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The problem of finding Lagrangian functions which yield the Bargmann-signer equations is discussed,
and is solved explicitly for the case of third-rank spinors. The formalism provides a field-theoretic realization
of the U(12) symmetry theory proposed by Salam, Delbourgo, and Strathdee. A general expression for the
residue at the physical particle pole corresponding to an arbitrary multiplet is given, in a simple form which
exhibits the symmetries of the theory. The propagators for the 143 and 364 representations are analyzed
in detail.

1. INTRODUCTION

'HE successes of the SU(6) symmetry theory' for
strongly interacting particles have led a number

of authors to look for a relativistic generalization of the
theory. ' In particular, Salam, Delbourgo, and Strath-
dee (SDS)'4 have recently proposed such a theory,
based on the group U(12). In this paper, we present an
interpretation of this theory from a slightly diferent,
and more strictly field-theoretic viewpoint, and discuss
the forms of the Lagrangian function and the propagator
for the various multiplets.

In Sec. 2, we discuss the group structure of U(12)
and its relation to SU(6), and show how U(12) sym-
metry arises naturally out of SU(6). The results of
this section are not new, but are given in a rather dif-
ferent form which is well suited to our later discussions.
The predictions of U(12) symmetry are in no way de-
pendent on the existence of quarks, ' but the group
structure is most easily described in terms of them, and
we shall therefore begin by regarding the known
physical particles as composite objects formed from the
quarks and their antiparticles.

It is a characteristic of this theory that the inter-
action terms in the Lagrangian are invariant under
U(12), while the kinetic terms are not. The interaction
terms therefore have a relatively simple structure, de-
scribed by SDS. The essential problem associated with
finding a Lagrangian formulation of the theory is there-
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fore that of finding a free Lagrangian for each multiplet.
We make a preliminary study of this problem in Sec. 3,
and discuss certain general features of the Lagrangian
function and the propagator for an arbitrary multiplet.
In particular, we obtain a simple and general expression
for the residue at the pole P'=ms. This is the quantity
which is needed in making peripheral model calcula-
tions. We also discuss in detail the case of the lowest
meson representation 143, for which the Bargmann-
Wigner equations' reduce to the well-known Kemmer-
Dufhn equation. '

The baryon representation 364 is described by a field
with three indices, corresponding to bound states of
three quarks. This case is treated in Secs. 4 and 5. It is
shown that to obtain a Lagrangian which yields the
Bargmann-Wigner equations, it is necessary to intro-
duce auxiliary field variables, described by fields with
lower symmetry. Such Lagrangians are constructed for
the spin-~ part of the field in Sec. 4, and for the spin- —',
part in Sec. 5. The corresponding propagators are
evaluated, and shown to have a very simple structure.
The relationship with the field variables introduced by
SDS is discussed in the appendix. It is shown that our
propagator has the same residue at the pole Ps= nts as
theirs, but differs from it in the contact terms.

The possible extension of the formalism to higher
representations is discussed in Sec. 6, which also con-
tains some concluding remarks.

2. U(12) AND THE BARGMANN-WIGNER
EQUATIONS

In a relativistic extension of the SU(6) symmetry
theory, the quarks must be described by a 12-component
field P~=ib, , where a= 1, 2, 3 is the SU(3) index, and
et = 1, 2, 3, 4 is the Dirac spinor index. The group U(12)
acting on the quark field ib is generated by the 144
matrices X,i'„, where X, are the ct generators of U(3),
and F, are the 16 Dirac matrices' which generate U(4).

6 V. Bargmann and E. P. signer, Proc. Nat. Acad. Sci. 34, 211
(1948).

'N. Kemmer, Proc. Roy. Soc. (London) A1?3, 91 (1939);
R. J. Dufhn, Phy. s. Rev. 54, 1114 (1938).

8%e use a metric with signature (+ ———), and Dirac
matrices defined by (y„,y„)=2g„„.The sixteen matrices 1, y„, &„„,'i[ye, +„5, 0'e-5=$+ev5 v5 +0+1+2+3 are denoted by 1'„. All 16
matrices pF„are Hermitian; the matrices py„, p0-„„are symmetric,
while p, pa», F5 are antisymmetric.
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(yP) &4=m+, (3)

Thus, U(12) consists of all linear transformations of P
which leave invariant the bilinear quantity Pg=ftPP.

This group U(12) is of course not an invariance group
of the theory because the U(4) symmetry is broken by
the kinetic term in the quark Lagrangian

10=4 (7P mM—

(Here we have introduced the notation I'~~ ——I', '~

=5,~1' t' for any Dirac matrix I'; also yP=—y„.P".) If we

require SU(6) invariance in the static limit, then the
covariant four-quark interaction term is limited to a
combination of the two possible terms (~)(~) and

(gyqP) (gysiP). However, it is the first of these which is
the more natural extension of the static SU(6) invariant
interaction. ' Moreover, this choice is one way of avoid-

ing the difficulties of parity doubling and indefinite
metric for the bound states which would arise in the
more general case. Thus, we shall choose the inter-
action Lagrangian to be

(2)

With this choice, the mass term and the interaction
term are both invariant under the group U(12). The
only noninvariance arises from the kinetic term of (1).
It is easy to see that, in the quark model, a similar
statement must apply to the bound states. If quarks
exist, they must be extremely heavy, ' and the binding
energy of quark bound states must be large. Thus the
kinetic energies of the quarks in such a state will be
small compared to their masses and potential energies.
Under these conditions, the bound states will exhibit
SU(6) symmetry.

Let us consider a bound state of n quarks. In the
center-of-mass frame, the quarks are almost at rest,
and therefore their Dirac wave functions must contain
only the "large" pair of components, and must satisfy
the equation yof=f. It follows that the bound-state
wave function 4»...& must satisfy this equation with
respect to each of its e indices. Then in any other frame,
in which the center of mass is moving with momentum

p, the function + must satisfy the equations

but some remarks may be useful at this stage. Since
the only U'(12) noninvariant term in the quark La-
grangian —the kinetic term —does not contribute appre-
ciably to the bound-state masses, the effective-mass
term in the Lagrangian for 4 must be U(12) invariant.
If we decompose 0& into its irreducible components
under U(12), then for each component the mass term
has the unique form —rn+k. In the static limit, where
each four-component spinor reduces to two components,
we have a set of particles corresponding to the repre-
sentation of U(6) with the same symmetry type. "

Similarly, since the quark interaction is U(12) in-
variant, we may expect the effective interaction terms
between the bound states to exhibit this same invari-
ance. Their structure is then of the type described by
SDS. As in the case of the quark Lagangian itself, the
only term in the Lagrangian which la,cks U(12) in-
variance is the kinetic term. The determination of the
form of this term is the main concern of the following
sections.

The two essential elements in the theory are the
U(12) invariance of the interaction terms, and the
Bargmann-Wigner equations which describe the way
in which this U(12) symmetry is broken. As we have
seen, both these elements arise very naturally out of a
quark model. However, they are independent of it,
and may be taken as a postulational basis for the
theory. In fact, there are some obvious difficulties in
the way of a genuine quark model. For, the baryons are
assigned to the tots, lly symmetric representation M4,
whereas an S-wave bound state of three quarks must
be totally antisymmetric. Thus a quark model would
lead more naturally to the representation 220.

The relationship between the group U(12) and the
symmetries of the particle states may be elucidated by
introducing, for each value of p, the orthogonal pro-
jection operators

A~(P) =
2 (1~7P/p),

where P = (P')'". These operators are of course undefined
when p'=0, but this is of no consequence at this stage
because there are no massless strongly interacting par-
ticles. We also introduce projection operators

where m is the mass of the bound state, and

(yP)i, =IX. XIX(yP)X1X .X1, (4)

Py(P) =AyXAyX XAg,

Po(P) =1 P+(P) P (p—), —-(6)

with the factor (yp) in the kth position of the direct
product. The equations (3) are of course the Bargmann-
Wigner equations. These are therefore the equations
which arise naturally in seeking a relativistic generaliza-
tion of the SU(6) symmetry theory.

We shall consider in the following sections the prob-
lem of finding an effective Lagrangian for the field 4,

9 J. M. Charap and P. T. Matthews, Proc. Roy. Soc. (London),
in press.

' L. B. Peipuner, W. T. Chu, R. C. Larsen, and Robert K.
Adair, Phys. Rev. Letters 12, 423 (1964).'

and note that the Bargmann-Wigner equations can be
written in the form

(P—m)P+(p)4=0,
—

mPO (p)+ =0,
(—P—m)P (P)4=0,

except possibly when p'=0, where these equations are
undefined.

"See also, Abdus Salam, J. Strathdee, J. M. Charap, and P. T.
Matthews (unpublished).
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Now for any momentum p, the set of operators
A+(p) X,l'„A+(p) generate a subgroup of U(12) iso-
morphic to U(6), which we may call U~(6). Consider a
field transforming according to a given irreducible
representation of U(12). Then the Bargmann-Wigner
equations (7) require that for any given p only the
components I'+(p)%' should be nonvanishing. These
components clearly transform according to the corre-
sponding irreducible representation of U„(6). Thus, for
each value of the momentum the particle states possess
U(6) symmetry. In the static limit, , the entire system
must of course exhibit this symmetry. However, the
intrinsically broken U(12) theory also makes definite
predictions about the interaction of particles with dif-
ferent momenta, as shown by SOS, because it specifies
the manner in which the U(12) symmetry is broken—
namely, by the kinetic terms alone.

3. PRELIMINARY DISCUSSION OF THE
LAGRANGIAN FUNCTION

There are no known particles corresponding to repre-
sentations of SU(3) with nonzero triality, "but it will

be useful to consider first the mathematical]y simple
case of a two-index field 0», which may be resolved
into the irreducible components 7SQ+ 66. For both
representations together the Lagrangian function may
be taken to be"

(Vp) += h p) C, (10)

whence both Bargmann-Wigner equations follows. (We
assume here and in what follows that mWO. ) This con-
clusion is unaffected by restricting 0' to either of its
two irreducible components.

The propagator corresponding to this Lagrangian is

where (pp) & is defined by Eq. (4). It yields the
equation of motion

l[(~P)i+ (VP) ]C'= mC,

which is the sum of the two Bargmann-Wigner equa-
tions. However, multiplying by either (pp)i or (yp)&
we find that

I.= ', tr[C (qp ——m)C]. (13)

In finding the equations of motion, one must remember
that p„really stands for ic)„, and there is therefore a
change of sign when it acts to the left. The equations
of motion may therefore be written

—',[yp,C]=mC,

from which we may deduce, by pre- and post-multiplica-
tion by yp, that

—',(&p,C }=O.

Thus' we obtain the two Bargmann-Wigner equations
in the form

ypC =mC = —Cyp. (14)

The diAerence in sign is to be expected, since we must
project onto the negative-energy components of the
antiquark fieM P, and the positive-energy components
of P.

The corresponding propagator is

(C'~'C'c')+= (~p+m)~ (—vp+m)c /[2m(p' —m')]
—(1/2m)~, ~cc& (15)

If 4 is restricted from the outset to be traceless, then
the only difference is the appearance of an extra con-
tact term

+ 4s~c~.
48m

Now, when we go to higher multispinors, this same
simple procedure fails to work. A Lagrangian with
kinetic term involving

symmetrized, to yield

(+asC' )
= (pp+m)~ (yp+m)s +(pp+m)~" (yp+m)s'/

[4m(P' —ms)] —(1/4m) (g„cgsD~)„ii) c) . (12)

Before going on to consider higher multispinors, it
may be well to point out the difference between this
two-quark bound state and a quark-antiquark bound
state, described by a field C»~ belonging to the adjoint
representation 143. (We shall ignore the traceless
condition, which is an inessential complication. ) The
Lagrangian may be taken to be

(O'C )+
——(pP+m) i (yP+m) s/[2m (P'—m') ]—(1/2m) .

(11)
1
—[h p)i+ (Vp) s+ + (Vp)-] (16)

Note that the residue at the pole is simply the projec-
tion operator onto positive-energy components, as one
might expect. Of course, if 0 has definite symmetry,
then (11) must be appropriately symmetrized or anti-

"G.K. Baird and L. C. Biedenharn in Proceedings of the 1964
Coral Gables Conference on Symmetry Principles at FIigh Fnergy
(Q'. H. Freeman and Company, San Francisco, 1964), p. 58.

'aWith the identification p„=iaL(y„)~+h„)2j, this is the La-
grangian for the Kemmer equation. See Ref. 7.

would yield as before the sum of all n Bargmann-
Wigner equations, but it is no longer true that these
imply the n equations separately. For n=3, for ex-
ample, the expression (16) has as eigenvalues not only
&p but also &p/3, so that the equations have solutions
with p'=9m' as well as p'=m'.

Clearly, what is needed is a kinetic term which is
nonzero only when the eigenvalues of the terms of
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(16) are all positive, or all negative. Thus, in terms of
the projection operators (6) we might take, as a pre-
liminary guess,

(17)L=%[E(p) m]+—,
where

E(p) =pLP+(p) —P-(p))
Let us write

(VP)(")=Z(VP) 2, (VP) 2. (VP) 2„
where the sum is over all (",.) selections of different
indices (k2 k„) from (1 22). Then an alternative
expression for E(p) is

(~p) (2r+))

E(p)=
(p')"

We note also that
(~p) (2r)

P (p) =P+(p)+P-(p) =
2n ( r (p2)r

(I% )+——
P+(p) P (p) Po(p)-—+ +
p m —p ——m —m

(19)
E(p)+mP(p) P()(p)

p' —'"'

It evidently has a spurious pole at p'=0 which arises
from the p' denominators in L. This is clearly an un-

physical and undesirable feature which must be removed
in a correct propaga, tor. However, the important feature
which is illustrated by the form (19) is the residue of
the pole at p'=m', namely,

(p' m2)(+4—)+ ~
„~ „~=2mP+' 2m (A+'——), (A+') „,

(20)
with A~'=( m&y )p/2 m

For example, for v=3, the explicit form of this
"propagator" is

(yp+m) 2(yp+m) 2(yp+m) 2

(++)+=
4m'(p' —m')

The "Lagrangian" (17) is still not altogether satis-
factory, because it is nonlocal, owing to the appearance
of the factors of p' in the denominator. (To replace
these factors by m' would destroy the projection char-
acter of P~, and lead to another multi-mass equation. )
Nevertheless, it has many of the features of the correct
Lagrangian, and it will prove useful to carry the dis-
cussion a stage further. Evidently, the equations of
motion

LE(p) —m)+ =0

are identical with (7), so to this extent (17) is correct.
The corresponding "propagator" is readily found to be

We shall see in the following sections that the true
propagator has a remarkably similar structure.

The expression (20) for the residue at the physical
particle pole provides a simple means of reducing
peripheral model calculations with exchanged particles
corresponding to an arbitrary representation to traces
of Dirac matrices. One must of course apply sym-
metrization or antisymmetrization, and also reverse the
sign of p in any factors referring to antiquark indices.
For example, the residue at the pole for the meson
representation 4212 is

(p' m) (C—„J)(" g s),G2r)+
~

„2 ~2

=2m-,'L(A+') ~g (A~'))2~ —(A~') ~~(A~'))2(2)

&&L(A-') '(A-') '-(A-') '(A-') ') (22)

Note that the trace on any pair of indices like 2 and C
is automatically zero, as it should be.

4. THE SPIN-~ FIELD

It is well known that to find a Lagrangian for many
higher spin equations it is necessary to introduce extra
fields which are set equal to zero by the equations of
motion. " We must expect this to be true also of the
Bargmann-Wigner equations. Thus we shall look for
Lagrangians involving the fields we want, and also some
auxiliary fields. Without loss of generality we can re-
quire that the Lagrangian function shall be linear in
the derivatives, since this may always be achieved by
a,dding more fields. "

In a free Lagrangian, each SU(3) multiplet within
any U(12) representation must enter separately if the
Lagrangian is to retain SU(3) invariance. Thus the
SU(3) indices are an irrelevant complication, and we
shall drop them and concentrate on an irreducible repre-
sentation of U(4).

Let us consider first a, spin- —,
' particle described by a

tota]ly symmetric spinor 4 p7. As we have seen in the
preceding section no simple Lagrangian can be con-
structed out of 4' alone which will yield the Bargmann-
Wigner equations. Thus, we are forced to include extra
fields in the Lagrangian. The most natural choice for
these are other three-index fields with different sym-
metries. Thus, we shall consider in addition to 4 a fie]d
C of symmetry type L2, 1) and a field 0 of symmetry
type L12). It is not dificult to write down the most
general form of bilinear Lagrangian which can be con-
structed from 4, C, 0 and the matrix pp. The require-
rnent that this La,gra, ngia, n should yield the Bargmann-
Wigner equations for +, and set 4 and 0 equal to zero,
then fixes all the coefFicients uniquely, apart from arbi-
trary normalization constants on C and Q.

Ke begin by introducing some notation. We shall use
parentheses am( square brackets to denote complete

(VP)2(VP). (VP)2

4m2p2
(21)

'4 M. Fierz and %. Pauli, Proc. Roy. Soc. (London)- A173, 211
(1939).

I J. Schwinger, Phys. Rev. 91, 713 (1953).



G. S. GURALNIK AND T. K. B. KIBBLE

symmetrization or antisymmetrization, respectively, of
all the indices enclosed within them. Thus, the sym-
rnetries of 0 and 0 are represented by%'( p, ) and Ql„p~~.
The field O of mixed symmetry may be represented in
either of the two equivalent forms O( p)~ and O't p~~,

which satisfy the cyclic identities

The equation for O is more complica, ted, and may be
written

2—mc'-pv= s—l:(vp)-'c'vzp+ (vP) p'~'zv-+ (vP)v'@"pz]

+pl;2(vp)'+-pz (v—P) -'+z pv (v—P)p'+.z~3
(2—v3) 'I:(vp)-'flzpv (v—p) p'fl-zest (3~)

c'(-p) v+4'(pv)-+@(v-) p= 0

@'(-p)&+4"(pe) -+c"(v-)p
=0.

They are related by

(23)
or, equivalently,

2m—c"-p =-'zL(vP)-' C" zp+ (vP)p'c"z. -+ (vp)'C"-pz j
+ 6L2(vp) 7'fl. pz

—(vp)-'flz pv
—(vP) p'fl-z. )

+(2&3) 'I (vp)-'+zpv hp—)p'+-zvj (32)
(24)

Clearly, by using these symmetry properties we can
always reduce any linear combination of components of
O to a linear combination of O( p)~ and O't p;, with the
indices written in standard order. The normalization
factors in (24) are so chosen that

O'O'= 44.
From these symmetry rela, tions, it is easy to establish

the following identities:

c'(v p) c'= c'(vp).c'=-:c (vp) c+-:~(vp) c,
25

c'(vp) c'=lc(vp) c—!C(vp) c,
together with a,n identical set in which O a,nd O' are
interchanged. Similarly, we have

Now we may use the symmetry properties to re-
arrange all the indices in standard order, and then re-
write these equations in a more symbolic notation in
the form

:~(»).+(»).+(vp).j~
+—' I

2h'P) —(vP) (vp) 3@-

+(4~~)-'I ( p) —(».)jc', (33)

-pl:(—vP z)+(vp) z+h p)z]&
—(4~3)-'I (») —(vp.)jc

+—'
I 2(») —hP) —hP) jc", (34)

a,nd

—2mC'= () L2 (vp) z
—(vp), —(»),$ (@—4)

—(2&&)-'L(») —(vp).j(~+~'), (»)
01

~(vp) ~=~(vp).c=—!~(vp) c,
+(vp) ~'= +(vp).+'—=V~+(vp) +,
4 (vp)zC'=0,

and also

n(v p),c'= n(v p),c'= ——,'6(»),c',
Q(v p),c = —D(v p),e = ——',VSn(v p),c',
D(vp), c =0.

The appropriate Lagrangian for a spin-~ field may
now be written in the form

L = m~+—2mC4 mQQ—
++hP) +:~hP) ~+l+'hP) c' ~l(») D

+-,'L+(vp) zc+c (vp) z+]
+-', L~l(vp)zc'+c'(vp), ~). (28)

whence it follows from the symmetries tha, t

(vp) z+= (vp) += h p) +,
(vp) f1= (vp).f1= (vp) fl

Thus, the Eqs. (37) and (38) have nonzero solutions
only in two cases. Either (a) p'= m' and

(vp m)+= (vp —m)0=0, — (4o)

or (b) p'=0 and

(39)The most general possible structure has precisely this
foun but with arbitrary coefficients. To show that (28)
is unique, one may follow through the arguments below
keeping these coefficients arbitrary, and show that for
all other choices there are a,dditional unwanted solu-
tions to the field equations.

The equations of motion may be obtained by varying
+, 4, 9 subject to the appropriate symmetry con-
straints. Thus, for 0' and 0', we have »4= »0= 0.

(26)
—2mc"= (2v3) 'I (vp)( —(vp)2j(+ c')

+-'L2(vP) —(vP) —(vp) 7(~+4"). (36)

Multiplying these equations by (vp)&+ (vp), ,
obtain two pairs of uncoupled equations for O', O and
Q, O'. A straightforward elimination of O and O' then

(27) yields the equa, tions

mLhP) ~+ (vP) z3+

2 LP + (vP) &(vp) 2+ (vp) z(vp) z+ (vp)z(vp) &jO, (37)

mL(vp) z+ (vp) zj&

'Ep'+(vp) (vp—) -+(vp) (vp) +(vp) (vp) jo„
(38)

me„p, = (vp) (,'+.p) z+'p (vp) (p'C' p) z,

mQ p~= —(vp)[v flap)z+z(vp)(7 C' ~p)z.

In either case, it follows immediately that Q=O, be
cause a totally antisyrnmetric spinor cannot be a, simul-

(30) taneous eigenstate of all three of the operators (»)),
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with the same eigenvalue. "Then, comparing Eqs. (34)
and (36), and using (39), we find that C' (and therefore
C) also vanishes. Finally, returning to Eq. (33) we see
that in case (b) 4= 0. Hence we are left with a unique
solution

(vP) += (vp).+= (vP)P=m+,

C =O'=Q=O.

(41)

(42)

Thus, we have shown that the Lagrangian (2g)
yields the correct Sargmann-Wigner equations, and
sets the auxiliary fields equal to zero.

It is straightforward, if tedious, to compute the
propagators. We find for the physical field 4',

The relationship of this propagator to that given by
SDS is discussed in the Appendix.

5. THE 20-COMPONENT SPIN-2 FIELD

Next we turn to the case of a spin- —,'particle described
by a field with symmetry type $2,1j.The Lagrangian
may be expressed in terms of the same variables we used
in the preceding section, but without the totally sym-
metric field O'. It is

L= —mCi'4'+smQQ+. C'(Vp) i4'

+II(vp) II—lLC'(vp) II+II(vp) ~'3 (47)

The equations of motion read

(Vp+m) i(Vp+m) s(Vp+m) s

4ms(ps —ms)

(vp) i+ (vp)s+ (vp) s

12m2

m~"-~&= s((VP)-'@'ssv+ (Vp)s'@'-sv&

+lDvp)-'C's s+( vp)
'tC' -s+(vP) 'C"-»&

+lL(vp). 'II ~,+ (vp)s'Il-, —2(vp), '&-s j,
(43) and

4m
smfl~pv= s (vp) [~ @ pets+ O'P) i~ ~p'Yfs

in which total symmetrization is understood. This
expression may be compared with our earlier form (21).
It will be noted that it divers from it only in the
momentum-dependent contact term, and that even the
coefficients of the contact terms agree. The remaining
propagators all consist of pure contact terms, and have
no physical significance unless the auxiliary fields C
and 0 are coupled in some way to other fields. For
completeness, we list them below:

(@4') . = (@@)~=- (Il(y ) = (4~I2)

(vp) i+ (vp) s—2(vp) s
(44)

12m2

Written in the same symbolic form as before, they
become

~=!L(vp).+ (vp).+2(vp).)c
—(«3)-'L(vp) —(vp) jc'

+ (2v3) 'L(vP) i—(vp) slII, (4g)

or

mC'= —(4 3)-'L(vP) i—(vP) sjc'
+ i'sL5(vp) i+5(vp)s+2(vp) she"

+Gt (vp)i+(vP)s —2(vp)sjII (49)

alld

(vp) i+ (vp) s+ (vp), 1
(nQ), =

3m2

2(vp) s
—(vp) i—(vp) s

(~c).= +
12m2 2m

(45)
——;ma=(4v3)-'((vp), —(vp), )C

+—,', L(vp).+(vp).—2(vp).jc'
+ sL(vP) i+ (vP) s+ (vP) sjII (50)

Note that from (49) and (50) it follows that

These equations are to be understood in a symbolic
sense. In each of them, appropriate symmetrization or
antisymmetrization is implied, and it is thus not really
true that (O'4)+ ——(C+)+. Written out in full, each is a
sum of 18 terms. For example,

(+- c").= — L».'~ (vp),
12m2

m(~' ——,'I2) = l((vP) + (vP).7(C"+&) . (»)

Operating on (50) with L(vp) i+ (vp)sf and eliminating
C' between this equation and (51) we obtain the equa-
t.ion for 0,

——,'m'L(vp) i+ (vp) sjI&

= —mt p + (vp)1(vp)2+ ( Yp) 2(Yp)s+ (Yp)s(vp) 1)I2
—ALP'f (vp) i+(vP) s+(vP) s)+(vP) i(vP) s(vP) s)II,

—&&~'~st(vp)»' —&&~Ops(vp)»' J. from which it follows immediately that

"Because of the use of this condition, it would be incorrect to
generalize the Lagrangian (28) directly to the description of the
U(12) multiplet 364.

(vP) II= (vP)u= (vP) I2.

Then as in the previous section we can conclude that,
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(vp) c"=(vp) c'= (vp) c"=~c". (52)

We can now evaluate the propagator as before. We
find

h p+m) i(~p+~~)2h p+~) 3(c'c'),=
4n" (p' e)—

(~p) + (~p).—(~p)
(53)

Note that this expression is very similar to the spin--,
propagator, Eq. (43). The propagators involving 0 are

2(vp)3 —(vp) i—h p).
(O'0) =(M')+ ——,(54)

3m2

0=0. It then follows from (51) tha, t

(~p).c'= (vp).c',

and from (50) that both expressions are equal to
(yp) 8C'. Finally, using (49) we see that C' satisfies the
Bargmann-Wigner equations

one would wish to take account of the mass splittings,
and it is then necessary to project out from this ex-
pression the various SU(3), and even SU(2), multiplets,
so that the poles can be placed in their correct position.

The necessity of introducing auxiliary fields to obtain
a Lagrangian formulation of the Bargmann-Wigner
equations should not be taken to imply that these
fields have any direct physical significance. When inter-
actions are introduced, they will in general no longer be
zero. However, provided that the interaction terms
involve only the physical fields (0' rather than C or 0 for
the spin-~ case), then the auxiliary fields will still be con-
straint variables whose values are fixed in terms of the
dynamical fields by the equations of motion. The U(12)
invariant interactions of SOS are of course of this type.
So long as this condition is satisfied, the precise struc-
ture of the propagator for these auxiliary fields is
physically irrelevant, because they never appear in the
evaluation of any physical matrix element. Any inter-
action which actually excites these fields as additional
dynamical variables is liable to encounter difFiculties
with the positivity of the metric. In this connection,
the question of the consistency of the electromagnetic
interactions deserves further investigation.

hp)i+(vp)~+(vp)3
(nQ), = —4 +—.

3m2
(55)

0. DISCUSSION

There is no difficulty of principle in extending the
discussion of the preceding sections to higher repre-
sentations, though in practice the number of auxiliary
fields required increases so rapidly that the algebra
would soon become prohibitive. In any case, there is
probably little point in going further. Even if one be-
lieves that some of the multiplets should be represented
by fundamental fields, this is hardly likely to be true
except for the simplest representations. If the higher
multiplets are regarded as bound states, there is no
need to look for a local Lagrangian function to describe
them. In an S-matrix theory, we require only the free
equations of motion (the Bargmann-Wigner equations)
to describe the asymptotic particle states, and the
residue of the pole in the propagator, which is given by
the formulas of Sec. 3. From these and the U(12)—
invariant form of the vertex, we can calculate the
appropriate discontinuity functions to feed into the
S-matrix calculations. The only additional information
one would obtain from a Lagrangian formulation con-
cerns the contact terms in the propagator, which in an
S-matrix theory would appear as additional four-
particle vertices.

It is worth noting tha, t with the simple form (20)
for the residue, it is very easy to calculate pole diagrams
in the approximation where the mass splittings of the
SU(6) multiplets are neglected. In general, however,
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APPENDIX

Here we wish to rela, te the propagators obtained
above to the field variables of the type introduced by
SDS.

For the representation 143 we may write

C/s ——(2%2)
—'(r„l~ )g y"'

and find for the propagators(yriysj),
-', trL(yp+1'ii)r (—&p+m. )r"$ —tr(r'r")

$ij $ij
2m (p' —~r. ') 2m

This yields the familiar spin-0 and spin-1 propagators,
identical with those found by SDS.

Next, let us turn to the three-index fields. Any
third-rank spinor can be written (in a Majorana repre-
sentation with C=P) in the form

I.s,= (2~2)-'(r.~').sS"„
fi«Pv = (2v2)--i (pr ~)ti«ip, v

For the totally symmetric spin-~ field, we have

~.~,= (2~~)-'(v.~ ').~~,+ (4~~-)-'(-..~').~~",
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The corresponding propaga, tors are easily found to be

Q "p,)= [24m'(p' —m') j '{(yp+m) tr[(yp+m)I', (yp —m)I""j+2(yp+m)F, (yp —m)F" (yp+m) }
+[72m'j-'{qp tr[F,F j+2 tr[qpF, F")+2qpF,F —2F,qpF +2F,F qp}+[Smj-'{tr[F,F"j+21',F"}.

Similarly, for the spin-(st) field we may write

C'(~f0„——(2v2) '(p '),pp„+(2&2) '(o„sp ')~sf&sy+(2v2) '(esp ')~gift,
a,nd find for the propa, ga.tors

Q "P,)+——[12m'(P' —m') g '{(yP+m) tr[(yP+ m) F, (yP —m) I'"j—(pP+ m) F, (yP m) —F"(yP+m) }
—

f 36m'j '{yP tr[F,F g
—«r[~PF, F 1+pPF,F"+5F,qPF +F,F"zP}+[4m) '{tr[F,F"j—F,F"}.

The explicit evaluation of these propagators is straightforward but the result is not particularly illuminating, and
we omit it. We note that the residues at the pole p'= m' are identical with those of SDS, but that the contact terms
are different. The asymptotic behavior for large p is no worse than linear.
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Low-energy E -meson interactions in hydrogen are studied in the following channels:

E-+p ~E-+p,
E-+p ~ z-+~+,
Ic-+p ~z++~-,

and cross sections, as a function of momentum, are presented in the region of 60—300 MeV/c K laboratory
momentum. These cross sections, combined with existing data, are used to fjt the zero-effective-range theory
of Dalitz and Tuan. Two possible solutions are obtained; the preferred one agrees with previous higher
energy data. The favored solution also suggests an S-wave bound state at 1410 MeV, which could be asso-
ciated with the F0~ at 1405 MeV whose spin is still undetermined. Various properties of the two solutions are
presented for X p interactions and E20p interactions.

I. INTRODUCTION

& URING the past several years there have been
several theoretical investigations of low-energy

KE interactions. Jackson and Wyld, ' and Dalitz and
Tuan' have both developed an 5-wave zero-effective-
range formalism, taking into account the Coulomb
interactions and mass-difference effects. Humphrey and
Ross' measured the cross sections, in the various
channels, at E laboratory momentum below 275
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MeV/c, and using the Dalitz and Tuan formalism de-
termined two possible sets of scattering lengths, HR1
and HR2. The favored solution, HR4, predicts a positive
phase angle between the T= 1 and T=O amplitudes for
Zvr production from E E, while HR2 predicts a negative
phase angle. Higher energy data4 seem to imply a nega-
tive phase angle. ' Attempts to explain E D interactions
in terms of XS scattering lengths have been made~'
and seem to yield better agreement with HR2 than with
IIR1. Faced with these problems, it seemed interesting
to redo the low-energy experiment with higher statistics.
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