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Separable Potentials and Coulomb Interactions
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The scattering of two nonrelativistic charged particles interacting via a short-range separable potential
and a repulsive Coulomb potential is studied. The "nuclear" phase shift is given by an explicit formula,
identical to that for the neutral-particle case except that the separable potential functions are replaced by
their Coulomb-modihed counterparts. A simple one-term S-wave separable potential of the Yamaguchi
type is used to illustrate this result. A perturbation theory is developed and used to relate the proton-proton
scattering length and effective range and the corresponding neutron-neutron parameters. The result is in
reasonable agreement with experiment and with previous calculations using local potentials.

I. INTRODUCTION

HERE has recently been a flurry of interest in
the behavior of particles interacting through non-

local separable potentials, especially in three-particle
systems. '—' These studies are de6nitely of interest from
a purely theoretical viewpoint, but there is also hope
that separable potentials will be useful in explaining
three-particle scattering data in terms of the results
of two-particle experiments. It should be possible, for
example, to calculate reasonably accurately the nucleon-
deuteron scattering amplitude using information gained
in nucleon-nucleon scattering experiments. "'

There are, of course, loopholes in this program. The
three-particle problem requires two-particle T-matrix
elements far off the energy shell, and these we cannot
hope to know with any definiteness. (The nonrelativistic
potential theory itself is not meaningful for high-
momentum states. ) The hope is that the contribution
from high-momentum states is small, but at present this
hypothesis can be tested only by comparing predictions
based upon it to experiment. It thus seems that the
question of the usefulness of separable potentials in
three-particle calculations can be settled only by a series
of increasingly accurate calculations and experiments.

One incidental problem in this program will be the
handling of Coulomb interactions. Charged particles
are much easier to study experimentally than neutral
particles, but their Coulomb interactions complicate the
theory considerably. The Coulomb potential is, of
course, not separable and, at low energies, with par-
ticles held together in bound or resonant states, cannot
be treated as a small perturbation. It seems likely that

'The list of references here is meant to be illustrative, not
complete. References 2—4 give the foundations, while Refs. 5—9
contain applications. These papers contain many references to
other work using separable potentials.' C. Lovelace, Phys. Rev. 135, B1225 (1964).' S. Weinberg, Phys. Rev. 133, B232 (1964).

4 R. D. Amado, Phys. Rev. 132, 485 (1963).' Y. Yamaguchi, Phys. Rev. 95, 1628, 1635 (1954).
'R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136,

B650 (1964).' A. X. Mitra and V. S. Bashin, Phys. Rev. 131, 1265 (1963).' J. H. Hetherington and L. H. Schick, Phys. Rev. 137, 8935
(1965).

J. H. Xaqvi, Nucl. Phys. 58, 289 (1964).

a reasonably exact method for dealing with the Coulomb
interactions will be required.

To this end, in this paper we study the behavior of
two particles interacting via a short-range separable
potential together with a Coulomb potential. (The
corresponding problem for short-range local potentials
was solved many years ago."") We shall not consider
here the analogous, much more difIicult, three-body
problem except to note that the two-body solution will

certainly serve as a starting point. The results obtained
here may also be of pedagogic interest since they can
be expressed relatively simply and yet illustrate the
important features of the Coulomb p)us short-range
potential problem. It further appears that, in certain
cases, they may be useful in checking charge independ-
ence and charge symmetry in low-energy interactions.

The general problem is considered in Sec. II, where
it is shown that the most important property of the
separable potential is preserved when a Coulomb po-
tential is added: in both cases the solution to the
Lippmann-Schwinger equation can be given in closed
form. Aside from this simplification the solution has all
the properties expected from previous studies of the
Coulomb plus short-range potential problem. ' "To
illustrate the nature of the Coulomb modifications a
simple 5-wave problem with a single-term separable
potential of the Vamaguchi type is solved in Sec. III.
A perturbation expansion of this result is used to cal-
culate the neutron-neutron scattering length and e8ec-
tive range from the corresponding proton-proton pa-
rameters, assuming charge independence; the results
are in fair agreement with experiment and previous
calculations. The results of the paper are summarized
and possible further applications are discussed in Sec.
IV.

II. GENERAL FORMULATION

Ke wish to study the properties of a system of two
particles of mass m1 and m2 and charge e1 and e2,

~o R. Yost, J.Wheeler, and G. Breit, Phys. Rev. 49, 174 (1936);
G. Breit, F.. Condon, and R. Present, ibid. 50, 825 (1936); G.
Breit, 8. Thaxton, and L. Eiaenbnd, ibH 55, 1018 (1939). .

"M. L. Goldberger and K. M. Watson, Collision Theory
{John Wiley R Sons, Inc., New York, 1964), p. 263.
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interacting via a potential V= V,+V, which is the
sum of a separable potential U, and the Coulomb po-
tential U,. To avoid the complication of the extra
bound states we shall a,ssume the Coulomb potential
to be repulsive, but, as will be clear, the attractive case
can be handled by essentially identical techniques.
Furthermore, to escape the difficulties associated with
the long-range nature of the Coulomb potential we
shall make the realistic assumption that it is cut off
at a shielding radius E which is finite but extremely
large compared to the range of the separable potential.

It is convenient to have at our disposal several
complete sets of states: the free-particle states

I k); the
outgoing and ingoing Coulomb states

I
k(~) &,= I k&+[E(k)~~.—H„—V,j- V,

I k&; (1)

and the outgoing and ingoing exact sta, tes

Ik(+)&= Ik&P[E(k)~i.
H, V.—V—,$-'—(V,+V,) I

k),
=

I k(+))„+[E(k)ai.
Hp V,—V—,]—'V—, I k(+)&,. (2)

Here Ho is the kinetic-energy operator, with eigen-
values E(k)=(2p) 'k', where p=(m '+m ') ' is the
reduced mass. We shall take for all states the
normaliza, tion

With our state normaliza, tion the requirements of uni-

tarity a,re satisfied if we write the on-shell Coulomb
and total partial-wave amplitudes, respectively, as

T„&(k,k) = —2~(pk) ' sin8, t(k) exp[i', , &(k)], (11)

alld

T, , , (k,k)+ T... ,(E(k); k, k)
=—2~(pk)-'sinb, (k) exp[i'~(k)], (12)

where 8, ~ and b~ are the real phase shifts.
The above considerations apply to any two-potential

problem" and have been included here only for com-
pleteness. We now, however, take advantage of the
separable nature of V, :

,(k' (—) I
U,

I
k (w) &,

=Qg (2l+1)Pg(k' k) V„ i'+'(k' k) (9)

with similar expansions for T, (k', k) and (k'
I
V,

I
k). The

integral equation (7) then gives

T„,,(E; k', k) = V„,t'+&(k', k)+(2m') '

"k'"dk"V„,i& &(k',k")T„,i(E; k", k)

E+ie—E(k")

(k'Ik)= (2~) y(k' —1). (3) V„g(k',k) =P; X)„g)„(k')g(,, (k) .

With these definitions one obtains the well-known"
result for the S-matrix element

S(k',k) —= (k'(—) I k(+)),
= (2w)'b' (k' —k) —2~ib[E (k') —E(k)]

X [T„(E(k);k', k)+ T,(k',k)$, (4)

where

The distinctive feature of a potential of this form is
that, at least in the absence of the Coulomb potential,
it leads to an integral equation for the T-matrix ele-
ment with a degenerate kernel and therefore with a.

simple algebraic solution. When the Coulomb potential
is present the same integral equation holds for T„,&,

except that V, , & is replaced by V,.„,&(+', related to it by

alld

T.(l ',k) = (k'I V,
I k(+)). , (~) V„ t'+'(k' k) = (2m') —' q"dq' q'dq

T„(E(k);k, k) =,(k (—) I V.Ik(+)). (6) X., &(k'(—) I
q') V, , (q', q)(qlk(~)). , „(1&)

The function T,(k',k) is just the usual Coulomb scatter-
ing amplitude. Our main object of interest is T„,
which satisfies the integral equation"

T,.(E; k', k)

=.(k'(—) I
v, I k(y) &.

+P," [E+i~—E(k")j—'

X.(k'(—) I
U, Ik" (—)),T„(E;k", k). (7)

At this point we make partial-wave decompositions
of our matrix elements:

T„(E;k', k) =g, (21+.1)P,(k' k) T,„,)(E; k', k), (8)

where the partial-wave momentum-space Coulomb wave
function (qI k(&)),, ; is defined by the expansion

(qIk(&)&,=QE (21+1)Pg(0 k)(qIk(&)), t. (15)

Thus, when V, q has the separable form (13), V...~'+'

is a,iso separable:

V„,g'+& (k', k) =exp[9, )(k')$,
XQ; &t,„g...„(k')g., g, ;(k)

Xexp[aib. g(k)], (1,6)

"Reference 11, Sec. 5.4.
"For an attractive Coulomb potential we would have to in-

clude a sum over the bound states.

g, , (,;(k) exp[&i5, , )(k)$

= (2~') ' q'dqg~, (q)&qlk(~)&. , ~ (»)
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The function g, t, ,(k) can also be given in terms of
w((k, r), the configuration-space radial-wave function for
the Coulomb potential, which we here define with the
asymptotic normalization

where A is the diagonal matrix

X,;=8„A;,
and the elements of the matrix I (E) are given by

(29)

If we define

w((k, r) sin[kr ——,'i7r+8, , ((k)]. (18)
I;,(E)= (2~')-'

"k'dkg, , ;(k)g. ,(k)

E(k)—E—ie

G&, ,(r) = (2~') ' q'dqg(, ,(q)j ((qr),

where j& is a spherical Bessel function, then

(19) Solving (30) for r(F) we find

r(E) = [1+XI(E)] 'A. (31)

g, , (,,(k) =47rk ' rdrG(, ,(r)w((k, r). (20)

w((k, r) =F((kr)
= (2i) ' 'C—g(—rj)M;, (+(,)2,& (2ikr), (21)

The wave-function w((k, r) is a solution of the Schro-
dinger equation with a cut-off, rather than exact,
Coulomb potential, but'4 for kR))l(l+1)+g'(k) and
r&R we have

From (27) and (31) we see that, except for the Coulomb
phase factors, T„((E;k', k) can be obtained from the
corresponding T-matrix element in the absence of the
Coulomb potential merely by replacing g&, ; by g, , &, ,

If we define a Coulomb-corrected "nuclear" phase
shift 8„., & from the on-the-energy-shell matrix element
by

exp[—2i8, , ~(k)]T„,((E(k); k, k)

=P;,, g, („(k)r,, ('~(E(k))g, , (,,(k),
=—2'�(pk) ' sinh„, ((k) exp[i'. ..;(k)], (32)

where Mq, „(s) is the Whittaker function, "
C~(n) =2'[(2l+1) ] 'l«i+1 —i~) I e"pL—2~6
is the barrier-penetration factor, and

then, as can easily be seen from (11) and (12), the

(22) total phase shift is just the sum of the Coulomb and
"nuclear" phase shifts, 8((k) =8, ~(k)+b„,~(k), and

g = q(k) =p,eiegk
—'. (23)

8„,g(k) =—arg f det[1+A(I((E(k))]) . (33)

The radial Coulomb wave function Fq(kr), originally
given by Yost, Wheeler, and Breit,"has the asymptotic
form

F~(kr) sin[kr —rl ln2kr ——',l7r+0 ~], (24)

In general the exact nature of the Coulomb screening
is not known. As long as E is much larger than the
range of V„however, under most experimental condi-
tions the differential cross section is given accurately
byll

where f7&, usually known as the Coulomb phase shift,
is given by where

(34)

X(——argI'(i+1+i') . (25) f,. (8) =k ' P~ (2l+1) sino(exp(iog)P~(cos8) (35)

Although the exact value of 8, , ~ depends upon the
details of the cutoR, we expect, for k not too small,

b, ,=~,—g ln2kx, t((kZ. ,

s„,=o, t))M. (26)

Since V„,((+'(k', k) is separable the integral equation
(10) can be solved algebraically. Setting

T„,((E; k', k) =exp[i'„((k')]
XP;,;g. , &„(k')r,,('~(E)g, , &,,

Xe p[i8, , ,(k)], (27)

we obtain for the matrix r (dropping the index l) the
equation

is the usual Coulomb amplitude, and

f,,(8) = k
—' P ( (2l+1) si»...g

)&exp(i8„,q+2io()P((cos8), (36)

with 0
&

and 8„,& given by (25) and (33), respectively.
It should be emphasized that the results here are

not really new, but merely an application of what are
now standard methods to a particular class of poten-
tials. In the next section we shall see, through an
example, the considerable sirnplication which results
from the use of a separable, rather than the more usual
local, potential.

r (E)=A—A.I(E)r(E), (28) III. A SIMPLE EXAMPLE

' This is required in order that Fg(kr} has its asymptotic form
when r=R.

"See, for example, W. Magnus and F. Oberhettinger, Special
Functions of Mathematica/ Physics (Chelsea Publishing Company,
New York, 1949},p. 88.

To illustrate some of the features of the formulas
developed in Sec. II we shall apply them to the simple
problem of calculating the S-wave phase shift 8„,0 for
a single-term separable potential of the Yamaguchi
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type"-

where
V„p(k',k) = Xg (k')g (k),

g(k) = (k'+p') '.

This integral can be done using an integral representa-
(37) tion for the f (digamma) function, "
(3g) i ( i (p)) = ln(peiesp ') —p(2peies)

Then, using (21),

G(r) = (4s.r) ' exp( —pr), (39)

1 "dq Cs'(ii(q))—p'(pe, e )
—'—

qs+ ps

and, from (22) and (23), assuming k not too small and and the related formula
p))R ',

ti(ii(k)) —=Re/( —iil) —inti,

g, (k) = k
—' dr exp( —Pr)Fs(kr) . (40) P "dq C(P(ii(q))= (pe,es)

—'k'— (49)

The Laplace transform of the Whittaker function is
given in standard tables"' the resulting expression for
g, (k) is

g.(k) =g(k)Cs(tl) exp[2tl tan '(kP ')j.
Here il is given by (25) and, taking k= 0 in (24),

We shall here keep terms only to order peiesP ', ignoring
terms of order (lietesp ')'1n(petcsp '). We can then re-
place Css(ti(q)) by 1 in (50), the integral becoming
elementary. Consistent with this approximation, in
evaluating (47) with the help of (48), we can set

Co(tl) = {2irtl[exp(2s. t})—1$
—')'~'. (42)

In this case the dimension of the matrices r and I is
one, and, from (35), the phase shift is given by

"qdq tan '(qp ')Cs'(ti(q))
(41) I,(k) = (2'')-'4pe, e,P . (50)

(q'+ p')'(~(q) —&(k))

cotb„(k) =—Re(1+XI)P ImI] '. (43)
0(pelesp ') = p(~ere—s)

' V— (51)
Since

where y=0.5772 is Euler's constant. With these ap-
ImI= (2ir) 9pkCss(ti) exp[4' tan —'(kP —')$ proximations we find

g (k +p ) 1 (44) I(k) p~~
—1(ks+ps) —2{(4p2)

—1(p2 k2)+p —1~e e k(~)

+P 'peies[in(4pelesP) —»(P'+k')+vj); (52)

ReI—= I(k) = (2ir') —'P

this can be rewritten as

" q'dqg'(q)

&(q) —P-(k)

and, substituting into (46),"
(45)

kCss (t}) cotb„(k)+2petesk (ti)
=k cot6, (k)[1 4petesk —' tan '(kP ')j

—2petes[ln(4peiesP) —ln(P'+k')+y$, (53)
kCs'(il) cotb, „.=—2ir(zp)

—'(k'+p')'
&&exp[—4~ Can '(kP ')j[1+}I(k)$.

where 5.(k) is the corresponding phase shift in the
(46) absence of the Coulomb potential:

Ip(k) = (2ir') 'P
q'dq Css(ti(q))

(47)
s (q'+ p')'(&(q) —&(k))

"See, for example, Ref. 15, p. 130.

From (46) we see that as k ~ 0 the factor C'(ti) requires
a phase shift which approaches zero as exp( —2metespk '),
rather than as k. This is of course because low-energy
particles cannot penetrate the Coulomb barrier and
therefore cannot feel the effects of V,. This result is
not really true all the way down to k ~ 0 if R is finite,
but it will hold for k&(pe~e2, where the exponential
behavior is apparent.

The above formulas can be considerably simplified
when petesp '«1. In this case we can expand the factor
exp[4ti tan —'(qp ')j which occurs in the integrand in
(45) to obtain a perturbation series for I(k). The first
term in the expansion gives

k cotb, (k) = —2m (}N,) '(k'+P')' —(2P) '(P' —k') (54)

—a. '= —2irP'(} p) '—-',P (57)

"Reference 15, p. 3.
"The left-hand side of (53} is the function used for effective-

range expansions in the presence of a Coulomb potential. See,
for example, Ref. 11, p. 295."Equation (55) is similar in form to an approximate expression
for the proton-proton scattering length developed by J. D.
Jackson and J.M. Blatt, Rev. Mod. Phys. 22, 77 (1950).

From this formula we obtain the scattering length and
effective range":

—a„'= a, '[1 —4peiesP —'5
—2peies[ln(4yeiesP ')+y], (55)

', r„=-',r,[1 4yeiesP-'j—
+2peiesP '[1—2(3Pa,) '], (56)

where
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are the corresponding parameters for neutral particles
in the same separable potential.

We can check that these results are reasonable by
applying them to the nucleon-nucleon system. "The
proton-proton scattering length and effective range are
reasonably well known from experiment; translating to
our notation we have"

a»=a„=—7.81 F,
r»=r„=2.80 F.

These are consistent with Eqs. (55)—(58) if

a,=—j.8.0 F,
r, =2.93 F,

(4s.) 9p=1.20 F ',
(60)

/=1.10 F '. (61)

"Recent discussions of low-energy nucleon-nucleon singlet
scattering can be found in L. Heller, P. Signell, and N. R. Yoder,
Phys. Rev. Letters 1.3,; 577 (1964); R. E. Schneider and R. M.
Thaler, Phys. Rev. 137, B874 (1965); R. P. Haddock, R. M.
Salter, Jr. , M. Zeller, J. B. Czirr, and D. R. Nygren, Phys. Rev.
Letters 14, 31.8 (1965); and H. P. Noyes, Nucl. Phys. (to be
published). These papers contain references to earlier work. The
author would like to thank Dr. Noyes for a pre-publication copy
of his paper."From arguments given in Refs. 2 and 3 we expect the nucleon-
nucleon S-wave scattering to be a good subject for treatment
with separable potentials because of the virtual bound state.

(Then 4s-eresP '=0.06, so that the perturbation expan-
sion should be valid. ) These values for a, and r„
although perhaps a bit large, are in reasonable agree-
ment with previous calculations, based upon charge
symmetry, and experimental values for the neutron-
neutron parameters (but not with the experimental
neutron-proton parameters). "

It should be pointed out that the simple separable
potential used above does not provide a good fit to the
high-energy proton-proton data. For a more accurate
calculation, a two-term separable potential, such as
that suggested by Naqvi, ' could be used. A comparison

of the different calculated results for the neutron-
neutron scattering length c „,"however, seems to indi-
cate that this parameter is relatively independent of
the shape of the potential.

IV. CONCLUSION

We have shown that the problem of determining the
"nuclear" phase shift, 5„,due to a short-range separa-
ble potential acting between two charged particles, is
essentially the same as the corresponding problem with
neutral particles. The effect of the Coulomb potential
is completely accounted for by the use of the Coulomb-
modified functions g„rather than the original separable-
potential functions g. It seems clear that this would
also be true in a more ambitious calculation including
vacuum polarization, nuclear-size effects, etc. ; these
would merely modify the Coulomb wave function used
in obtaining g, from g.

Our results may be useful in finding the correct
separable-potential parameters for the scattering of
two charged particles, especially in those cases where
there are no neutral counterparts. With this informa-
tion the oil-shell two-particle T matrix, T= T,+T„,
needed as input in the Faddeev equations" of the three-
body problem, can be calculated. One has stil) the
dificult problem of handling the nonseparable T„but
it may prove true that the main Coulomb effects will
be included when T„ is used instead of T,. This is
because T„accounts exactly for the Coulomb effects
for pairs of particles in bound or pseudo-bound states,
while T, acts upon less strongly correlated pairs.

Another possible application of the results obtained
above is to the problem of charge symmetry and charge
independence. As illustrated in Sec. III, checking
charge symmetry amounts to determining whether or
not the same separable-potential parameters can be
used to fit the scattering of a family of particles, with
the Coulomb modifications included when needed.

It is hoped that the results of this paper will be
useful in answering the question of whether separable
potentials are meaningful in situations other than on-
shell two-particle scattering.

"See Refs. 2 and 3.


