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THE SIZE AND SHAPE OF THE ELECTRON.!

By ArTHUR H. COoMPTON.

SyNopsis.—Attention is called to two outstanding differences between experi-
ment and the theory of scattering cf high frequency radiation based upon the
hypothesis of a sensibly point charge electron. In the first place, according to this
theory the mass scattering coefficient should never fall below about .2, whereas
the observed scattering coefficient for very hard X-rays and vy-rays falls as low
as one fourth of this value. In the second place, if the electron is small compared
with the wave-length of the incident rays, when a beam of y-rays is passed through a
thin plate of matter the intensity of the scattered rays on the two sides of the
plate should be the same, whereas it is well known that the scattered radiation
on the emergent side of the plate is more intense than that on the incident side.

It is pointed out that the hypothesis that the electron has a diameter comparable
with the wave-length of the hard +-rays will account qualitatively for these dif-
ferences, in virtue of the phase difference between rays scattered by different parts
of the electron. The scattering coefficient for different wave-lengths is calculated
on the basis of three types of electron: (1) A rigid spherical shell of electricity,
incapable of rotation; (2) a flexible spherical shell of electricity; (3) a thin flexible
ring of electricity. All three types are found to account satisfactorily for the meager
available data on the magnitude of the scattering coefficient for various wave-
lengths. The rigid spherical electron is incapable of accounting for the difference
between the emergent and the incident scattered radiation, while the flexible ring
electron accounts more accurately for this difference than does the flexible spherical
shell electron.

It is concluded that the diameter of the electron is comparable in magnitude
with the wave-length of the shortest vy-rays. Using the best available values for
the wave-length and the scattering by matter of hard X-rays and y-rays, the radius
of the electron is estimated as about 2 X 107 cm. Evidence is also found that
the radius of the electron is the same in the different elements. In order to explain the
fact that the incident scattered radiation is less intense than the emergent radiation,
the electron must be subject to rotations as well as translations.

I. THE SCATTERING OF HIGH FREQUENCY RADIATION.

HE radius of the electron is usually calculated from its kinetic
energy when in motion, taking this to be identical with its mag-

netic energy. According to the customary assumption that the charge
on an electron is uniformly distributed over the surface of a sphere, the
radius of the sphere as thus calculated is about 1 X 1073 cm. There are,
however, a number of phenomena in connection with the scattering and
absorption of high frequency radiation by matter, which appear to be

1 A preliminary paper on this subject was read before the American Physical Society,
December 28, 1917 (PHYS. REV,, 11, 330, 1918). Cf. also J. Wash. Ac. Sci., 8, 1, 1918.
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inexplicable according to classical electrodynamics if the dimensions of
the electron are taken to be of this order of magnitude, whose explanation
is obvious if the electron is assumed to be a flexible ring of electricity
whose radius is comparable with the wave-length of short y-rays. This
paper is the first of a series of three, which will deal respectively with
the scattering of high-frequency radiation, the absorption of high-
frequency radiation, and the nature of the ultimate magnetic particle.
The present discussion will deal with certain outstanding differences
between experiment and the theory of scattering of high frequency
radiation based upon the hypothesis of a sensibly point charge electron,
and it will be shown that these differences may be explained on the basis
of an electron of relatively large size. In order to preserve the directness
of the argument, the details of the calculations will be reserved for the
latter part of the paper.
PART 1.
A. The Scattering Coefficient of High Frequency Radiation.

On the hypothesis that the electron is sensibly a point charge of elec-
tricity, Sir J. J. Thomson has shown! that the ratio of the energy of the
electromagnetic radiation scattered by an isolated electron to the energy
incident upon it is given by the expression

8 ¢

3 miCt’
Here ¢ and m are respectively the charge and mass of the electron, and
C is the velocity of light. If the electrons in any substance act inde-
pendently of each other, the scattering coefficient per unit mass of the

substance will therefore be

(1) = 3 mECH

where ¢ is the ratio of the scattered to the incident energy per unit
volume of the material, p is its density, and N is the number of electrons
in unit mass of the substance.

Since this scattered energy is lost from the primary beam, the quantity
o/p represents also the part of the mass absorption coefficient which is
due to scattering. As Barkla has pointed out,? there may be absorption
due to other causes, such as the production of secondary beta or cathode
rays, but this absorption due to scattering must always be present.
Moreover, if the electrons in the absorbing material are grouped together
in regions which are small compared with the wave-length of the incident

1J. J. Thomson, Conduction of Electricity through Gases, 2d ed., p. 325.
2 C. G. Barkla and M. P. White, Phil. Mag., 34, 275, 1917.
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beam, the electrons do not scatter independently. The rays scattered
by the electrons in this case overlap in such a manner that a certain
amount of ‘‘excess scattering’ occurs. There is, however, no arrange-
ment of the electrons which will result in less scattering than when they
act independently. On the hypothesis of a point charge electron, it is
possible for the scattering, and hence for the mass absorption coefficient,
to be smaller than that predicted by Thomson’s expression (1) only in
case the electrons are held in position so firmly that their natural period of
vibration is shorter than the period of the incident radiation.

In making the calculations from Thomson's theory, it may be assumed
that the number of electrons in an atom which are effective in scattering
the incident radiation is equal to the atomic number. This assumption
is supported in the case of the lighter elements by the experiments
of Barkla and Dunlop! when X-rays of ordinary hardness are used.
It would seem possible that with the higher frequency vy-rays certain
electrons might be effective in scattering which are too rigidly bound to
scatter X-rays. Such an effect, however, would mean an increase rather
than a decrease in the scattering for the shorter wave-lengths. That the
atomic number is the number of effective electrons when vy-rays are used,
is confirmed by the observations of Soddy and Russell? and of Ishino® to
the effect that for the shortest rays the amount of energy scattered by
atoms of the different elements is accurately proportional to their atomic
numbers. This means that all the electrons outside of the nucleus are
effective in producing absorption when hard v-rays are used. If the
electron is sensibly a point charge of electricity, the scattered energy
should therefore be at least as great as the value assigned by equation (1).

Barkla and Dunlop* have shown that for a considerable range of
wave-lengths of X-rays the mass scattering coefficients of the lighter
elements are given accurately by equation (1) if the number of electrons
in the atom is taken to be approximately half the atomic weight. For
elements of high atomic weight, the scattering becomes greater than this
value except for very short wave-lengths, indicating that the electrons
are so closely packed that ‘‘excess scattering’’ occurs. For wave-lengths
less than 2 X 10~° cm., however, Barkla and White® have shown that
the total mass absorption coefficient of the light elements is less than the
value theoretically calculated for the mass scattering coefficient alone;
and Soddy and Russell® have found that for the hard y-rays from Radium

1 C. G. Barkla and J. G. Dunlop, Phil. Mag., 31, 222, 1916.
2 Soddy and Russell, Phil. Mag. 18, 620, 1910; 19, 725, I19I0.
3 M. Ishino, Phil. Mag., 33, 140, 1917.

4+ C. G. Barkla and J. G. Dunlop, loc. cit.

5 C. G. Barkla and M. P. White, loc. cit., p. 277.

6 Soddy and Russell, loc. cit.
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C the absorption of substances of lower atomic weight than mercury is
only a small fraction of that required by Thomson's expression. Direct
measurements of the scattering of hard y-rays confirm the conclusions
based on absorption measurements. Thus it has been found! in the
case of radiation of very high frequency that the mass scattering coeffi-
cient falls as low as one fourth of the value predicted by Thomson's
theory.

As has just been pointed out, it is impossible, according to classical
electrodynamics, to account for this low scattering and absorption of
radiation of very high frequency by matter if the electron is taken to be
sensibly a point charge of electricity. If, on the other hand, the electron
is considered to have a radius comparable with the wave-length of the
incident radiation, a qualitative explanation of the phenomenon of low
scattering for short wave-lengthsis obvious. The effect of this hypothesis
is to make an appreciable phase difference between the rays scattered
by different parts of the electron. Thus the radiation scattered from 4,
Fig. 1, traverses a longer path between S and P than does the ray
scattered from the part of the elec-
tron at B. If the wave-length is
many times the diameter of the
electron, the phase difference be-
tween these two rays will be neg-
ligible, and the reduction in the in-
tensity of the scattered beam will
be inappreciable; if, however, the
difference in the two paths is com-
parable with the wave-length of Fig. 1.
the incident radiation, the phase
difference will be such that the intensity of the ray scattered to P
will be much reduced. The assumption of a relatively large electron is
therefore capable of explaining qualitatively the observed decrease in
the scattering of electromagnetic radiation when the wave-length be-
comes very short.

Calculation of the Scattering. 1. Rigid Spherical Electron.—The exact
manner in which the scattering will decrease with shorter wave-lengths
will of course depend upon the form of electron considered. For example,
taking the simplest case of the scattering due to a rigid, uniform, spherical
shell of electricity, incapable of rotation, we find

) ¢ _B8r &N (&a) /(3111)
(2 » " 3 mzC“Sln N / N )

! M. Ishino, loc. cit.
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where @ is the radius of the spherical shell and X is the wave-length of
the incident beam. The details of the derivation of this expression will
be found in Part 2, Section 1. If @ = 1078 cm., as usually assumed, this
is practically identical with equation (1), even for radiation of the
shortest known wave-length. The relative values of the scattering
according to this expression are shown in curve I, Fig. 2, for different
values of Me. In this diagram the value /0y = 1 indicates the magni-
tude of the mass scattering if the electron were sensibly a point charge of
electricity, and the calculated values are given in terms of this quantity.

2. Flexible Spherical Electron.—It would appear more reasonable to
suppose that the spherical shell electron is subject to rotational as well
as to translational displacements when traversed by a y-ray. The
scattering due to such an electron is difficult to calculate, but an approxi-
mate expression can be obtained if the electron is considered to be
perfectly flexible, so that each part of it can be moved independently of
the other parts. On this hypothesis it can be shown (cf. Part 2,
Section 2) that the intensity of the beam scattered by an electron at an
angle 0 with an unpolarized beam of y-rays is given by the expression,

(1 +cos?8) [ .. (4ma . 0\ [(4ma . 6\
(1) I, = SLEmCH {sm2(~-x~sm5)/ N sing .

Here I is the intensity of the incident beam, L is the distance at which
the intensity of the scattered beam is measured, and the other quantities
have the same meaning as before. The mass absorption coefficient
due to the scattering by such an electron is therefore,

"7,
4) 7= 2xNL? f sin 6d6.
P Jo I

This integral may be evaluated graphically or by expansion into a
series (¢f. infra, equation 17). The values of ¢/s¢ according to equation
(4) are plotted in curve II, Fig. 2. The values for a rigid spherical
electron which is subject to rotation should lie between curves I and II
for the range of wave-lengths for which curve I7 is plotted.

3. Ring Electron.—According to electromagnetic theory it is obvious
that the mass of an electron cannot be accounted for on the basis of a
uniform distribution of electricity over the surface of a sphere of radius
comparable with the wave-length of y-rays. Much the same effect, so
far as the scattering of high frequency radiation is concerned, results
from the conception of the electron as a ring of electricity of relatively
large diameter, similar in form to the ‘“ magneton’ suggested by A. L.
Parson.! It has been shown by Webster? and Davisson?® that the assump-

1 A. L. Parson, Smithsonian Misc. Collections, Nov., 1915.
2 D. L. Webster, PrYS. REV., 9, 484, 1917.
3 Davisson, PHYS. REV., 9, 570, 1917.
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tion of such an electron is compatible with the electromagnetic theory
of mass.

The exact calculation of the scattering produced by a thin ring of
electricity is difficult. A chief factor in the complexity of the problem
is the fact that the effective electromagnetic mass of a short arc of the
ring differs according as it is accelerated parallel to the tangent to the arc,
parallel to the axis of the ring, or parallel to a radius of the ring. The
ratios of the effective masses along these three axes depends moreover
upon the speed with which the electricity in the ring is rotating. In
order to make the problem manageable, the assumptions have been
made that the mass of an arc element is the same in all directions, and
that the velocity of the electricity in the ring is small compared with the
velocity of light. On the basis of these assumptions the mass scattering
coefficient for a flexible electronic ring is found to be

o =T eli-e(F)+e(3) - (3)+ )

where the coefficients a, b, ¢, - - - are constants which are evaluated below
(cf. equation 21). The relative values of the scattering according to
this expression are shown in curve I11, Fig. 2. The scattering of y-rays
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Fig. 2.

by a ring electron as thus calculated is an approximation which will
doubtless correspond closely with the true value for relatively long waves,
but which may differ appreciably for the shortest known radiation.
Unfortunately the experimental data are too meager to submit these
formule to accurate quantitative test. There are, however, three points
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on the curve which have been established with some care. Barkla and
Dunlop! have found that for relatively soft X-rays the light elements
scatter according to equation (1), so that the part of the curves where
Na is large is verified. Hull and Rice? have estimated from their absorp-
tion measurements that for X-rays and y-rays whose wave-lengths are
in the neighborhood of 0.15 X 1078 cm. the value of ¢/p for aluminium
is 0.12. Taking the number of electrons in an aluminium atom to be
13, this gives for the relative scattering, 0.64. According to curve [
this corresponds to an electronic radius of 1.9 X 107 cm. Curve IJ
gives 2.0 X 107 cm., and curve III, 1.9 X 107° cm.® Ishino* finds
that the value of ¢/p for aluminium, using the hard y-rays from radium
C, is about 0.045, which means a value for the relative scattering of
0.24. The work of Rutherford and Andrade’ shows that the principal
part of the ‘“homogeneous’” radiations from radium C consists of a
strong line X\ = 0.099, and a weaker line X = .071, X 107 cm. Both
of these lines were prominent in Ishino’s experiment, in which he filtered
the y-rays through a centimeter of lead. Rutherford has pointed out,®
however, from a consideration of the velocities of the B-particles, that
there must be a certain amount of radiation of much shorter wave-length.
The existence of such extremely hard rays is confirmed by the fact that
the absorption coefficient of the penetrating radiation of the atmosphere
as determined at high altitudes is much smaller than that of the hard
y-rays from radium C, such as used by Ishino. The fact that it is
impossible to detect these very short waves by crystal analysis, how-
ever, indicates that their effectiveness in the scattered beam is small
compared with that of the two lines observed by Rutherford and
Andrade. It seems reasonable, therefore, to take for the effective
wave-length of the y-rays used in Ishino’s scattering experiments about
.08 X 1078 cm.” This gives for the value of the electronic radius, from
curve I, 1.7, from curve II, 2.1 and from curve III, 2.7, X 107 cm.

1 C. G. Barkla and Dunlop, loc. cit.

2 A. W. Hull and M. Rice, PaYs. REv,, 8, 326, 1916.

3 In the second part of this paper, by using a more accurate formula for the mass absorption
coefficient, the data of Hull and Rice will be shown to lead to a value of (1.85 = .04) X 10712
cm., if the electron is taken to be a ring.

4+ M. Ishino, loc. cit., p. 141.

5 Sir E. Rutherford and Andrade, Phil. Mag., 28, 263, 1916.

6 Sir E. Rutherford, Phil. Mag., 34, 153, 1917.

7 In the paper last referred to, Rutherford estimated the effective wave-length of Ishino’s
y-rays to be much shorter than the value here used. His estimate is based upon measure-
ments of the absorption of high frequency X-rays filtered by means of a lead filter. He
calculated the frequency of the X-rays according to the relation Av = eV, taking V to be the

maximum voltage applied to the tube. As is apparent from the work of Rutherford, Barnes
and Richardson (Phil. Mag., 30, 339, 1915), this relation does not express the effective fre-
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No. 1.

The value of o/p given by Hull and Rice is a mean over a relatively
large range of wave-lengths, and Barkla is of the opinion! that Ishino’s
value of the scattering of the y-rays from radium C is appreciably in
in error because of a too high estimate of the true absorption. Thus,
though the experimental values of the electronic radius agree best on
the basis of the flexible spherical shell electron, as represented in curve /1,
the accuracy of the experiments is by no means sufficient to distinguish
between the three hypotheses.

The important thing to notice is that if the electrons had dimensions
comparable with 107 cm., as usually assumed, the scattering should
be represented by the upper line of Fig. 2 where o/dp = 1.0. The fact
that experiment gives consistently lower values when short wave-lengths
are used is sufficient proof that the electron is not sensibly a point
charge of electricity. On the other hand, it is possible to account for
this reduced scattering within the probable experimental error if the
electron has a radius of 2 X 107 cm.

B. The Dissymmetry of the Scattering of Hard ~-rays on the Incident and
Emergent Sides of a Plate.

A second difficulty which is found with Sir J. J. Thomson’s simple
theory is that it predicts that if a beam of X-rays is passed through a
thin plate of matter, the intensity of the scattered rays on the two sides
of the plate should be the same. Barkla and Ayers? have shown that,
for rather hard X-rays and for those substances of low atomic weight
whose mass scattering coefficients can be calculated accurately by equa-
tion (1), this second prediction of Thomson’s theory is also valid. On
the other hand, it is well known that both in the case of relatively soft
X-rays and in the case of hard y-rays the scattered radiation on the
emergent side of the plate is more intense than that on the incident side.

When heavy atoms and long waves are used, the dissymmetry between
the emergent and the incident scattered radiation is accompanied by
an increase in the total scattered energy. For this reason the phenome-
non is described by the term ‘‘excess scattering.” It is satisfactorily
accounted for® by the fact that the electrons in the heavy atoms do not
act independently in scattering the longer wave-length X-rays, since
quency of the filtered rays, especially when a lead filter is used. This doubtless accounts
for the fact, which will be brought out in the following paper, that Rutherford’s determinations
of the absorption do not agree with those of Hull and Rice, who measured the absorption
coefficient of homogeneous X-rays of known wave-length.

1 C. G. Barkla and M. P. White, loc. cit., p. 278.

2 Barkla and Ayers, Phil. Mag., 21, 271, 1911.
3 C. G. Darwin, Phil. Mag., 27, 329, 1914; D. L. Webster, Phil. Mag., 25, 234, 1913.
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they are grouped so closely together that the rays scattered by the
different electrons are in nearly the same phase. This has the effect of
increasing the total scattering. But also, since the phase difference
between the rays from the different electrons in an atom is less for the
scattered rays which make small angles with the primary beam, there is
greater reinforcement and hence greater intensity on the emergent than
on the incident side of the scattering atom.

This explanation cannot be applied, however, to the case of the
unsymmetrical scattering of very hard rays. This is clear for two
reasons. In the first place, if an atom of medium weight is traversed by
rays of increasing hardness, at first excess scattering occurs as described
above; but as the wave-length becomes shorter the scattered radiation
becomes nearly symmetrical until the scattered energy can be calculated
according to Thomson’s formula (1). The electrons now, therefore, are
scattering independently, and must continue to do so for all shorter
wave-lengths. Thus we see that the dissymmetry in the scattering
which reappears as the wave-length becomes very short cannot be ac-
counted for by the mutual action of the separate electrons. In the
second place, the phenomenon of unsymmetrical scattering for very
short waves is distinguished from the excess scattering which occurs
with longer waves by the fact that in the former case the dissymmetry
is accompanied not by an increase but by a decrease in the total scattering.
If the phenomenon were due to the mutual action of the electrons, it
would be accompanied by an increased total scattering, as before. It is
thus evident that the unsymmetrical scattering of very short electro-
magnetic waves is due not to groups of electrons in the atoms, but to
some property of the individual electrons.

The qualitative explanation of this phenomenon on the basis of our
large electron hypothesis is at once apparent. Referring again to Fig. 1,
it is obvious that if the diameter of the electron is comparable with the
wave-length of the radiation, there will be an appreciable difference in
phase between the rays scattered from different parts of the electron.
Since this phase difference is greater for rays scattered at large than for
those at small angles, the intensity of the incident radiation will be in
the former case the more strongly reduced. In order to explain this
phenomenon it is not sufficient, however, merely to assume that the
electron is relatively large. For example, the hypothesis of the electron
as a rigid spherical shell, incapable of rotation, though resulting in a
reduced total scattering, would give rise to symmetrical scattering on
the incident and emergent sides of a plate. To account for the observed
dissymmetry, the further assumption must be made that the incident
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electromagnetic wave is capable of moving the different parts of the
electron relatively to each other.

If the electron is sensibly a point charge of electricity, the intensity
of the beam scattered by an electron at an angle 6 with the incident beam
ist
e4(1 + cos® 6)

(6) Ip=1 2L2m2C4 .
The corresponding expression for an electron in the form of a flexible
spherical shell of electricity has already been given:

(1 + cos? 6) [ . 4ma . 6\2 4ma . 6\
3) Iy = I—;i%z(:“ {smz(—)\— sm;) / (T sm; .

For the ring type electron we obtain
_ e4(1 + cos? 6) 4ma . 6)\? 4ma ., 6\¢
(/) Ia =I*”2*L'2’;'h'2‘5;-‘—{ I—a(TSln— + 8 ——sm; ——c o,

where the values of the constants «, 8, v, etc., are those determined
below (equation 20). When a/\ remains small, the scattering according
to both expressions (3) and (7) approaches the value for a point charge
electron (6).

D. C. H. Florance? has determined experimentally the values of the
relative intensity of the radiation scattered at different angles when the
hard y-rays from radium bromide traverse a plate of iron. His values
are indicated in Fig. 3 by circles.
Taking the effective wave-length of
these rays to be .09 X 107® cm.,
and using in equations (3) and (7)
a =2 X 107 cm. as above esti-
mated, the relative scattering at
different angles may be calculated.
The intensity of the radiation scat- o
tered at different angles by a point Fig. 3.
charge electron is indicated in Fig.

3 by the outer solid curve, that due to the spherical shell electron by the
inner solid curve, and that from the ring form electron by the broken
curve. Inasmuch as the y-rays used by Florance were heterogenous, and
as the softer rays are scattered relatively more strongly at larger angles,
the agreement of the experimental values with either of the inner curves
is as good as can be expected. The important point to be noticed is,
however, that the experimental values are entirely out of harmony with

1J. J. Thomson, Conduction of Electricity through Gases, 2d ed., p. 326.
2D. C. H. Florance, Phil. Mag., 20, 921, 1910.

0° 60°
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what is to be expected if the electron is sensibly a point charge of elec-
tricity.

A better quantitative test of this explanation of the dissymmetry of
scattered y-radiation is afforded by determinations of the ratio of the
total radiation scattered on the incident side of a plate struck by hard
y-rays to that scattered on the emergent side. The theoretical value of

this ratio is
Ii T / v 2
(8) == I, sin 6d6 I, sin 6d6.
Ie Jxl2 / 0
The curves of Fig. 4 give the values of this ratio for different values of
Ma, the broken curve being calculated on the basis of the spherical
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electron. These curves doubtless explain at least in part the observa-
tion of Florance! that the “incident” scattered rays are softer than the
“emergent’’ and the primary rays, since they show that the relative
amount of rays scattered backward is much greater for soft or long wave-
length y-rays than for the harder radiation.

The ratio of the incident to the emergent radiation has been deter-
mined for the hard y-rays from radium C by Madsen,? who found the
value 18 per cent., and Ishino,® who found 15 per cent. Assuming for
the effective wave-length in this case A = 0.08 X 10~® cm., and for the
radius of the electron 2 X 107 cm., as estimated above, Ishino’s datum

1 D. C. H. Florance, Phil. Mag., 27, 225, 1914.

2 Madsen, Phil. Mag., 17, 423, 1909.
3 M. Ishino, loc. cit., p. 138.
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for this ratio is represented by the open circle in Fig. 4 and Madsen’s
datum by the cross. It is possible that neither of the theoretical values
agree within the probable experimental error with these determinations,
but in view of the approximate method of calculating the scattering by
a ring electron the difference is not serious. The fact that the predicted
values are of the proper order of magnitude is strong evidence that the
dissymmetry in the scattering of y-rays by matter is due to the inter-
ference of the rays scattered by different parts of the electron. Thus
not only must the electron have a size comparable with the wave-length
of y-rays, but it must also be subject to rotations or be sufficiently flexible
for y-rays to move its different parts relatively to each other.

C. Conclusions.

As has been pointed out, therefore, according to classical electro-
dynamics the mass scattering coefficient for X-rays and y-rays passing
through matter should never fall below the value 0.18, as calculated on
the basis of Thomson's theory, if an electron of the usual dimensions is
postulated. Experiment shows, however, that for very high frequency
radiation the scattering is much less than this. It is possible that certain
assumptions regarding the conditions for scattering radiant energy,
contrary to classical theory, might be made which would account for
the observed low value of the scattering for very high frequencies. As
long as the idea of the point charge electron is retained, however, no such
assumptions can account for the observed dissymmetry between the
incident and the emergent scattered radiations. Unless the theory that
X-rays and vy-rays consist of waves or pulses is abandoned, the only
possible explanation of this dissymmetry would seem to be that the
scattering particles have dimensions comparable with the wave-length
of the rays which they scatter. Since the scattering particles have
been shown to be the electrons, the statement may therefore be made
with confidence that the diameter of the electron is comparable in magnitude
with the wave-length of the shoriest y-rays.

According to the best available values for the wave-length and the
scattering by matter of hard X-rays and vy-rays, the radius of the electron
s about 2 X 1071° ¢m.

The fact that the scattering of hard vy-rays by atoms of the different
elements is proportional to the atomic number shows that if the number
of the electrons in an atom which are effective in scattering is equal to
the atomic number, the radius of the electron is the same in the different
atoms. This is clear, since if the electron had smaller dimensions in the
atoms of one element, the scattering coefficient of this element would
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not decrease as rapidly for shorter wave-lengths, and the scattering by
the different atoms would not be proportional to the number of electrons
in the atoms.

In order to explain the fact that the emergent scattered radiation is
more intense than the incident radiation, it is necessary to assume further
that the different parts of the charge of the electron can possess certain
motions independently of each other. That is, the electron is subject to
rotations as well as translations.

PART 2.

1. To calculate the energy scattered by a rigid spherical shell electron,
incapable of rotation, whose diameter is comparabdle in magnitude with the
wave-length of the incident radiation.

Let us first derive an expression for the acceleration to which such an
electron is subject when traversed by an electromagnetic wave, and then
determine the energy scattered by integrating the intensity of the beam
due to this acceleration over the surface of a sphere drawn with the
electron at the center.

In Fig. 5, let us suppose that the y-ray traverses the electron along the
axis Z. We shall let 4 represent the
amplitude of the incident wave, X
its electric intensity at the plane g,
and \ its wave-length. The radius of
the electron we shall call @, and 7 will

Z represent the charge on the surface
of the electron between two planes
21 and 2, placed unit distance apart.
As the electricity is by hypothesis
distributed uniformly over the surface
of the sphere, 7 is constant between z = — a and z = + @, and the total
charge on the electron is ¢ = 2ay. The electric intensity at the plane z
at any instant may be expressed by the relation,

X=4 coszvr(i—;—f),

Fig. 5.

where 278/\ is the phase angle at z = o at that instant. The total force
acting on the electron at this instant is therefore,

a 6_
F = Acoszr( )\z)ndz

A\ ) 5 . ) a
= —— CO0S T Sin by
T ™ LY
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and the acceleration of the electron is
¢ = —— —sin —.
(9) x —m €08 s

Let us now calculate the intensity of the scattered ray at a distance
L along the line OP which makes an angle a with the direction OX of
the acceleration. According to classical theory the electric intensity at
P due to a point charge electron at O subject to this acceleration would be

ex sin a
(10) —
where C is the velocity of light. Replacing e by 7dl and x by its value
as defined above, and integrating over the electron along the axis L
from I = — a to 1 = + a, the electric intensity of the scattered beam
at L, a becomes:

An\
L‘a = igg—:f —n—sm 27 -‘Cos——(a L + l)ndl

-sin a sin 21rif cos—— (6 —L+Dhdl

Lc2
_Nd L, a - L
= 2 LmC? smn“2w kSlll « COS 27 Y .

The amplitude of the electric vector of the scattered wave at the point
L, « is therefore

”N4 ., a .
sin“27T SIn «
w2 LmC? !

Ay .= N

or substituting for % its value e/2a,

Ae? sin? (2wa/N)
LmC? (2wa/\)?

The intensity of the radiation at this point is

cA?* sint (2wa/\)
L*m2C* (2ma/N\)*

so that the total energy scattered by the electron is

Ap .= - sin a.

IL. a = CAL, 0.2 =

sin? a,

E, =f I, ,-2rLsina - Ldo
0
_2wcA’! sin? (2ma/\)
T omeCt (2mwa/N\)*

_ 8mcA%* sin‘ (2ma/N)
T am2CH (2mwa/N)*

sinada
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SERIES.
The energy incident on unit area at the electron is, however, I = cA4?,
so that the fraction of the incident energy scattered by the electron is

87ret sint (2wa/N)
3m?C*  (2wa/N)*

When a is small compared with X this becomes

(11) E,/I =

64
el
which is identical with the value given by Thomson! for a sensibly point
charge electron.
If there are N electrons per unit mass of any substance, the mass
scattering coefficient of the substance is therefore
87 e!N sint (2ma/\)

(13) ;2 ~3_ m2C* (2ma/N)t

(12)

where ¢ is the scattering coefficient per unit volume and p is the density
of the scattering material.

2. To calculate the energy scattered by an electron in the form of a flexible
spherical shell of electricity.

We shall treat this problem as if the mass of an element of the spherical

] shell were independent of the rest
X P of the electron, being equal to dm
P = m-ds/s, where s is the area of

the surface of the electron, and m

is its mass. As has been pointed

/ out in part I. of this paper, the

[0, > electro-magnetic mass of a spher-

ical electron of the size here con-

sidered would be negligible. This

% form of electron is therefore only

q l a convenient hypothesis to use in

Fig. 6. calculating the general effect on the

scattering to be expected with any

form of electron when the wave-length of the incident radiation ap-
proaches its largest dimensions.

Let us suppose that the y-ray strikes the electron when moving in
the direction — ZOZ, and determine the intensity of the beam scattered
in the direction OP. As shown in Fig. 6, OP makes the angle § with the
incident ray, and the angle « with the direction OX of the electric vector
of the incident ray. The plane POZ is inclined at the dihedral angle £

1J. J. Thomson, loc. cit.

~Z
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with the plane XOZ. We shall draw also the lines Ol and Og in the
plane POZ, line Og being perpendicular to OZ, and Ol at an angle 6/2
with Og. The line OI therefore bisects the external angle — ZOP. If
now we consider the beam scattered in the direction OP, all the rays
scattered from the element of the electron included between the planes
I and I 4 dl are in the same phase at P.

The amplitude of the electric vector at P due to the rays scattered
by this element is, in accordance with expression (10),

ndl-A Z - sin o/LC?,

where 7 is the charge and u the mass of the electron per unit distance
along Ol, A is the amplitude of the electric vector of the incident beam,
and as before L is the distance OP. If 278/\ is the phase of the ray at P
scattered from the element of the electron at / = o at a given instant,
the electric intensity at that instant of the ray scattered from any
element to P is

Af AL am( 0
u chsma-cosx -2 sin ),

and the electric intensity due to the whole electron is

An? sinafa 2T )
R;, a0, = u LC? _acos)\(é—zlsmg)dl

_ Ar\  sina . (4ma . 0)  2mb
= 2muLC? sin g2 S\ N M2 )TN

Here, as before, a represents the radius of the electron. The amplitude

is obviously the value of this quantity when cos (276/\) = 1, and the

intensity of the ray scattered ot P by the electron is therefore
ILy a8 = CAsz ay 6
cA%yiN? sinf ,f4ma . 8
= - in?{ —sin- }.
4n2L2C* sin? 6)2° » 2
Since 2an = e, 2au = m and cA? = the intensity I of the incident
beam, the first factor of this expression becomes

Tet _); )2
m2L2C4\ 4ma )

When « is expressed in terms of § and ¢ we obtain

cos a = sin 6 cos &,
1. e.,

sina = VI — sin? 0 cos? £.
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We may therefore write:

7 _ I AN ., (4ma . 6 I — sin? @ cos? ¢
L0 = ppreci\ gra ) ST\ 502 sin? (0/2) °

The intensity of the beam scattered by an electron at an angle 6 with an
unpolarized incident beam is the average of this quantity for all values

of & or
1 27
I, ='2‘7;j; I ¢0dE

T (G Ve () 2
= oG\ gra sin N Sing st (82)

The total energy scattered in unit time by the electron is given by
the quantity

E. = f IL,9‘27FL2 Sin 6dé
0

B
T mC*\ 4mra o R Y sz sin? (6/2) sin

This integral may be evaluated either graphically or by means of a series.
To integrate by series, substitute /2 = x and 4wa/\ = b. The integral
factor then becomes:

w2 in4 in2
. . 4sin*x — 4sinx + 2 ]
f sin?(b sin x) n -2sinxcosx - 2 dx.
0

(14)

(15)

sin? x

Writing b-sin x = 3z, this reduces to

288 2z 1
8fsm z(b4 5;+-z-)dz.

If sin? z is expanded into the series

. I I I
smzz=zz_.(3'+3)z4+( it it )z—""
each term may be integrated separately, the result being,
8b2{a—3b2+7b4 — -..}’
where
I
*=3 = .33333,
B-(z 1+£)(i+1) ~ oeecs
4 3 4)\3 T3t 105556,
I I I I 1 I
v=(G-i+3) Gitamts) = ooss
5_<1_1 1)(1 L _L+I)_
=(3 5+6 7 5,3!+3!5, 7 = .00029, 10,
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€ = .0000I, 076 7 = .00000, 00053, 5,
¢ = .00000, 0280 8 = .00000, 00000, 77.

The total energy scattered by the electron in unit time is therefore

8rlet 4ma \? 4ma \*
(16) Eu=mzc4{a—B<T)+‘Y<T)'—'“}-
When the wave-length is large compared with the radius of the electron,

all terms after the first are negligible, in which case

8T et
(Ec/l)a/)\=0 = ? ;{E; ’

as it should. Writing as before N as the number of electrons per unit
mass, o as the scattering coefficient per unit volume and p as the density,
the mass scattering coefficient of a substance composed of flexible
spherical electrons is

o 8we!N 4ma \? 4ra \*
o 2= le— s () (20) - )

3. To calculate the energy scattered by an electron in the form of a thin,
flexible, circular ving of electricity.

In order to account for the electromagnetic mass of a ring electron,
Webster! and Davisson? have shown that the ring must be very thin
compared with its diameter. As a result of this fact, the inertia of any
element of the ring is practically dependent only upon those parts of
the ring immediately adjacent to it. Unless the wave-length is much
smaller than the diameter of the electron, therefore, it is permissible to
treat the mass of an element of the electronic ring as having a definite
value.

Difficulties arise in this calculation, however, from the fact that the
electromagnetic mass of an element differs according as the element is
accelerated perpendicular or parallel to the tangent to the electronic
ring at that point. The effective perpendicular mass depends also upon
the speed with which the ring of electricity is rotating. For purposes of
calculation I have assumed that the speed with which the electricity in
the ring is moving is small compared with the velocity of light, and also
that the mass of an element of the electron is independent of the direction
of the acceleration. Admittedly the latter assumption makes the calcu-
lated value of the scattering only approximate, but it is probable that
except possibly for the hardest y-rays the approximation is close. I
have further assumed, as in the case of the sphere, that the ring electron

1 D. L. Webster, loc. cit.
2 Davisson, loc. cil.
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is flexible, 7. e., that the different parts of the charge are free to move
relatively to each other. As was pointed out when the flexible sphere
was considered, for comparatively long waves such an electron will
scatter in practically the same manner as will a rigid electron which is
free to rotate about any axis; for very short waves, however, the scatter-
ing by the two types of electron will not be exactly the same. The
expression derived below for the scattering by a ring electron may there-
fore be relied upon for any except very short vy-rays.

In Fig. 7, imagine a beam of y-rays going in the direction — Z0Z,
and being scattered by an electron of radius a, represented by the heavy
ring. Let us first determine the energy scattered in the direction OP, at

Fig. 7.

an angle 6 with OZ. As is evident from the figure, the plane of the elec-
tronic ring makes a dihedral angle g with the plane ZOP, and the line
of intersection of these two planes makes an angle a with the line OR
bisecting the external angle — ZOP.

Consider first the energy scattered toward P due to the component
of the electric vector which is perpendicular to the plane of the paper.
If L is the distance, in the direction OP, at which the scattered radiation
is evaluated, the electric displacement due to an element of the electron
at Q(a, a, B, v) is, in accordance with expression (10),

n
nad'Y'AI“ 2wy 0
b——Ij‘CAZ COSs Y ¥ sin 2 .

In this statement, 5 is the charge and u the mass per unit length of the
circumference of the ring, 4, is the amplitude of the electric vector
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perpendicular to the plane of the paper, 7 is the distance from Q to a
plane drawn through O perpendicular to OR, and 27§/ is the phase angle
of a ray scattered to P from this plane.

The displacement at P due to the whole electron is therefore

Ama (™ 2
—,zl%—?f cos%(a—zrsm )d'y
0

This quantity is obviously a maximum when § = o, so the amplitude at
P due to the rays scattered by the whole electron is

AgPa (7 4
WLC? cos - rsm dv,

and the corresponding intensity is

Al ([ g7 (o D)y |
(18) ,u.2L2C4{ A cos-=\ 7sin > d—y}.

This expression represents the intensity at P due to an electron with the
particular orientation defined by the values of « and 8. The probable
intensity at P due to polarized rays scattered by an electron at O is the
average of this quantity for all values of « and 8; 1. e.,

cAiln'a® (7 da dﬂ
RLACY cos~ rsm dy

In a similar manner, the probable intensity at P due to the component
of the incident electric vector which is parallel with the plane of the
paper is

cAsn'a? cos? 6 (" da dB 2
Lt cos ¥ ( sm dy

where 4, is the component of the mmdent amplltude parallel to the plane
of the paper. Since on the average 4, = 4., and since the intensity of
the unpolarized incident beam is I = ¢(4:% + A.?), we may write as the
intensity of the beam scattered to P by an electron at O traversed by an
unpolarized y-ray,

In*a®* (1 + cos?6) (7 " ST I 2
I, 0= R0 > f; da fo‘ dﬂ{ fo cos = (r sin 0/2)d)\} .

Remembering that 2man = ¢ and 5/u = e/m, the intensity of the beam
scattered at the angle by an electron is

Iet(1 + cos?6) [ 4 LY 2
(19) I, = ey yora daj(: dﬁ{f(; cosT(rsme/z)dy}.

To evaluate this expression it is necessary to write » in terms of «, 8
and v. In Fig. 7,

7 = @ CoSs ¢
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and

COS ¢ = COS a COs ¥ — sin a cos B sin 7.
Thus
r = a (cos a cos ¥y — sin a cos B sin ).

The first integral of equation (19) then becomes

27
a . 0 . .
F, = f cos4——)‘ { sin > (cos a cos ¥ — sin « cos B sin ¥) }d’y.
0

Substitute

4ma . 6
k = —— sin - cos «,
A 2
and
a
I = i;L sin /2 sin « cos B.
Then

27
F, = f cos(k cos y — Isin v)dy.
0

We may write
kcosy — Ilsiny = msin (y + A),

where m is the maximum value of k cos y — Isin 7, 1. €.,

m = \/k2+l§

ma , 0 —————
=4—-—>\ sin > N1 — sin? a sin? 3,

and A is the appropriate phase angle. With this substitution,

21
F, = f cos {m sin (y + A)}d~.
[1]

Since the integration extends from o to 2=, the value of A is immaterial,
and may therefore be put to equal zero. The integral then becomes,

27
Fy = f cos (m sin v) dy
0

1 (7 .
=27r- —f cos (m sin ) dvy
T Jo

=27r~]0(m),
where
m? mt mS
Jo(m) =1 —xtagTapget

1. e., Bessel’'s J function of the zero order. Thus

0 T e o e o
F, = 21r]0(4%asin5 N1 — sm’asmh?).
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The second integral of expression (19) may be written

L3 ~ 2
F, = f F2dB = f {2r]o(£rgsing V1 — sin%zsin”ﬁ)} dg.
o ° A 2

By substituting

i;'i’sin 02 =k

and sin « = [ this is reduced to the form
Fs = 47° f J(k N1 — Bsin? 8)dg.
0

The integral can be evaluated by expansion into a series of the form
J(x) =1 — Ax* + Bxt — Cxf 4 - -+,

and integrating term by term. In this series

I I
4=zt
I I
=pptraata e
I I I I

T 224262 + 2%.42.2? + 222242 +22-42-62’

_ I 1 + 1 + I + I

_22.42.62.82+22,42_62,22 22.42.22.42 1 22.22.42.62 ' 22.42.62.82'
etc.

Performing the integration we obtain
Fy = 4n3{M + NI+ O + PP + ---},

where

M = Ji(k),

N = (A2 — 2Bkt + 3CE — --.),

O = 1-3(Bkt — 3Ck + 6DF® — 10ER® + .- +),

P =3%-3.2(Ck — 4Dk + 10EE"® — 20Fk2 + ---),
etc.

The third integral is
F"’=f Foda = 41r3f (M 4+ Nsin?a + osinta + --:)da
) 0

=4 (M+3iN+3-30+388P+ ).
Substituting the above values of M, N, O, etc., this may be written
F$ = g4n*(1 — ok® + BR* — vES + - - ),



42 ARTHUR H. COMPTON. [SEcone
where
a=(1—1A = .37500,
B=00—-%+1%B = .06006, 0,
y= =34 3dd - 3D ~ 100498, 48,
8= —4+6% 1% —4i7ed+i535¢DD = 00025 obo,
€= (= f0defy — 10 fo 3 5 dos 38

— 5753844 99 E = 00000, 84241,
¢ = .00000, 02023, 0,

n = .00000, 00036, 5I,
# = .00000, 00000, 5056.

The scattering at the angle 6 is therefore

4 2 4
(o) 1, , = G+ cos e){l*a<4{, i 0) +6(4ﬂsm§> _}

The rate at which energy is scattered by an electron is obtained by
integrating this expression over the surface of a sphere of radius L.
That is

E, = f I, 4-27L? sin 6d9,
(1)
and since

E,,

T _ Net 4ma ., 6)\?
i 2 _—
=, 2C“f (1 4 cos? §) sm&{ ( sm2)

0 4
vo(Honl) o

If for sin? (8/2) we substitute 1/2(1 — cos 6), this expression is imme-
diately integrable, and we obtain for the mass scattering coefficient,

8 N4 2 4 6
o 52 (ema(g) 0 () -+ )

© q
NIZ

where
a =381+ Ya = 29.60881,
b=38m(+3+3+ b8 = 5241827,
c=3@™a+ 3+ 5+ = 5,397.80I,
d=5@a+3+§+5+5+7)0 = 35619.04,
e=3@ma+5+%+3+E+ e = 162,501.7,
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f=3@0+5+¥+1F+ 1+ +++ 90 = 5419702,
g = 1,377,792, n' = 3,717,000,

h = 2,757,220, o' = 2,356,000,

1 = 4,455,520, P = 1,334,000,

J = 5,935,500, ¢' = 682,000,

k! = 6,632,700 ' = 318,000,

' = 6,311,200, st = 136,000,
m! = 5,182,000, = 54,000.

The right hand member of this equation is convergent for all values of
a/\, but the convergence is very slow when N approaches equality with a.
The values of ¢/p calculated according to this expression for different
values of N\a are shown in Fig. 2 by the solid part of curve II1.

Elementary considerations suffice to determine the manner in which
the scattering by a ring electron depends upon the wave-length when the
frequency is very high. If we consider waves shorter than the diameter
of the electron, it is apparent that the length of the arc of the ring which
may be considered to vibrate as a unit due to the action of the incident
beam will be proportional to the wave-length of the incident rays. The
amplitude of the beam scattered by such a unit will therefore, by equa-
tion 10, be proportional to Ae, and the intensity to N%?. Since, however,
the total number of such units in each electron will be inversely pro-
portional to the wave-length, the intensity of the beam scattered by the
whole electron will be proportional to A2%?/\, 4. e., proportional to the
wave-length. The solid part of curve III (Fig. 2) shows, as we should
expect, that this relation holds approximately even for waves considerably
longer than the diameter of the electron. I have therefore extrapolated
curve IIT according to this law for values of A/a too small for the practical
application of formula 21, indicating these approximate values by the
broken part of the curve.

RESEARCH LABORATORY,
WESTINGHOUSE LaMp COMPANY,
March 17, 1919.

1 These values were determined by an approximation formula.



