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THE MEASUREMENT OF HEAT AND THE SCOPE OF
CAR NOT'S PRINCIPLE.

BY ARTHUR C. LUNN.

SvNorsis. —This paper outlines a symmetric form of exposition of the principles
of thermodynamics made possible through recognizing on a parity from the outset
the two kinds of conservation naturally called after Black and Carnot, each of
which is physically valid under proper conditions, and which lead to the energy and
entropy scales of measurement of heat; thus exhibiting both of these, together with
the thermodynamic scale of temperature, as calorimetric concepts. In the two parts
of the paper are given respectively an experimental and a deductive treatment.

In part I. the experimental meaning of conservation is considered in terms
of certain conditions of consistency; first in connection with single-temperature
transfers of heat, where those conditions underlie the uniqueness of meaning of an
arbitrary scale of heat for various temperatures; second in connection with passages
of heat between bodies at different temperatures, which reveal the dual nature of
a quantity of heat, here illustrated by some analogies.

In part II. are investigated the deductive consequences of Carnot's hypothesis of
the universal ratio of eKciency. With only the single-temperature conservation of
heat assumed to be known experimentally (probably the mildest basis on which
this principle is intelligible), it is shown that there follows practically the entire theory
of reversible thermodynamics, in particular the existence of thermal energy and
entropy and the equivalence of thermal energy and work.

INCE the time when the basic principles of thermodynamics were
given a standard form, chieHy by Clausius, Kelvin and Rankine, it

has become customary not only to speak of "first" and "second" laws
but to adopt a corresponding order of thought in the development of
their more immediate consequences. It is recognized however that the
two principles are at least to a certain extent independent, so that an
inverse order of development is conceivable; as illustrated for instance
by the fact that Kelvin was able, without using the principle of equiva-
lence, to point out the implication in Carnot's theory of a universal or
absolute scale of temperature. ' Moreover, while the principle of equiva-

' Kelvin, Camb. Phil. Soc. Proc. , June S, x848.
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lence enters chieHy on an experimental basis, the second law is made to
rest to 3. large extent on an a-priori hypothesis, in the form of Carnot's
principle or its equivalent, to be judged by experimental test of its
deductive consequences. An unsatisfactory result is that while the
notion of thermal energy, already familiar from experimental calorimetry,
becomes still more concrete through equivalence to mechanical work,
the notion of entropy, introduced by theorem and dehnition, appears
comparatively abstract and dificult of physical interpretation.

Still, this order of ideas is undoubtedly natural in presence of the
general understanding that Carnot's original theory, though contributing
the invaluable concepts of the reversible cycle and the universal ratio of
efficiency, is in contradiction with experiment through assuming the
conservation of caloric in the cases contemplated, the substitution in

these cases of the principle of equivalence of heat and work having opened
the way for the development of thermodynamics in its now classical
form. To make the first law intelligible it is of course assumed that the
measurement of heat by itself is already on an experimental basis. This
is taken to have been accomplished through the processes of calorimetry,
as initiated by the pioneer work of Black, which may be said to rest on
the hypothesis or fact, according to the point of view, of the conservation
of caloric in certain cases of conduction and the like where it is now known

to be an essential feature that no mechanical work is done.
It has not escaped notice however that in some ways Carnot's "caloric"

shows distinct resemblance to entropy rather than to thermal energy. '
Detailed examination shows that most of the propositions of Carnot's

essay, and of the formulas in Clapeyron's mathematical commentary and
Kelvin's "account, "' though so often called erroneous and even meaning-

less by commentators, have a meaning and are correct if "caloric" is
taken to mean entropy. It is certain therefore that the amount of
inconsistency with experimental results supposed to be present in Carnot's
theory has usually been exaggerated and its exact nature not clearly set
forth. From the point of view to be explained in this paper the only
error of importance appears to be that, not realizing the type of conserva-
tion required by his theories to be physically distinct from that of Black,
he borrowed numerical data obtained on the energy scale and applied
them in cases where they should have been given on the entropy scale.
For example, at constant volume the capacity of an ideal gas for change
of thermal energy is constant but its capacity for change of entropy
varies inversely as the absolute temperature.

' Callendar, presidential address; Phys. Soc. Proc. , 23, I53—I89, I9II.
' Clapeyron, J. de L'Fc. Pol. , r4, cah. a3, r52, r834. Kelvin, Trans. Ed. R. Soc., XVL,

I849.
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One may say then that the hypothesis of conservation of caloric mas

used e8'ectively by Black and Fourier in cases where one would now say
that thermal energy is conserved and entropy increases, while Carnot
assumed it for the case of his reversible engine where thermal energy
changes but entropy is constant. The parallel though incomplete is
unmistakable. It suggests that the whole basis of thermodynamic theory
might be recast iD a more symmetric form, securing at the same time a
more completely experimental setting, by considering from the outset on
a parity the two measurable properties of a quantity of heat and the
corresponding scales of measurement based on two types of conservation,
each valid in the respective class of cases whereby the experimental
establishment of the scale is achieved. Such a formulation is attempted
in part I. of this paper where the term "quantity of heat" is for conveni-

ence used, in a sense more generic than usual, as denoting a relatively
primitive concept not really simple, but which rather may be said to
bifurcate into the two distinct and more specific concepts, each of which

corresponds in the appropriate cases to the respective types of conserva-
tion identified by the names of Black and Carnot.

Such a bifurcation during the process of refinement into scientific
precision of a primitive and relatively vague concept is by no means a
rare event in the history of science, though as in the theory of heat it is
often obscured by the continuance in use, to denote one only of the
emerging concepts, of a term previously more comprehensive and in-

definite. During the formative period ef dynamics search was made
for an acceptable measure of the amount of motion in a moving body and
the controversies led to the appearance of two important and distinct
concepts, momentum and kinetic energy; some traces of vagueness of
language remain in the Principia of Newton, though technically he chose
to restrict the term "quantity of motion" to the first of these. The
"degree of electrification" of a body might be taken to include reference
to both charge and potential; the coldness of metal on a winter day is an
uncertain blend of low temperature and good conductivity; the distinct
concepts quantity of heat and temperature arose from the scrutiny of
judgments of "hot" and "cold." In a similar way it seems just to use
the term "quantity of heat" in a generic sense, to comprise reference in

combination to both of the tmo independent measurable properties,
thermal energy and entropy, although since the foundation of calorimetry
the expression has come to be restricted to one of them as a matter of
custom. Further examples could easily be cited, but for the present
purpose the point of view suggested is especially well illustrated by the
following example, which will be seen to furnish a rather vivid and far-
reaching analogy to the thermodynamic relations.



The term "amount of gas" may be treated as somewhat indefinite,

referring to volume or mass or both jointly according to the interpreta-
tion intended, as in the speci6cation of percentages in a gaseous mixture.

Suppose then an extensible balloon containing air, with attached tube
and shut-off permitting control of contents, be allowed to rise through
water in which it is immersed. If the shut-off be closed the mass of air
is constant while the volume increases; if the contents be allowed to
escape at a suitable rate the volume may be kept constant while the mass
diminishes. Here mass, volume, depth, pressure in water, atmospheric
pressure at surface, correspond respectively to thermal energy, entropy,
temperature on some empirical scale, temperature on thermodynamic

scale, and temperature of conventional zero above absolute zero.
In the typical case of Black's calorimetry the heat leaving a body A

at a certain temperature and that entering another body 8 at a lower

temperature are such that the thermal energies are the same, but the

entropy entering 8 is larger than that leaving A. In the typical case
of Carnot's theory, where the transfer of heat occurs by mediation of a
reversible engine working in a simple Carnot cycle between the two
temperatures, the entropies involved are equal but 8 receives less thermal

energy than A gives up. Thus the justice of the term "conservation of
caloric, " in two different senses, seems to be exactly the same in the two

cases.
The incompleteness of the parallel with respect to other features may

also be instructive. In both cases there is known to be conservation of
energy, because the variations of mechanical energy in its various forms

compensate those of the thermal energy; while there is not yet recognized

any physical magnitude whose variations compensate those of the known

thermal entropy, so as to allow the formulation of a law of conservation
of entropy in some wider sense. Still it is conceivable, as Callendar

suggests, that there may be other and equivalent forms of entropy, and

especially does there seem to be a chance for speculation on this point in

connection with the thermodynamics of radiation. Perhaps also there

may be other and independent aspects of heat, beside energy and entropy,
whose conservation could be established in some experimentally intelli-

gible sense; for instance in connection with the aggregate result of the
molecular Doppler effects, since energy and temperature alone do not
determine spectrum of radiation if the black body condition be not im-

posed. Such novel aspects or magnitudes could probably not be sifted
out by the study of bodies, like fluids in gross, whose state depends on

only two independent thermodynamic coordinates.
As underlying the interpretation of thermal measurements the notion
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of conservation or equivalence appears in various forms These may
be analyzed in terms of three fundamental types, corresponding to the
following three elementary cases of experimental comparisons: (t) com-
parison of quantities of heat entering or leaving different bodies at the
same temperature, (2) comparison of quantities of heat at different tem-

peratures, (3) comparison of heat with other physical entities, especially

completely available energy in some form.
The treatment given in Part I. shows that on the basis of the first

two only, including the suggested dual aspect of the second, it is possible
to exhibit entropy as we11 as thermal energy as a calorimetric magnitude,
thus reaching a more symmetric experimental setting than the familiar
forms of the theory. The equivalence of thermal energy and work is
then introduced as an additional experimental result, while the existence
of an analogous non-thermal equivalent for thermal entropy appears
merely as a question.

As an alternative development a symmetrically deductive treatment
is given in Part II. Here the only experimental comparisons assumed

are of the type (r) above, while Carnot's hypothetical principle of the
universal efficiency function is stated as a postulate. The existence
of thermal energy and entropy, identifiable with the experimental con-

cepts, is deduced, so that for reversible processes there follow both first
and second laws as commonly understood. Thus, on what appears to
be a minimum basis of experiment sufficient to make the measurement
of heat an intelligible notion at all, Carnot's principle alone proves to
be an adequate hypothetical basis for the entire general theory of the
thermodynamics of reversible processes, having in particular the principle
of equivalence of heat and work as a corollary. Distinct indications of
the possibility of such a conclusion will be found in the apparently little
known memoir by Reech, ' in which the development is such that it can
be specialized further by assuming either conservation of energy or
conservation of caloric, considered as mutually incompatible. Results
partially similar to those now obtained will also be found in the recent
papers by Larmor and Raveau, ' dealing with Carnot's principle apart
from the principle of equivalence. Some reference will be made later to
corresponding features in these papers, but the detailed comparison will

be left to the reader.

PART I ~ EXPERIMENTAL SETTING.

Passing over the complex detail of experimental methods and the
involved questions presented to the experimenter's judgment in the

' Reech, Liouv. J., ser. I, x8, 357-568, I853.
' Larmor, Roy. Soc. Proc. , 94, 3z6-339, x9x8. Raveau, C. R., x67, zo—z3, July I, I9I8.



attempt to sift from among secondary or accidental aspects the main

elements of the phenomena to which attention is to be directed, it will

be sufFicient here merely to notice certain salient features of the results,
that either have been obtained or with appropriate experiments would be
obtained if thermodynamics in its familiar form is valid. As to ther-

mometry, it will be supposed that means have already been secured for

identifying particular physical temperatures, and that the various tem-

peratures are known to form a simple or linear ordinal series, in conneo-

tion with which the terms "higher" and "lower" have their usual

meaning. If data are to be transcribed with the aid of some numerical

specification of temperature it will be understood that the physical order
of rising temperature corresponds to the order of increasing values of
the index variable t, without implying any initial physical interpretation
for equality or comparison of intervals in di8'erent parts of the scale.
In most cases it will be clear that t could be understood merely as some

symbol of identihcation, not necessarily numerical.

Viewing then to begin with as merely tentative the notion that heat
can be measured at all, one may ask what there is in the experimental
processes developed and the results reached to show that heat possesses

properties truly measurable, and such that the results of measurement
can be described justly in terms of the standard language of equivalence
and conservation. In the main the answer is that in all the types of
comparison involved in thermal measurements there appears a certain
unanimity in satisfying what may be called conditions of transitivity,
or conditions of consistency as they become in the phrasing suggested

by the point of view represented in the notion of equivalence; conditions
as to sense or algebraic sign, and as to value or measure. Between these
two kinds also there is a certain formal analogy that needs no attention
here. It is because these conditions are satis6ed that it is possible to
formulate the meaning of a "quantity of heat" as something having
value and sign. This formulation, found by experience to be both just
to the facts and convenient in describing them, is best thought of as
occurring in connection with observation of such variations in physical
properties, supposedly due to thermal processes, as afFect features already
known to admit of algebraic representation, like length, volume, density,
mass of a particular phase. Both kinds of conditions of course appear
in a variety of forms, corresponding to the various kinds of bodies involved
and the various kinds of thermal exchange between them.

In language made unconventional in order to avoid specihc terms
already adopted as technical, the conditions of sense may be described as
referring to a distinction between some change called "waxing" and its
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opposite "waning, " the terms bearing various meanings for various bodies
or kinds of change. Suppose then in each single experiment of a set a
certain pair of bodies in thermal exchange, all other bodies being found
unaR'ected in certain prescribed respects. With A and 8 in exchange let
A vary in a way called waxing by definition, then what 8 does may be
called waning; in exchange with C suppose J3 waxes, then what C does is

naturally called waning; no more definition being needed, there is

content of fact in saying that with A and C in exchange if A waxes C
wanes. In case n bodies were paired oR' in all possible ways there
would be one arbitrary definition, n —I definitional pairings, and

(n —I)(n —2)j2 pairings for test of fact. There are also in connection
with processes that can be reversed items of fact to the effect that
reversals of sense correspond in the two bodies of a pair. In view also
of the number of ways in which the same body may be aRected by thermal

exchange according to the conditions imposed, it is clear how broad is

the justification in fact for speaking of heat as something entering or
leaving a body.

The matter of numerical value is closely similar. The magnitudes of
corresponding changes in the bodies of a pair are found to be related
in some way, and the observed relation for A and C can also be computed
from the relations for A and 8 and for 8 and C by algebraic elimination.
The character of the algebraic process depends on the choice of variables
used in transcribing the measurements, the usual case being the multipli-

cation of ratios. With any number of bodies in the set to be compared,
a particular one may be chosen to be paired oH with each of the others,
either to decide on convenient definition of terms or by process of calibra-
tion to fix on a suitable choice of variables; then all other pairings give
tests of fact. The consistency thus revealed is the ground for speaking
of heat as something admitting quantitative estimate.

Whether every type of sequence„or in what sense any particular
sequence, of thermal comparisons would satisfy these conditions need

not be discussed here; some of the outstanding problems relate to the
question whether other and independent quantitative aspects of heat
remain to be discovered. The few special types to be mentioned here
are actually of the consistent or conservative type, and prove to be suf6-
cient as basis for the theory aimed at. In each case the meaning of the
conditions of consistency in sense or sign may be passed over as obvious
without comment; the conditions of consistency in value or magnitude
will be su%ciently illustrated by the forms that they take in certain
standard cases of the three types of comparison listed above.

Comparisons of the first type, of quantities of heat entering or leaving



bodies at the same temperature, lead to the conclusion that all such
can be compared among themselves and represented consistently by
simple ratios; or in other words that for such single-temperature corn-

parisons a quantity of heat can be considered a simple thing, capable
of representation by a single number in terms of any chosen unit belonging
to that temperature, regardless of the kind of body concerned or the kind
of change produced in it according to collateral conditions imposed.
This leads to the introduction of what may be called an empirical or
arbitrary scale of heat, including a single specific unit for each tempera-
ture, but not implying anything as to the possibility of comparing two
quantities of heat when the temperatures are different. An approximate
example of such a scale is found in the system of differential calories,
according to which the specific heat of water is by definition unity at
every temperature. A better example for the purpose is to be found in

strictly isothermal processes, especially changes of state, though latent
heats of expansion would also serve. Through a suitable variation of
pressure the latent heat of transition between liquid and vapor of a
single substance could furnish such a scale for a considerable range of
temperature.

Consider then a variety of substances such that the respective pressures
can be adjusted so that the temperatures of transition agree. In the
absence of such adjustment for any two particular substances A and B,
suppose thermal exchange between them for a certain time leads to
the transformation of the respective masses m~, m~, the transition
being reversed in both bodies with reversal of sense of the temperature
difference. With temperature difference approaching zero the ratio
m~/eels of corresponding masses approaches a limiting value p~s to be
understood as the ratio of masses transformed in the ideal limiting case of
reversible or single-temperature conduction.

The main experimental facts of significance here are then: that the
ratio p~~, depending on the temperature of transition and the nature of
the substances, is independent of the absolute mass transformed, and
that for the same temperature the various ratios f'or the various bodies of
the set satisfy conditions of transitivity in the form p~&p~~ = p&~. This
multiplication of ratios is of course not merely a mathematical identity,
though conveniently given a mnemonic form as such, the meaning being
that if m~ be the same in the experiments {AB) and (AC) and m~ the
same in experiments (AB) and {BC)then as an experimental fact m~ will

be the same in (AC) and (BC). The fact that the ratio of masses is
characteristic suggests that a quantity of heat can be numerically indexed

as proportional to the mass transformed of some particular substance.
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The conditions of consistency in the compounding of the ratios furnish

one instance of the universal consistency in the comparison of various
temporary units of heat belonging to the same temperature, though in

general the mathematical form varies. In such facts is found the
experimental basis for the effective accuracy of the language of conserva-
tion, according to which for example one can speak of a quantity of
heat going from A to C either directly or through B. In the sense illus-

trated it will now be supposed that the meaning of a quantity h of heat
at a temperature t has been established. Certain familiar terms, like

the differential specihc heat dh/dt, become intelligible in connection with

any definite choice of the scales of heat and temperature.
For the second type or multiple-temperature comparisons consider a

set of bodies or reservoirs maintained at their respective various tempera-

tures, any certain three of which, such as will be referred to, being
labelled in descending order as t~, t2, f3. The two distinct forms of con-
servation already alluded to will then appear in connection with thermal

exchange between these bodies of the two kinds naturally named after
Black and Carnot.

The 6rst form, fundamental in classical calorimetry, occurs when the
bodies communicate by pure irreversible conduction or radiation, or

by the mediation of some mechanism such that the various quantities
of heat are related in the same way. The second occurs when the bodies
communicate by mediation of a reversible engine working in Carnot
cycles between the two temperatures. In the first case suppose h&

units of "t&-heat" leave the first body and h2 units of "f2-heat" enter the
second body; let h~/h2 = b». Similarly in the second case, the two

quantities of heat being hi' and h2', passing when the engine is on the
isothermals, put h~'/h2' ——c».

Now calorimetry as ordinarily understood, or the measurement of
heat by itself in Black's sense, rests largely on the experimental facts:
that b» depends on the two temperatures only save for its obvious varia-
tion according to the choice of the scale of heat; and that in terms of any
one scale of heat the ratios for various pairs of bodies satisfy the condi-
tion b»b» ——b». But according to standard thermodynamic theory it
is indirectly understood to be a fact, and by suitable apparatus could
doubtless be shown to be experimentally verifiable with considerable
directness, that the ratios c» and the like satisfy similar conditions.
The fact that the b's are independent of the physical nature of the reser-
voirs and the character of the changes produced in them is paralleled

by the fact of a similar independence on the part of the c's of the proper-
ties of the reservoirs and the nature of the mediating engine.
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Thus in each case there is complete ground for concluding that there
is a sense in which the heat is conserved in passing out of one reservoir
and into the other. But it is also to be understood as found experi-

mentally that t)» & c12, accordingly the two types of conservation must
be physically distinct.

Thus a quantity of heat h, entering or leaving a body at temperature

t, exhibits two distinct measurable properties, thermal energy and en-

tropy, whose measures g and s are related to the empirical measure of
heat by equations of the form

g = hB(t), s = hC(t),

where the reducing factors B(t), C(t), appropriate to any particular
scale of heat, are determined, except for an arbitrary constant factor
in each depending on the choice of the units for g and s, by the conditions

B(t2)/B(tl) = h12, C(t2)/C(tl) = C12,

which are the transcription of the equality of gl and fjf2 in the Black process
and of sl and s2 in the Carnot process.

A change of the scale of heat can be represented by putting h = h' p(t)
where p(t) is the ratio of the new to the old umt of t-heat; the corre-

sponding new reducing factors are then p(t)B(t) and p(t)C(t), supposing
the units of g and s not altered. In particular p could be taken as the
reciprocal of either 8 or C, thus reducing the arbitrary scale of heat to
the energy or entropy scale.

If by definition T(t) = B(t)/C(t), then in view of the inequality

h» ( c», which gives B(t,)/C(t, ) ) B(t2)/C(t2) it follows that T(t), the

absolute or thermodynamic scale of temperature thus shown to exist,
is a monotonic increasing function of the physical temperature, is inde-

pendent of the choice of the scale of heat, and is determinate except for
a constant factor depending on the units of g and s, whose values for
the same quantity of heat are related by a/s = T(t).

With the aid of this scale of temperature the two cases may then

be epitomized as follows, the diferent equations in each set being
equivalent but suggesting different interpretations:

al a2i 1 1 2 2& ( 2 1)/ 1 ( 1 2)/ 2y

{s2 —sl)/s2 = (Tl —T2)/Tl, s2 —sl = g&(z/T2 —z/TI) 2

sl s2 y g1/Tl g2/T2 2 (gl g2) /gl (Tl T2) /Tl y

(al a2)/a2 = (Tl —T2)/T2' al —a2 = 21(T1 T2).

To each equation valid in one case there corresponds one valid in the
other case obtained by interchanging a with s and T with r/T. For
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example there are two instances of the Carnot simile of the waterfall:
in C the thermal energy s(T, —T~) is lost when entropy s falls through
the temperature difference T& —T2, while in B entropy g(IjT2 —I/T&)

is generated when thermal energy g rises through the difference of the
reciprocals of the temperatures. In each case the statement of the
condition of conservation in terms of the non-conserved quantity gives a
kind of calorimetric aspect of the familiar Carnot ratio and its dual. The
universality of these ratios, as depending on the temperatures only, is a
consequence of the universality of the ratios b and c mentioned above,
which is what makes it possible to abstract the notions of thermal

energy and entropy out of the properties of particular bodies.

Up to this point only heat entering or leaving a body has been spoken of.
But the conservation of entropy in the Carnot process leads by a familiar
reasoning to the conclusion that all reversible transformations connecting
two states of the working substance must agree in the amount of entropy
absorbed, this amount being the integral of the calorimetric expression
for ds in terms of reversible changes of the temperature and other observ-
able properties of the body. The existence of a function of state properly
called the entropy of the body is thus recognized, in a purely calorimetric
setting. The question is at once suggested whether a corresponding
identification of the internal energy of the body is possible by thermal
tests alone.

This calls attention to a certain feature of incompleteness in the parallel
as thus far drawn, in that the Carnot process implies the mediation of
a working substance, while in the primitive form of the Black process only
the two reservoirs are concerned, unless one considers the optical ether
as mediator. It is, however, possible to imitate the net result of the
irreversible conduction or radiation through the mediation of a gas, for
instance, working in a cycle of the Carnot type except that such a part
of the expansion on the upper isothermal is "free" that the net work of
the cycle is zero. This illustrates that the primary condition for Black
conservation during communication of the two reservoirs is of course
not that there shall be no mediator but merely that the ultimate changes
shall affect only those reservoirs; in contrast with the Carnot cycle,
where some change in other bodies accompanies the non-vanishing work
done. Accordingly, any case where it is possible to use a mediating
body in such a way that this condition is satisfied, and such that the
quantities of heat absorbed can be identified in terms of the changes in

that body itself, can be thought of, not only as exhibiting conservation of
thermal energy, but as leading also to a calorimetric identi6cation of
changes in what is to be called the internal energy of the body. The



simplest case is naturally that of a cycle passing through two states of the
mediator, such as to connect those states in two different ways by a
path consisting of an isothermal and an adiabatic, one path reversible,
the other necessarily irreversible at least in part, and so adjusted that
the net work of the cycle is zero. The experimental tests are then to be
understood as verifying that the conditions of transitivity are satisfied,
in fact with ratios identical with the b's above. In such a case the
identification of the internal energy function is strictly analogous to
that of the entropy by a Carnot cycle. That the identification of the
two functions of state in this way can rightly be described as purely
calorimetric is clear from the fact that, although the conditions involve
full work in one case and no work in the other, still no quantitative com-
parison of heat and work is implied. Just how far the range of such
cases extends it is not easy to say, but it may be guessed to be not far
from coextensive with that in which a really experimental meaning at-
taches to the quantities of heat involved.

A more fundamental lack in the parallel appears when the further
experimental facts are included which complete the classical first law,
here more naturally called the last law. These show that in the case
of the Carnot cycle the gi —

g~ is proportional to the work done, the
factor of proportionality depending only on the units, or in other words
that the conditions of transitivity are satisfied when mechanical energy
is included with thermal energy; and more generally that work done is
equivalent in any case to decrease in internal energy. The Carnot ratio
then assumes the form of the ratio of efFiciency; and, conversely, as
Callendar has pointed out, the principle of efficiency combined with
Carnot conservation leads to the principle of equivalence for reversible
processes.

There is on the other hand, however, no physical quantity yet identified
whose variations compensate those of the recognized thermal entropy.
The discovery of such would be expected to make it possible to state
certain conditions on irreversible processes in terms of an extended kind
of Carnot conservation, instead of in terms of inequalities. It might
also help to give physical meaning to the measure of probability, in
terms of which entropy is expressed in statistical theories; perhaps utiliz-
ing some large scale coefFicient related to the action constant of recent
physical theory much as the gas constant is related to the agitation
constant in the molecular theory. Many things suggest that if such a
quantity exists, its setting may involve the relation of matter and radia-
tion.

A certain "instinct for conservation" has sometimes been looked upon
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as part of the natural equipment of the physical investigator, and the
order of thought here sketched shows how fully successful in this subject
is its guidance of the interpretation of experiment. Kith the exception
of the single problematic instance mentioned —whose place so far as
present knowledge goes is held by the inequalities that take such a
unique place in physical theory —the basic features of thermodynamic

phenomena are found in the four distinct types of transitivity listed, each
admitting statement in terms of the language of conservation, which

lead to the abstraction of the four corresponding fundamental notions:
heat„ thermal energy, entropy, thermo-mechanical energy. The corre-

sponding arrangement suggested for the theory includes then five laws,
four equations and one inequality. The experimental basis used is a
blend of reversible and irreversible processes, and in particular the various

experiments of Joule on equivalence deal mainly with irreversible pro-
cesses of rather extreme type.

Since, however, mathematical developments in thermodynamics are
so largely concerned with reversible processes it is natural to ask whether
some basis could not be found for a theory of such processes by them-

selves, adequate for the complete theory so far as they are concerned.
It will be shown in part II. that conservation of the first type only and
Carnot's principle of efficiency, as formulated in terms of the empirical
scale of heat, are together sufficient for such a basis.

PART II. THE ScoPE oF CARNQT s PRINcIPLE.

The actual course of development of thermodynamics has tended to
obscure the real reach of both of Carnot's fundamental ideas. First,
his conservation of caloric was rejected as erroneous instead of being
recognized as distinct from that of Black and Joule; the irony of this
appears when one notices that, for the processes he defines, a conserva-
tion essentially equivalent to his occurs as a theorem in the classical
theory. Second, his principle of efficiency did not have its consequences
developed independently, but rather it was merely superposed on the
principle of equivalence, adding thus to the theory only the extra content
it had to o6er. From the very nature of his principle, however, in that
it refers to a ratio of heat and work as related to two distinct tempera-
tures, it would seem inevitable that it should lead to some kind of
quantitative comparison of heat at different temperatures as we11 as of
heat with work, independently of his postulate of conservation. In
order to reveal the full scope of the principle therefore, and especially
its independence of the ordinary principle of equivalence, it is natural
to develop its consequences with only so much additional assumption
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88 ls required to yield the general notion of a quantity of heat, abstracted
from the properties of particular bodies.

Accordingly, for the alternative theory now to be presented, relating
to reversible processes only, the basis of assumption is the Carnot postu-
late of efticiency, that for reversible cycles of his type the ratio of work
done to heat absorbed on the upper isothermal is a universal function
of the two temperatures; where quantities of heat are to be understood
as known to be measurable in the sense of an empirical scale of heat as
above described. Thus of the various types of conservation mentioned
in part I. only the erst or single-temperature type is now assumed, this
being apparently the mildest basis on which Carnot's principle has
intelligible meaning as one of possible common application to all kinds
of bodies. As thus understood it will be shown to yield the entire
thermodynamics of reversible processes. The existence of thermal energy
and of entropy proves to be deducible without reference to the experi-
mental basis of irreversible phenomena on which the theory of energy
ordinarily rests. The conservation during reversible conduction, which

is assumed, is the type where conservation of energy and of entropy are
not distinct, so that only the generic notion "quantity of t-heat" is
needed.

The case to be for convenience considered 6rst is that of a Huid as
working substance, its thermodynamic properties under the limited

calorimetry defined being embodied in differential expressions

dh = kdt+ Ak, dm = pdv,

for heat absorbed and work done during a differential change under
equilibrium pressure, where the coefficients k, l, p are for each particular
body certain definite functions of v and S. Now merely as a mathematical
proposition there exists for any system of this kind, with only two
independent variables, an integrating divisor ra such that dhjco is an
exact differential ds; the ~ is of course not uniquely determined, but any
particular choice gives a function s determinate except for an additive
constant. The s chosen is to serve simply as parameter of the adiabatic
lines, whose differential equation is dh = o, and later naturally appears
as some function of the entropy, the canonical choice of s being the
entropy itself.

The reasoning can be carried out in terms of the original variables

{v, t}, but for brevity it is convenient to transform to {s, 5) as new inde-

pendent variables. These are independent except when the latent heat
of expansion / vanishes, in which case a true Carnot cycle is not possible
since then an adiabatic is also an isothermal; this is a physically unreal
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case which need not be pursued. It is also essentially general for the
main purpose to suppose that the Jacobian B(s, t)/8(s, t) is positive, so

that the sense of equivalent cycles is the same in the (s, t) and (s, t)
planes when the coordinates are taken in this order. %'hatever the
choice of the s, this transformation offers the convenience that a Carnot
cycle is represented by a rectangle in the (s, t) plane. In terms of these

new variables the heat and work take the forms

dh = cods, dzv = ads+ bdt,

where co, a, b are to be considered as functions of s and t„. the explicit
formulas connecting them with k, l, p are not needed. It will be clear
also that the proof really applies to the general case of a two-variable

system, since the same forms would result if the original expression for
dw had a term in dt, and if the v and P were interpreted as any coordinate
and corresponding generalized force.

If tj and t2 be the higher and lower temperatures in the cycle Carnot's

principle then imposes the condition

(3} zv /he
——H(t „t2),

where H is the same function for all bodies when the same scales of heat
and temperature are used for all. A change of the scale of heat, repre-
sented by putting It = h' p(t) and thus giving k' = k/p, I' = I/p, is allowed

for by putting

This is still universal in the sense intended, so that if the principle is

valid for one scale of heat it is valid for all.
The case in hand, for the cycle represented by the rectangle

(s=s2 sg, t=t2 tg)has

in which

hg —— (o(s, t, )ds,
tI

w = y(s, t)dsdt,
eg tg

Ba Bb g(p p)
8s 8{s, t)

'

where the area-integral for zv is obtained by a known lemma from the
initial perimeter integral. The fundamental condition is then that the

relation
e], il

q(s, t)dsdt = H(t~, t2) co(s, t~)ds
ett tg eg

must be an identity in (s&, s2, tI, t2).
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Consideration of a range infinitesimal in t suggests the introduction

of the function

which is the familiar Carnot function adapted to an arbitrary scale of
heat as well as of temperature. For a cycle infinitesimal in s only

whence

the limiting form of which for range infinitesimal in t also is

(ro) q(s, ti) = co(s, ti)P(ti),

ao that division shows the ratio y(s, t&)/p(s, ts) to be a function of t~, ts

only, say for abbreviation f(tz, t2), identically in s, t&, t& Because of. the

symmetry of notation it is no longer necessary to keep the condition
If then to be any particular value of t this result is equivalent to

so that q is built of two factors, each a function of one of the variables

only, which for later convenience may be written as derivatives:

p(s, t) = a'(s) r'(t),

where the factors can be understood as positive so that 0 and 7 are
monotonic increasing functions. Then (io) gives

(iz)
where by definition

(i3)

co(s, t) = r'(s)8(t),

The differential forms in (2) and the relation (5) become

db = a'(s)8(t)ds, dw = ads + bdt,

Bc 8b
————= ff'(s) r'(t),
Bt Bs

the last being equivalent to8, Bb—(c —0'v) = —,
Bt Bs'

which indicates the existence of a function u such that

BQ BQ
a = 0'(s}r(t) ——, b = ——,Bs' N'
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which make
T(~)

dts = s'(s)r(t)ds —du = dh —du.
8(t.)

This suggests the introduction of a particular scale of measurement of
heat by the definition

T(r)
dq = —-dh,

8(r)

(t 8) dN = dg —dm, do = dh/8 = dg/T,

where do, dl are exact differentials, while dg in general would not be.
In terms of the original differential forms (I) the result is then that there
exist functions 8 and r of t only such that dh/tt and rdh/e —dts are exact
differentials. The dg and do are the measures of heat on two special
scales whose existence is implied in the Carnot principle. '

As to uniqueness, the mode of introduction of T and 8 shows that any
two determinations for the same body or for different bodies are related by

T~ =OT+P, 8~ = a8,
so that for the same dh:

dg* = dg+ /tdh/n0

But since only the product a' T' is determined it is essentially general
to hold o. as unity, then the freedom left in the de6nition of dg can be
used to arrange that equality in dk shall bring about equality in dg,

by having p = o; thus T and 8 may be understood as the same for all

bodies.
In terms of the general and the two special scales of heat the efficiency

ratio and the conditions of vanishing of the cyclic integrals of do and du
are

'N T1-
h1 81

h] k2—+— 0
81 82

:T2
s

Tl

Lt1 g2+—= 0
T1 T2

VO

Tl T20
0'1

&1 + &2

hI h2 &1 &2+ = g1+ fff2 = +
01/rl tt2/r2 I/rl I/r2

' This proof should be compared with the deduction given by Larmor, ktc. t,~t. , especially
p. 33m. He begins with the more primitive form of the Carnot postulate, that in order to
have work done heat must fall in temperature, and considers also irreversible processes. The
factorization which introduces one of his temperature functions results from a functional
equation transcribing the coupling of two Carnot cycles. His g(8) and f(e) correspond to
the 8(t) and v(/) above; Raveau similarly deduces the existence of two distinct scales or
functions of temperature. As to the use of the term "universal, " however, the distinction
should be noted, that the 8 in the present paper, although the same for all bodies, depends
on the scale of heat, while T is independent of that scale. It is naturally the latter only
that is to be considered truly universal as a scale of temperature.
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inspection of which shows for one thing that 8 depends on the scale of
heat while r does not. Thus r/8, r/e, and r correspond to B(r), C(t),
and T(t) of Part I., while g and n are thermal energy and entropy.

The parity of setting of the two special scales of heat is noticeable
here as in Part I. It is hard to see how either can be said Ratly to give
the true measure of heat, though Callendar's view as to the preeminent
claim of the entropy scale seems fully as reasonable as the common
exclusive use of the energy scale. The latter has of course the obvious

advantage for measurement and computation that it gives a constant
ratio of work to thermal equivalent and approximate constancy of ordi-

nary speci6c heats, but for theoretical purposes at least the entropy
scale offers some advantages. For example, if for k/8 and f/8 be put
rc and ), these being then temperature-capacity for entropy and latent
entropy of expansion, the differential forms with temperature on the
r-scale are

d0' = Kd7' + Xdv, dQJ = pdv,

and the conditions are that do and vdcr —dm be exact diHerentials.

These conditions are equivalent to the adapted Clapeyron and Clausius

equations
BK BP
Bv Bv2

which are so simply interpretable on the graph of the isochoric (p, r)
curve.

To extend the theory to a system with more than two coordinates it
is convenient to use the v-scale of temperature and the e-scale of heat, as
determined for two-variable systems. A system with n coordinates of
configuration, say vi, v„, will then be characterized by the difterential

forms
do' = ffdr + ZX;dv;, dzo = Zp;dv;.

The Carnot principle may then be understood to be applicable to every
two-variable process which such a system can undergo, through the
presence of possible or conceivable constraints. This is equivalent to the
condition that if for v& ~ ~ v„be put any arbitrary functions of v and
a single other parameter v, then d0 and ed~ —dm must be exact diEer-
entials in these two variables. The conditions for this prove to be
equivalent to those under which the same expressions are exact di8er-
entials in the e + I variables, regarded as independent. To show this
it is enough to consider only the following types of cycle: (u) where only
one of the variables v; varies, (b) where only two are affected, these under-

going variations proportionate but in arbitrary ratio. With such cycles,
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starting at an arbitrary state of the system, the Carnot principle yields,
from (a) the Clapeyron and Clausius equations for each of the variables

separately, and from I'b) the additional conditions

~Ps ~Pi
Bv; 8v;

which indicate the conservation in an isothermal cycle of work and of
heat separately. The scales e and r and the equations in (ry) and (r8)
thus apply to these more general systems.

If for such a system the heat scale be still left arbitrary, the result is
that dh/8 and vdh/8 —dm are exact differentials of functions of state 0-

and I, so that dh = HdfT, dm = 7do —du. Now while a system with

two variables only can have but two independent functions of state,
one with more types of variation can have a corresponding number.
But not more than two independent functions can have differentials

linearly expressible in terms of the same two fundamental differential

forms; in fact, in the case here, any function of state whose differential

is a linear combination of dh and dzv must be a function of o. and N.

In this sense the theory of energy and entropy, and therefore the Carnot
principle, yields the entire theory that can be based solely on dh and de
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