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Gravitational Radiation From a Spinning Ellipsoid of Uniform Density
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The gravitational radiation from a spinning ellipsoid and a spinning ellipse of uniform density is cal-
culated. Upon comparison, the numerical coefficients are found to be smaller than that for a spinning rod.
Radiation power vanishes when the ellipsoid and the ellipse are reduced to a spheroid and a circle, re-
spectively. A classical rotating mass of uniform density bound by its gravitational field may be shown to be
unstable against bifurcation into an ellipsoid if the period of rotation is short enough. Gravitational radiation
can dissipate the angular momentum when bifurcation takes place. The calculation is used to estimate the
energy-loss rate of a collapsing neutron star. It is shown that the relaxation time for dissipating angular
momentum is around one second.

I. INTRODUCTION
with the supplementary condition

y„",„=0.Y studying the weak-field solutions of the general-
relativistic field equation

R„„,'g„„R=—(S—s/c4)GT„„
By analogy with electrodynamics, the solution of Eq.

(1) (5) can be shown to be

where g„„ is the metric tensor, T„, the stress-energy
tensor, R„„the Ricci curvature tensor and the curvature
scalar E.=g&"R„„.Einstein' ' proposed the existence of
gravitational waves and calculated the radiated power
from a uniform rod of length 2a spinning a.t a.n angular
velocity or to be

I' = (32/45) a4too3P (G/c') . (2)

In this paper we shall present a calculation of the
gravitational radiation of a spinning ellipsoid of uniform
density. It is known that a spinning, nonrelativistic
self-gravitating body of uniform density may bifurcate
into an ellipsoid (Jacobi ellipsoid) s It has been sug-
gested that such a bifurcation process may cause the
angular momentum of a collapsing star to be dissipa, ted
by emitting gravitational radiation. 4

II. CALCULATION

Assuming a weak field, we can write the metric as
Lorentz metric' plus a small quantity' '

fVv= g Vv+htvv ~

Define p„' by
y h v & g(Lt) vh

Then the field equa, tion is reduced to

'q "=—16xT„")

'A. Einstein, Sitzber. Preuss. Akad. Wiss. Phys. Math. Kl.
1916, 688 (1916);1918, 154 (1918).' A. S. Eddington, Proc. Roy. Soc. (London) A1Q2, 268 (1923).' A series of papers by S. Chandrasekhar and associates on the
stability of a rotating body of uniform density have been published
in Vol. 138 of the Astrophysical Journal.' H.-Y. Chiu, Ann. Phys. (¹Y.) 26, 364 (1964).' We use the following convention: Greek indices range from 0 to
3, Latin from 1 to 3; Lorentz metric (+———). Units G=c=1.' J. Weber, General Relativity and Gravitational 8'aves (Inter-
science Publishers, Inc. , New York, 1961),pp. 87—97.
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(T„")retardedd'r' 4
(Tlv")retardedd r (7)

r—r' r

at large distance r, where the prime refers to the coordi-
nates of the spinning ellipsoid.

The stress-energy tensor satisfies, to a first a.p-
proximation, the conservation law

~ok, Io ~00,0

T, I„a—T;o,o= o.

Multiplying the last equation by x' and integrating by
parts, neglecting the surfa, ce term which vanishes at
infinity, we obta, in

1
T'2d'r = ——

2
T 'ox~+ Tjox'dsr

—,0
(10)

Multiplying Eq. (8) by x'x' and integrating by parts,
neglecting the surface term which vanishes at infinity,
we obtain

T x'xrd r = — Tv'oxv+Tjox'd r
0

Co bi i gEqs. (7), (10), d(11), efi d, e pe-
slon for y;r.
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V r=——
r Rl~

(T„);,t.,d,dx'xvd"r'. (12)

The uniform ellipsoid x"'q a'+y'-'~ b'+s'-'g c'= 1 which hes
-at t= 0 with the x' axis along the space x axis, spins with
a,n angular velocity co a,bout the s axis. Applying Eq.
(12) to the ellipsoid under consideration, we obtain an
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expression for y~~.

2 8
y»= —— pLx' coslp(t —r) —y' sin&0(t —r)]'d'r'

eHipsoid

2
=—(B'/Bt, ') ( (42r/15) pabc[a2 cos240 (t—r)

+b' sinpa& (t—r)1}
= —-', (002/r) M (a'—b') cos 200 (t—r),

where M is the total mass of the ellipsoid. Similarly, we
obtain the rest of y;, :

y22= -43M(402t r) (a'—b') cos240(t r)—,
yl2 = 43M (copy—r) (a' b') sin2—40 (t—r),
q ~3= g23= g33= o-

The supplementary condition as given by Eq. (2) will
give us the remaining elements of cp„„.

Byr p/ Bt= Byyy/ Bx+By 32/ B$+Byy 3/ Bs
= By»g Bx+ By&2) By
= —4

(402/ r)M (a'- —b'-) fsin200 (t—r))(2&0) (x/r)
+-', (402g r)M (a2—b'-) fcos2&0 (t—r)j(200) (yy r),

where we have dropped terms of higher inverse powers
than r ' since these terms do not contribute to radiation
power across the surface of an inlnite sphere.

Similarly, we obtain

Bypp/ Bt= 3 (402/r) M (a'—b') fcos2&0 (t—r) $240 (x/ r)
+4(032/r)M(a' b'))sin—240(t r) j20&—(y/r),

B y30/Bt= 0,
Bypp/ Bt= ', (co2/r)M (a2 b-')—

X Lsin240 (t—r)$240[ (x'/r') —(y2/r') j—(8/ 5)
X (002/r)M(a' —b')Lcos240(t —r) j203(xyt r') .

The radial component of the Poynting vector "in our
case is given explicitly by

t4" —(1/322r) (——(By,r/ Bt) (By»j Br)+ (By22/ Bt)

X (By22/Br)+ (By33/Bt) (By33/Br)+ 2 (Bypp/Bt)

X (Bypp/Br)+2(By»/Bt) (By»/Br)+2(By3$/Bt)
X (By»/Br)+ 2 (By32/Bt) (By32/Br) —2 (By, p/ Bt)

X(Byzp/B )r2(By2p/Bt)(By2p/Br)
2(By,o/Bt) (B—y,o/Br) j

= —(1/322r) I (By33/Bt) (By»/Br)+ (By22/Bt)

X (By22/Br)+ 2 (Bypp/Bt) (Bypp/Br)+ 2 (By»/Bt)
X (By»/Br) —2 (By30/Bt) (By~0/Br)

2(By20/Bt) (B—ypp/Br) j
=+ (1/32m-) L (-'(c02/r) M )2 (a2—b2) 2 (240)2

X (2("/")+!(*'+~')'/")
+oscillating terms'. (13)

The total flow of energy per second across an infinite

sphere is simply given by

0.8R

~ b' 0.14X2m-Gp,

(16)

(17)
where R'= abc.

The potential energy of an ellipsoid is of the same
order as that of a sphere

U —M'G/'u. (18)

Substituting Eq. (16) in Eq. (14) and dividing U by I',
we obtain a rough estimate of the time scale

U/P~-'(C/R)'lp ' (19)
Substituting Eq. (17) into Eq. (19), we obtain

r 34 (c/R)'l00 ' 0 4(c/R)'(1/. G'P ).3(20)
For a neutron star of uniform density p=i0 g/cc
spinning at a frequency corresponding to bifurcation,
the time scale is estimated to be of the order of one
second. As 7- is related to co by

7 'X ~/M

the time scale will be increased by a factor of 10' if the
spinning rate is reduced to one-tenth of the frequency
corresponding to bifurcation.
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E= t4"r' singed y

= (32/125) (a'—b2) 2M240'G/cp, (14)

where we have restored the gravitational constant G and
speed of light c.

If a similar calculation is carried out for a two-
dimensional ellipse x3/a2+y2/b' =1, s-pinning about the
s axis at an angular velocity ~, we find the radiation
power to be

I' = (18/45) (a' —b2) 2M2003G/c'.

III. DISCUSSION

When the spinning body is axially symmetric (a= b),
it will not radiate gravitational energy as shown by
expressions (14) and (15). Furthermore, the numerical
coefficient for a spinning rod is the largest, while that for
a spinning ellipsoid is the smallest. These are consistent
with the usual conception that the gravitational radia-
tion depends on the geometry of the spinning body.

In order to estimate the time scale of a neutron star
for energy loss in the form of gravitational readiation,
we apply expression (14) to a rotating ellipsoid of
uniform density. To a/b and a&, we assign those values
corresponding to bifurcation as calculated by Darwin'
using classical hydrodynamics:

a 1.9R,


