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We propose a model in which inelasticity can be calculated dynamically. By this we mean, given the
left-hand cut contribution (or force), our model gives a prescription for calculating inelasticity nt(=e 2t&

where B&~ is the imaginary part of the phase shift). The basic assumption of the model is that there is one in-
elastic v; above which a large number of reaction channels open, so that the partial-wave amplitude is
essentially imaginary in the inelastic region. Our amplitude satisfies elastic unitarity below the inelastic
threshold and inelastic unitarity above it. We illustrate the use of the model by applying it to the 2l--2i-

p-wave system, where we approximate the left-hand-cut contribution by one pole and by two poles.

I. IÃTRODUCTIO5

PROBLEM which theorists face at present is that

~ ~

~

~

~

~

there is no simple method for calculating in-
elasticity at high energy. In the Chew-Mandelstam' '
E/D method, inelasticity occurs through an unknown
function Rt(= at'0'/at" )..In the X/D method of Frois-
sart' and that of Frye and Warnock, ' a priori knowledge
of the inelasticity is necessary for the determination of
the scattering amplitude. A useful method for calculat-
ing inelasticity dynamically is the ED matrix formu-
lation of Bjorken, ' which is suitable when a few inelastic
channels are open. However, at high energy, the method
becomes not only prohibitive, because of the opening
of a large number of inelastic channels, but also cannot
be applied, since inelastic channels involving large
numbers of particles become important. Thus, at high
energy, in any phenomenological investigation, one not
only has to find the force (or the left-hand-cut contri-
bution), but also the inelasticity. It is, therefore,
physically interesting to see whether the two problems
can be reduced to one, say, that of finding the force,
while the inelasticity becomes a calculable function. r

This has been the basic motivation of our model. An
approach, similar to ours in spirit, but with a very
diferent scheme for calculating inelasticity, has been
outlined by Olesen.

In Sec. II, we present the mathematical formulation
of our model. The 1V/D method with inelastic cut by
Froissart' ' is used. A practical difhculty, which may

*Work supported by the U. S. Atomic Energy Commission.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
'G. F. Chew, S Matrt'x The-ory of Strong Interactions (W. A.

Benjamin and Company, Inc. , New York, 1961).' M. Froissart, Nuovo Cimento 22, 191 (1961).
4 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).
5 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
6 Usually the left-hand cut and the inelasticity are treated as

given separately in the S-matrix approaches. See for example,
G. F. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961).

7 Frye and Warnock (Ref. 4) have found that the left-hand cut
contribution and the inelasticity cannot be chosen independently,
in general, and they observed that the asymptotic behaviors of the
left-hand cut contribution and the inelastic eBect should be
precisely matched.

s P. Olesen, Phys. Letters 10, 352 (1964).
9 The method was independently developed by one of us (K. K.)

and M. Ross in an unpublished work.

arise because of a simple approximation for the driving
force, is discussed in Sec. III. In Sec. IV, we present
the results of applying our model to the w-m p-wave
system. Finally, in Sec. V, a few concluding remarks
are made.

II. FORMULATION OF THE MODEL

We consider the scattering of two equal-mass spinless
particles. The partial-wave scattering amplitude is
given by

where
A t (v) = (e"'«"&—1)/2ip (v),

p(v) = I:v/(v+ 1)3'".

(2.1)

Here v is the square of the c.m. momentumm and 0t(v)
is the phase shift. If p; is the inelastic threshold, then 6» is
real for v( v; and 8t is complex for v) v; (8t= 8t~+i5tr).
For v) v;, we can write

where
A t (v) = (rt te"'t —1)/2ip (v),

gs=e='~~ .I

(2.2)

Ke call g& the inelasticity. "
Let us now introduce the following function' ':

Ft(v) = exp
2ivt+'ts " 0t'(v')dv'

vit+1/2(vi v)
expg2i(1=—t j. (2.3)

The function
v'+'ts " btz (v')dv'

0 (.)=
„,. v "+'t'(v' —v)

(2.4)

is an analytic function which is real for 0&v(v; and
becomes complex for v& v;.

0()=A()+i5'(), ( & ') (23)

At is the principal value of the integral in (2.4). Here,
it is noted that the factor v'+'~' is used rather than v'~'

as has been done by Froissart. ' The reason for this is
given later on.

' The particle mass is taken as unity.
"The function q&(v) is usually called the inelasticity factor, the

absorption coeKcient or the transmission coefIIicient.
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The new amplitude then takes the form

~ ( )=(~""'"'—1)/22/()

where

(2.7)

«(v) = &/(v) —0/(v) . (2.8)

Since 5~ and 8~ are both real for 0&v~& v; and have the
same imaginary part for ~ & v) v, , therefore o.& is real
throughout the physical region 0&v& ~. Equation
(2.7) then implies that a&(v) always obeys elastic
unitarity, i.e.,

Ima((v) =p(v)
~
a/(v) ~' for ~ )v) 0. (2.9)

Let us now consider the threshold behavior of n~.

When v —+0 we have 5~~ v'+'~' Further from Eq.
(2.4), we have e~~ v'+'/' as v —+0. Thus, from (2.8),
n/ ~ v'+'/' as v ~ 0; that is, the new amplitude u/(v) has
the same threshoM behavior as the physical amplitude
A/(v). This is essentially the reason for our using the
factor v'+~/2 rather than v'/' in F~(v). The discontinuity
of a&(v) on the left-hand cut is given by

Ima/(v) = ImA /(v)/P/(v)

+[F/(v) —1]/2p (v)F /(v), (v( —1) . (2.10)

In our model, we shall assume that Ima~(v) for v& —1

or equivalently, the left-hand cut contribution of a/(v)
is known. Then, the 1V/D method of Chew and Mandel-
stam" or the inverse method" allows us to calculate the
amplitude a/(v), which has the correct threshold be-
havior, obeys elastic unitarity, and has the given left-
hand cut contribution. This, in turn, gives the phase
shift n~(v) of a/(v). Therefore, the functionn/(v) will be
considered by us to be a known function of v.

We shall now present arguments that 5~ is an

approximately known quantity. First we note that if
v; is large, then for v) v; a large number of inelastic
channels open. In that case, the elastic scattering can
be considered as the shadow scattering of inelastic
processes and A&(v) is, therefore, essentially imaginary.
This corresponds to 5g~—m- where e is an integer.
Again, from a generalized Levinson's theorem, " we
know that 8~~ goes asymptotically to m- where e is
related to the number of bound states and the number
of Castillejo-Dalitz-Dyson (CDD) poles. "For a given.

force, we shall assume that these numbers are known
from physical considerations.

Thus, in our model, 0, ~ and b~" are both assumed as
known quantities. Writing Eq. (2.8) as n~ ——5/ —6/,

'2 J.W. Moffat, Phys. Rev. 121,926 (1961);P. T. Mathews and
A. Salam, Nuovo Cimento 13, 381 (1959);also see Ref. 23.

'3 R. I . Warnock, Phys. Rev. 131, 1320 (1963).' L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

Let us further introduce a new partial-wave ampli-
tude a/(v) by the following relation:

[1+22p(v)Aq(v)j=Fg(v)[1+2ip(v)/2g(v)g. (2.6)

5,r (V)/ Vi+i/2 h(„)

Then, from Eq. (2.4), we have, for v) v, ,

~(+)+~( —) =2g( ),

(2.13)

(2.14)

4 (v+)—4 (v —)= »&(v) (2 15)

In our model, g(v) is a known function and /2(v) is
unknown. Finding p(v) from Eq. (2.14) is a standard
Hilbert arc problem. ""The solution, in our case,
corresponding to some physical restrictions, is given by

(& V )1/2 oo

~()=
2g (v') d v'

. (v' —v )'/'(v' —2)27ri
(2.16)

The detailed derivation of Eq. (2.16) and the physical
restrictions imposed on the solution are considered in
the Appendix.

From (2.16), we now get,

(v v.)1/2

P r(v)/vi+1/2

and

4((v')dv'
(v) v;) (2.17)

v~l+'//2 (v~ v ')1 2(v~ v)

(v v)1/2

8/(v)/v'+'/2 = ag (v')dv'
. (2.»)

v /+1/2 (v v .)1/2(v v)

In the above equations, 6&(v) is given by Eq. (2.11).
Equation (2.17) gives the inelasticity in our model. The
amplitude A/(v), for v) v, , can be calculated from the
inelasticity and the relation 5~~ m. . For v&v, , the

"N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
ho6 Ltd. , Groningen, The Netherlands, 1953).

' J. D. Jackson, in Scottish Summer School Notes, 1960, edited
by G. R. Screaton (lnterscience Publishers, Inc. , New York, 1961).

with v&v;, we get,

&&(v) = 8/ (v) —«(v) 222r —«(v), (» v~) (2.11)

which is, therefore, a known quantity.
From Eq. (2.4), we get„

v'+'" " 8('(v')dv'I', (v) v,). (2.12)'1""("—)

The left-hand side of the above equation is known.
If we can now invert Eq. (2.12) so that 5~r (v)/v'+'/2 is
expressed as an integral over 6/(v), then 5/r(v) will be
known and the problem of finding inelasticity will be
solved. To solve the corresponding mathematical
problem, we proceed in the following way:

Let us write
~ ()/ '""=~(),
~/(v)/v'+'"= g(v)
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amplitude 2/(v) can be calculated by using the relation
8/=ct/+8/, where 0/ is given by the Eq. (2.18). Finally,
we would like to point out that 5/I/ v'+'/s, as given by
Eq. (2.17), always satisfies Eq. (2.12). This can be
shown by inserting (2.17) in (2.12) and using the
Poincare-Bertrand formula. "The details are also given
in the Appendix.

III. DIFFICULTY ASSOCIATED WITH
APPROXIMATE FORCE

In presenting our model in the previous section, we

assumed that the force was correctly given. However,
in an actual situation, the force itself is not generally
known, and we have to make some phenomenological
approximation for it. In Eq. (2.17) the v integration
runs over the values of n/(v') from v'= v; up to v'= ~
(note, Ai ——/sir —n/). Now, an approximate phenomeno-
logical force can only be realistic in a limited energy
region and therefore, the corresponding function ct/(v)
cannot be considered seriously beyond that range of v.

This, in turn, implies that f'// (v) as given by (2.17) can
get an appreciable contribution from values of u/(v)
which are not physical and thus can yield a 5/'(v) which
is unphysical, say, 5/1(v)(0. However, from unitarity,
we know 5/r(v) )0 (0&i//(1). Therefore, in such a case,
further investigation of the function 6/(v) or n/(v) is
necessary, so that Eq. (2.17) does not give an un-

physical result. We shall show that, in such a situation,
our model can still be used to give 5/r(v) in the nearby
inelastic region, while the far-off inelastic cuts have to
be taken into account in a phenomenological fashion.

We shall first show an example where 6~~ as calculated
from (2.17) will always be negative. I.et us consider
7,= 1, /s=0 (no bound state or CDD pole). In this case,
we can write Eq. (2.17) as

lP(v/) —lP(v )= n/(v)—/v'+' '(v/ v$)' '—
+n /( v) /v'+'"( v v;)—'"

= —2«(v)/v"'"(v+ —v~)'".
Therefore,

(3.5)

(3.6)

This means that C(z) —P(z) is an analytic function
which does not have the branch cut v= v; to v= ~.

Equation (3.2) shows that C(z) is regular in the
whole complex plane except for the branch cut v= v; to
v= ~. The function lt (z) of Eq. (3.4) is analytic in the
whole complex plane except for a right-hand cut from
v=v; to v= ~ and a left-hand cut from v= —1 to
v= —~. This left-hand cut arises because the phase
shift a/(v) has this cut. The function C(z) —lt(z) is,
therefore, regular inside a cir=le of radius (v;+1) with
the center v= v;. So we can expand it in a Taylor series
and obtain"

Let us now consider an approximate phenomeno-
logical force which is realistic in the low-energy region
and for v v;. We shall see how, in this case, our model
yields 8/I (v) in the nearby inelastic region. Let us define

C'(z) = 4 (z)/(z —v')'"
2n/(v')dv'

(3.2)
2m i „, v"+'/'(v' —v,)'"(v' —z)

LSee Eq. (2.16). For simplicity we take /s=0. ) From
(3.2) we have,

(v+) @(v ) 2ctl(v)/Lv/+1 2(v —v ) 2j. (3.3)

Let us now consider the function

lt (z) = o//(z)/z—'+'"(z v,)'".— (3.4)

The discontinuity of the function f(z) for oo )v) v; is"

(v—v;)'/'
8t'(v)/v'/'=

Qi(v )dv

v""(v' —v,) '"(v' —v)

4 (z) = Q/ (z)/—z'+'/'(z v,)'"—
+ao+at(z —v;)+a, (z—v,)'+ . (3.7)

(v—v')'" " I:~i(v')/" —~i(v)/v3
dv

v 1/2(v v')//2(v v)

(v —v,)'/'ut (v)I' (3.1)
, v""(v'—v~) (v' —v)

' See Ref. 15, p. 57.

If, now, ni(v))0 for v) v; and cti(v) jv is a monoton-
ically decreasing function, then the integrand of the
first term is always negative for ~)v) v;. The second
term in Eq. (3.1) is given by

~ (v) /'1+L(v v')/v7"—
lnI"" &&-tq -"&/ y")

and is also negative. Thus 8/r(v) in this example will

always be negative.

—:I~(")+c( )3=-:L~(")—~( -)l/("- ')'"
= '& '( )/I: "'"(+—')'"1.

From Eqs. (3.8) and (3.9) we, therefore, obtain

(3.9)

8,'(v) jv'+'/'= i (v+ v,)'—/'—
X I ao+ai(v v,)+as(—v v;)'+. —

= (v —v )' 'LCo+Ci(v —v,)+Co(v—v;)'+ . .j, (3.10)

' The function o&(v) jv'+& is analytic in the complex v plane
except for the cut v= —1 to v= —~. Since ai(v) is the purely
elastic scattering phase shift, so the right-hand cut of nf, (v) is
removed by dividing by the factor v'+&."See Ref. 15, p. 75.

The series in (3.7) will be uniformly converging for

I

z—v;I & v,+1.From Eq. (3.7), we get

!I~(")+c(-)j
=as+at(v —v,)+as(v —v;)'+ . (3.8)

Again,
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where the coefficients Co, C~, C2, etc. have to be real, since and

8/1(v) is real. We now have, from Eqs. (2.4) and (3.10), I((v) = 2(v,+ 1)2/2/32r+ (v —v;)Ip(v) . (3.14)

0 (v)/v/+//2

1 " 8 (v')dv'
=~()=-

„v"+'"(v' —v)

1 '"'+' 8Ir (v')d v' 1+-
v "+'"(v' —v)

b/r (v') d v'

,,,~I v"+'/'(v' —v)

To determine the parameters in Eq. (3.12), we note
that Ree~= h~= —e& and is, therefore, known. Thus, by
comparing the real parts of the left-hand and the right-
hand sides of Eq. (3.12), we can determine Cp, C~, and
do. The inelasticity can then be calculated from the
equation

&I'(v)/v'+'"= [Co+C~(v v—')](v v—')'" (3.15)

I, (v) =—
2v i+1

d"(" v')"'"/—["'""("v)3—

(j=0, 1, 2, ).
The last term in (3.11) can be interpreted as the con-
tribution of the distant inelastic cuts, while the terms
in the square bracket can be interpreted as the con-
tribution of the nearby inelastic cuts.

To proceed further, let us assume that we are in-

terested in values of v in the low energy region and in

the nearby inelastic region (i.e., v v,). In that case, we

can consider that the effect of distant inelastic cuts will

be reasonably taken into account by a phenomenological
constant, i.e., we replace the last term in Eq. (3.11) by
a constant. Also, we can expect the first few terms
inside the square bracket in (3.11) to take into account
the effect of nearby inelastic cuts, because the series in

Eq. (3.10) is uniformly converging. Specifically, we have
made the following 3-parameter approximation:

ei (v)/vI+'/2=CoIo+CiIi+do

= [CoIo+CII,+C2I2+ j
1 " fI '(v')dv'

(3.11)
pl 2p;+I V (V V)

where

Further, the amplitude A/(v) can be calculated in

the elastic region using Eq. (3.12) and the relation
5I——8/+nI. One point worth emphasizing here is that in

determining the parameters Co, C&, do we have used only
the values of o, ~ in the nearby inelastic region. On the
other hand, in the application of Eqs. (2.17) and (2.18),
one needs values of n~ throughout the inelastic region.

IV. APPLICATION TO 22-22 p-WAVE SYSTEM

We have applied our model to the 2r-2r P-wave state.
The left-hand cut contribution is approximated in two
ways: (i) by one pole and (ii) by two poles. The pole
positions in the two-pole approximation are chosen by
the Balazs prescription" and the residues are adjusted
so that a resonance occurs around 550 MeV in the two-

pion p-wave state. In the one-pole approximation, the
pole position is taken the same as the second pole
position of the two-pole approximation. Again, the
residue is adjusted to give a resonance at about the same

energy. Our resonance position is appreciably below the
physical p mass (760 MeV). The value 550 MeV cor-
responds approximately to the number that has been
calculated by using crossing symmetry. ""

For each input force, we have considered two inelastic
thresholds v, =12.5 and v, = 17.5. The phase shift n2(v)
of amplitude uI (v) is calculated using the 1V/D method.
We have

i.e.,

eI(v)lv"'"=[Co+C~(v v.)jIo(—v)

+2C2(v, +1)' '/3/2+do, (3.12)

where, for /=1,

where (i) for one pole

(2I/v= X/D, (4 1)

1
Ip(v) =— 2(v,+1)'/' (v v)'/'——

+pI dv q
1/2

/V(v'), (4.2)

(v~+ 1)'/2+ (v —v;)'"
Xln +i2r (v —v,)'/'i

( '+ 1)'"—( —')'"

(v) v;)

=—2(v,+1) /+2(v, v)'/—

and (ii) for two poles

v+(P2 v+P&2

(4.3)

—
(p v)-(/2

Xtan ' —pr(v, —v) /, (v(v, ) (3.13)
(v~+1)

L. A. P. Balazs, Phys. Rev. 128, 1939 (1962).
2' T. Kanki and A. Tubis, Phys. Rev. 136, B723 (1964).
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In (4.2) the D function is normalized at the pole
position and in (4.3) at the threshold. The subtraction-
point independence of the 1V/D formalism has been
shown by several authors"" and it can be shown
explicitly when the S function is given by pole terms. -4

The parameters Co Cy and do are determined from the
phase shift nr(v), as described in Sec. III. We cannot
apply Eqs. (2.17) and (2.18) directly for the inelasticity
calculation, since err(v) obtained from either (4.2) or
(4.3) decreases monotonically for v) v;, thus giving
unphysical 8tr(v) ((0)."The results of our calculation
are shown in Figs. 1(a)—1(d) for the one-pole input
force and in Figs. 2 (a)—2 (d) for the two-pole input force.
In Fig. 1(a), pr cotnr and pr cotter are plotted (p~ being
vp); in Fig. 2 the corresponding cross sections are given.
It has been shown that when inelasticity is included, the
width of the cross section becomes narrower than that
of the elastic cross section. "This is expected in the
actual physical situation, when the force is correctly
given. Figure 1(a) shows that for a one pole approxi-
mation when inelasticity is taken into account, the
width is narrowed. However, the cotangent of the phase
shift cot5~, does not go through zero, i.e., we do not have
a resonance of the Breit-Wigner type. This is clearly
unphysical and we feel that it essentially indicates that
our one pole input force is crude in the inelastic region,
so that the inelasticity parameters determined from it
are bad. In Fig. 1(c) r)r is plotted and shows a sharp fall
in the nearby inelastic region. In Fig. 1(d), nr(v)/v't' is
plotted and compared with the expression

—{PCp+ Cr (v —v;) )ReIp(v)
+2Cr(v+1)'"/3s+dp} (4.4)

it indicates how well the inelasticity parameters Co, C&,

do are determined.
The values of the parameters for the one-pole case are

's A. W. Martin, Phys. Rev. 135, 8967 (1964)."G. Q. Hassoun and K. Kang, Phys. Rev. 137, 3955 (1965).
'4 For example, see M. L. Mehta and P. K. Srivastava, Phys.

Rev. 137, 8423 (1965)."%'e have considered n 0 for the m-~ p-wave amplitude. This
choice is based on the work of Warnock (Ref. 12). He has proved
that Sp(~) a7r ( Np=+n. )=v, —where ms=number of bound
states and n, =number of CDD poles. The number n, for his 8
class amplitudes is given by n, =n —rsz —e+eb+n„, where
n„=number of times the phase shift b~" goes up through an inte-
gral multiple of ~, nq ——number of times the phase shift bf~ goes
down through an integral multiple of ~, e =0 or 1 if the phase shift
is positive or negative near the threshold, n„=O or 1 if BP(v)
approaches its limit from above or below. For the class 8 ampli-
tudes eq+e~&n, b, while for the class C amplitudes (which involve
CDD poles of second kind) n~+e&nb. Since there is no experi-
mental evidence of x-7I- p-wave bound state, we have nb ——0. This
shows that we are not dealing with the class C amplitude. If our
phase shift a1(v) for the purely elastic-scattering case is examined,
it will be seen that it is positive near threshold, rises to a maximum
value (&~) and then falls montonically. This happens for both the
one-pole and the two-pole input forces. Such behavior corresponds
to n„=eq ——e =e„=0, i.e., no CDD pole.~"J. R. Fulco, G. L. Shaw, and D. Y. Kong, Phys. Rev. 137,
B1242,(1965); P. Coulter and G. L. Shaw, Phys, Rev. 138, 81273
(1965),

b=2.7, ~=50.0, and

(i) Cp=0, Cr=0.00201, dp= —0.0607 for v, =12.5,
(ii) Cp=0, Cr=0.00073, dp= —0.03563 for v, =17.5.
Figures 2(a)—(d) correspond to Figs. 1(a)—(d) when

the E function is approximated by two poles. The values
of the parameters for the two-pole case are bj = —2.75,
b2 ——23.75, cog= 6.25) co2

——50.0 and

(i) Cp=0, Cr ——0.00248, dp= —0.07307 for v, =12.5,
(ii) Cp

——0, C,=0.00090, dp= —0.04236 for v, = 17.5.
Here it will be noticed that the cross sections with
inelasticities are wider than the purely elastic cross
section. This is presumably unphysical. In this case,
p~ cot8~ for v;= 17.5 has a zero indicating a Breit-Wigner
resonance. However, p& cotb& for v, =12.5 not only does
not go through zero, but also develops a pole around
v=0.5. This occurs because 0~ is negative and be-
comes equal to o.~ in magnitude near threshold and
3~(3r ——8r+nr) develops a zero. As before, these features
indicate that the input force is very bad in the inelastic
region, so that the corresponding inelastic effect is
unrealistic. Obviously, the simple criterion which we
have used to determine the input force, namely, that it
will produce a low-energy resonance of the type ob-
tained in self-consistent calculations, is not enough to
give a physical force for the high-energy region. "-7

V. CONCLUDING REMARKS

The basic assumption of our model is very similar to
that of the optical model, " viz. , at high energy the
elastic scattering is essentially the diffraction scattering
associated with inelastic processes and is purely
imaginary. However, to calculate inelasticity in the
optical model, one has either to assume some kind of
absorptive potential, "or to use some type of phenom-
enological description. "On the other hand, in our case,
inelasticity is obtained from the left-hand cut contri-
bution and this, in principle, can be dynamically calcu-
lated by considering exchange of particles or systems.
Besides, our model also shows how the effect of in-
elasticity can be taken into account in the elastic region.

~7 A question that arises is whether we bring in any CDD pole
when we introduce inelasticity. This can be checked by examining
the behavior of the phase shift S&(v). For the single-pole input
force, and u; = 12.5 and 17.5, 81 (v) is positive near threshold, rises
to a maximum ((v) and then falls to zero at v =v;. This behavior
corresponds m=0, as pointed out before. The same behavior is
also exhibited by 81(v) for the two-pole input force and v; =17.5.
However, BI(1) for the two-pole input force and v;=12.5 shows
that it is negative near threshold, goes up through zero around
v=0.5, reaches a maximum (&~) and then falls to zero at v=u;.
This behavior corresponds to ~=1, n„=1 and nq ——e„=0.There-
fore, n„=n,„—Nq —e+nb+n, „=O again, i.e., no CDD pole.

28 S.Fernbach, R. Serber, and T.B.Taylor, Phys. Rev. 75, 1352
(1949);H. Feshbach, C. Porter, and V. F. Weisskopf, Phys. Rev.
96, 448 (1954); K. K. Greider and Glassgold, Ann. 'I'hys. (N.Y.)
10, 100 (1960).

~9 R. Serber, Rev. Mod. Phys. 36, 649 (1964).
~ P. Baiquini, Phys. Rev. 137, B1009 (1965).
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It has been recently pointed out that the single-
channel calculation may not be equivalent to the multi-
channel calculation. ""Such a circumstance may imply
zeros of the 5 matrix and these can be taken into
account by multiplying the function Fi(v) occurring in
Eq. (2.6) with a suitable rational function. "However,
in methods where a dispersion relation for the phase
shift is used, "such zeros of the 5 matrix bring in extra
branch cuts and cannot be easily incorporated.

APPENDIX

We have to find the function P(v) which is analytic in
the complex v plane except for a right-hand cut from
v= v; to v= ~ and satisfies the boundary condition

(A1)

The function g(v) is known. Next we want to obtain the
imaginary part h(v) of p(v) from the equation

~(")—~(-)=2h(), ("«-) (A2)

We introduce a new variable i = —(1/ v) so that the
cut v = v; to v = ~ in the v plane is transformed into a
finite cut i =i; to i = 0 in the i plane (i,= —1/ v~). Let
us denote the values of i' on this cut by t and denote the
functions g(i), g(v), and h(v) by primed ones in the

f plane; i.e., @(v)=g'(i) etc. Equations (A1) and (A2)
now become
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Now returning to the present problem, the ends i,
and 0 are nonspecial. Let us first consider the cor-
responding homogeneous problem

The fundamental solution of the class h(ci) of the
homogeneous problem (AS) is

x (t)=G Ã (|-)]'"/I (~)j'"=G Ã (~)/& (t)j"-',
(A6a)

where

~ (~) =i-~;, & (t) =i
and C& is an arbitrary nonzero constant. The index of
this class is 0. The fundamental solution of the class
h(C2) is

x (&)=C Ã (i)j'"/L~ (i)j'" (A6b)

and the index of this class is also zero. The fundamental
solution of the largest class ho is

x (i) =G t& (~)~.(i-)] (A6c)

and the index of this class is 1.The fundamental solution
of the smallest class h(ci, c2) is

x,(i) =C.LZ, g)Z, (f-)j (A6d)

and its index is —1.
It can be easily seen that each of the above solutions

has a cut from i, to 0 and satisfies Eq. (AS). Using Eq.
(AS), Eq. (A3) can be written as

4 (~+) =h(~+)/x(~-) j4 (~-)+2g (~)

4'(&+)+4'(&-)= 2g'(~) (A3)
ol

~'(~+) —~'(~-) = 2'h'(~)

The present problem is then to find the sectionally
holomorphic function qV(i), as given by Eqs. (2.4) and

(2.12), and satisfying the boundary condition

4'(t+) =G(~)4'(L)+2g'(i) (A4 )

on the cut, where G(/) = —1.
Before we solve the problem, some definitions of the

solutions are in order. We follow closely those of Ref.
15.The ends are called special (or nonspecial) if G(/) as
defined in (A4a), is (or is not) a real positive quantity.
If solutions are bounded at nonspecial ends c~, c2, ~, c„
they are called solutions of the class h(ci, c&, ,c„).The
solution of the homogeneous equation vanishes at these
nonspecial ends. Each solution is characterized by an
index which is the negative of the highest power of the
expansion at infinity.

"M. Bander, P. %. Coulter, and G. L. Shaw, Phys. Rev.
Letters I4, 270 (1965)."E.J. Squires, Nuovo Cimento 34, 1751 (1964)."J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961).

4'(~+)/x(~+) —4'(~-)/x(~-) = 2g'(~)/x(~+) (A7)

The function P(i)/x(g) is regular in the complex plane
except for the cut from i =i; to i =0 and the dis-
continuity across the cut is given by (A7). From the
results obtained in Chap. 10 of Ref. 15, the gener~i
solution of Eq. (A7) for a given class is given by

0'(t)/x(i)=(2 ~) ' 2g'(~)Lx(t+)(~ —i)) '«+~, (i)

or

~'(|)=lx(t-)/2 j

2g'(~)l x(t+)(~—|)j 'd~+xOP' (i), (A8)

where I';(]) is an arbitrary polynomial of degree j and
P iO)=0. The second term of (AS) is the general
solution for the given class of the corresponding homo-
geneous problem (AS), while the first term is a, particu-
lar solution of the nonhomogeneous problem (A3).
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Using (AS) and (A6), we obtain

I4'(to) =—Lx(to)/2~7

2g'(t)Ex(t)(t —t )7 '« —2x(t )P (to) (A9)

and t/4/v'+'/2 behaves as a constant when v —+ 0. There-
fore, P'O) should behave as constant when t ~ e&. This
means that in Eq. (AS) the polynominal P;(s) should
not occur. Thus, we arrive at the following results:

for 1,(tp&0, and we write x(t+) =x(t).
To And out which of the four fundamental solutions

in (A6) is appropriate to our physical problem, let us
first examine the behavior of h'(tp) near the end f, For.
x,(f)=C,L(g—f,)/f]1» and x4(t.)=C,Lt. g —f,)]1/2, the
integrand in Eq. (A9), (2g'(t)]/Lx(t)], behaves as
1/(t —|;)'/2 near the end i; App. lication of the results
obtained in Chap. 4 of Ref. 15 gives, in this case,
h'(tp) p4 (tp f;)'/2 —Np where np(2, that is, h'(tp) vanishes
at the end 1;. For x2(f')=C2D'/(f i;)]—'/2 and xp(f)
=C2Lf (i —f.)] '/2 the integrand L2g'(t)]/Lx(t)] van-
ishes as (t—t';)'/2 near the end t;, so that in this case,
h'(tp) behaves as (tp —f;) '" i.e., h'(tp) becomes infinite
at the end f;

Now, tt'(tp)=/2(v) (~)v) v;)

X 2g'(t)Lt(t —f;)] '"(t—f) 'dt (A13)

12 (tp) = (24r) 'Ltp(tp —f'.)7'/'

XP 2g'(t)Lt(t —i;)7 '/'(t —tp) 'dt. (A14)

If we change from i to the original variable v, we get
from the above equations

~i(v)/v'""=4 (v) = (2~2) '(v' —v)'"

X 2g(v') (v,—v') i/2(v' —v)dv' (A15)

—$ r (v)/vi+1/2 (A10) and

and 8/r(v)=0 at v=v;. Therefore, h'(tp) should vanish
at the end t; Thus, .only the solutions xi(f') and x4O)
in (A6) are relevant to our problem.

Let us next examine the behavior of h'(tp) near the
end t=0. For X4O)=C4Lt O' —f';)]'/2 the integrand in

(A9), 2g'(t)/x(t), behaves p41/t'/', so that, as before,
h'(tp) ~ t'/' ~p where np& 2; that is, h'(tp) vanishes at the
end t =0. On the other hand, for x, (i )=C,[(f f,)/ f'—7'/2,

we have /2'(tp) ~ tp '/', i.e., it becomes infinite at the end
t=0. Now recalling

1 " 5 (v')dv'
(V) =-

„, v"+'/'(v' v)—
we notice that in writing this equation, we have con-
sidered 8 ir/v+' /2to vanish as v —+ ~. Therefore, from
(A10), /2'(tp) should vanish at t=0. Thus, the funda-
mental solution appropriate to our problem is

(A11)

The solution (A11) behaves as 0(t) for
Inserting (A11) in (AS), we find that the first term on
the right-hand side in (AS) behaves as constant for
f' —+ ~, while the second term behaves as i'+& for j)0.

'

Now,
(A12)

g r(v)/vi+1/2 h(v) (2~)
—1(v v, )1/2

XP 2g(v') (v' —v )-' '(v' —v)dv', (A16)

where g(v')=6 (1v) /v"+'".
We now want to verify that b ir( v)

/v'+' /2given by
(A16) satisfies the equation:

(v)/v/+1/2'

= ( )-ir'P

Inserting (A16) in the above equation, we get

g(v")
Di(v)/v'+'/'= g (v) dv-"——

ir2 „(v"—v,)'"
(Vi V,)1/2

XP d v' —, (A18)
v P P P V

where we have used the Bertrand-Poincare formula for
the repeated principal value integrals. The last integral
in (A18) vanishes, so that the solution (A16) always
satisfies Eq. (A17).


