'=-Z 4g2

~{j 8$ Ã m —i 2' I

(2o) Cylindrical rod, at center.

= 2 zzg

8(} —8i, A J)(E )
(3) Sphere, at center.

8 —gg = 2
~0 —~i

(S2)

.2

K t/n*
2

Fig. 4.
For same conditions as Fig. 3 except that (f5} —8&)/(80 —8&) is plotted against Njcg for

various values of x/c. These graphs are therefore cooling curves for various points in the

sphere. In addition the figure contains a broken-line cooling curve which is a cooling curve

for the center of a cylinder whose length is very great compared to its diameter.

Tables of exponentials are easily available, and in Table VI. the
first ten values of R„and Ji(R„)are given since these may not always
be conveniently obtained.

TABI.E VI '
Valves of Rn (roots of Jo(x) = 0) and Ji(Rn).

Jz(&n).

1
2
3
4
5

2.4048
5.5201
8.654

11.792
14.931

0.51915
—.34026

.2714

.2325

.2065

6 18.071
7 ' 21.212
8 24 352
9 27.493

10 30.635

—.1877
.1733

—.1617
.1522

—.1422

' The values in this table are taken from Gray and Matthews, Treatise on Bessel Functions
( Macmillan Co.).
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In Table VII. are tabulated the values of (O —O,)/(O, —O„) at the
center under various conditions and with solids of various shapes.

TABLE VII.
Values of (8 —8l)/(8o —'i) at the center of solids of riparious shapes for case of sudden change

in temperature of surface. In the heading of column r, a is the radius, t is the
time and rc is the diQ'usivity constant.

Slab. Square Bar. Cylinder of Cylinder of
hdinite Length. Length= Diam. Syhere.

0
.032
.080
.100
.160
.240
.320
.800

1.600
3.200

1

.99983

.9752
,9493
.8458
.7022
.5779
.1768
.0246
.00047

1

.9997

.9510

.9012

.7154

.4931

.3340

.0313

.00060

1
.9995
.9274
.8555
.6051
.3462
.1930
.00553

1
.9990
.9175
~ 8484
.6268
.3991
.2515
~0157
.00015

1

.9988

.8947

.8054

.5301

.2802

.1453
~00277

1
.9975
.8276
.7071
.4087
.1871
.0850
.000745

A pproxi mate I'ormulu for Short Times. —When the time interval
from the beginning is so small that the heating effect is negligible at the
center —at least to the order of magnitude considered —the problem may
be considered as that of a heat How into an infinite solid. For still

shorter times when only the surface layers need be considered, the curva-
ture may be disregarded in the case of the cylinder and sphere and the
case of the slab alone need be considered. In this case the well-known

formula used by Lord Kelvin' is very convenient if tables of the so-called

probability integral are available. In the notation used in this paper
the formula would be

g 0 2 z/2kgt
1

e ~ds',
~0 ~l

where s is merely an integration variable.
GEOPHYSICAL LABORATORY,
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~ Thomson and Tait's Treatise on Natural Philosophy.
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