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In quantum electrodynamics one can obtain a Hamiltonian which gives reasonable field equations in the
Heisenberg picture, but which does not allow of solutions of the wave equation to represent physical states
in the Schrodinger picture. The inference is that the Heisenberg picture is a good picture, the SchrOdinger
picture is a bad picture, and the two pictures are not equivalent. The usual proof of the equivalence of the
two pictures fails because the state vector of the Schrodinger picture does not remain in Hilbert space.
One can set up quantum electrodynamics entirely in the Heisenberg picture and thereby avoid the worst
difhculties encountered in the Schrodinger picture. The theory takes a logical form and is not merely an

assembly of working rules. It can be applied to the calculation of the anomalous magnetic moment and the
I.amb shift, and is then similar to the usual calculations of these effects, with a good deal of dead wood cut
away. There is a problem concerned with the general interpretation of quantum mechanics when one cannot
use the Schrodinger picture and some postulates are proposed for dealing with it.

ik(dg/dt) =HP, (2)

where FI is an operator representing the Hamiltonian.
For a while physicists had two quantum theories to

work with, but it was soon found that there was a simple
connection between them, resulting, as people then
believed, in the two theories being equivalent. The
theories may be written in an abstract form which en-

ables one to express the connection between them more
concisely.

The matrices of Heisenberg's theory can be replaced
by linear operators operating on the vectors of a Hilbert
space. (I use the term "Hilbert space" to mean a,

"separable" Hilbert space, which can be spanned by a
denumerably infinite set of vectors. ) It is convenient to
use the notation

~
A) for a Hilbert vector labeled by A,

and u~A) for the result of applying the dynamical
variable u to

~
A). Heisenberg's equation of motion (1)

reads the same whether the dynamical variables are
considered as matrices or linear operators.

A wave function in Schrodinger's theory may be
considered as the coordinates of a vector in Hilbert

CONNECTION BETWEEN THE HEISENBERG
AND SCHRODINGER PICTURES

)t [UANTUM mechanics was discovered independ-~ ently by Heisenberg and. Schrodinger. They gave
us two theories, which at first looked very different.
Heisenberg's theory involved supposing the dynamical
variables to be matrices. They thus did not satisfy the
commutative axiom of multiplication. They varied with
time according to Heisenberg's equation of motion

ik(du/dt) = uH Hu, —

where H is the matrix representing the Hamiltonian or
total energy.

Schrodinger's theory involved working with wave
functions P to represent atomic states. They varied
with time according to Schrodinger s wave equation

space, often called the state vector. The dynamical
variables in Schrodinger's theory then become oper-
ators in Hilbert space as in the Heisenberg theory.
Schrodinger's wave equation (2) becomes an equation
for the time variation of the state vector, say

ihd
~
A)/dt= H

~
A) . (3)

Both theories now deal with Hilbert vectors and
operators on them. H is the same operator in both
theories. The difference between the two theories is that
in Heisenberg's the dynamical variables vary with the
time, according to (1), while the Hilbert vectors are
fixed. In Schrodinger's the dynamical variables are
Axed operators while the Hilbert vectors vary with the
time, according to (3).

The two theories may be connected by the equations

~iH t/AN ~
—iII t j5 (4)

) a ~$It/A
~

A )
where the subscripts S and H refer to Schrodinger and
Heisenberg, respectively. One can easily check the con-
nection by noting that, with us constant, (4) makes uH

vary with time according to (1), while with ~A&) con-
stant, (5) makes ~As) vary with time according to (3).
Equations (4) and (5) give us solutions of the
Heisenberg and Schrodinger equations of motion, con-
necting the variable uH and ~As) at time t with their
initial values, according to

u (t) —giHt/Au (p)a iHI/A (6)

t) —a iHt/At A P)—
With the two theories connected in this way, it

became clear that there was just one quantum mechanics
with two ways of looking at it, Schrodinger's picture
and Heisenberg's picture. The mathematical trans-
forrnation (4), (5) connects the two pictures.

DIFFICULTIES

~ Based on an invited lecture given at the New York meeting
of the American Physical Society, January 1965.

This quantum mechanics had enormous success when

applied to the simpler problems of the atomic world,
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but ran into serious trouble when one tried to set up an
accurate relativistic theory involving 6elds. The trouble
was most acute for electrodynamics, because the other
atomic 6elds were not very well known and one could
ascribe the difficulties for them to our imperfect knowl-
edge of the forces involved. But electrodynamics was
so well understood classically that it was most puzzling
to find that quantum theory fai.ls for it.

In electrodynamics we confine our attention to elec-
trons and positrons interacting with the electromagnetic
field. It is then not difficult to obtain the Hamiltonian
H. One can be confident that this H is essentially
correct because, when one uses it in the Heisenberg
equation of motion (I), one gets sensible field equations
in agreement with what one would expect from classical
electrodynamics. However, when one inserts this H into
Schrodinger's wave equation (2), one cannot find any
solutions, not even approximate ones, to represent the
physical states one is interested in. One would expect
there to be a trivial solution corresponding to the vac-
uum state, but there is not even this trivial solution.
We have here the dilemma which has hindered the
development of theoretical physics for three decades.

The fact that physicists have been unable to solve
the Schrodinger equation has not prevented them from
wrestling with it. During the last eighteen years heroic
efforts have been made to extract some useful infor-
mation from it, with considerable success.

The method that people have followed consists in
treating the interaction between the electrons and the
electromagnetic 6eld as a small perturbation and seeking
for a solution of the Schrodinger equation as a power
series in the coupling constant e'/ 4. The solution then
appears as the sum of an infinite number of terms, each
of which corresponds to a Feynman diagram. The
trouble is that all the terms except the first few involve
divergent integrals.

Among the Feynman diagrams there are some that
involve v-v (vacuum to vacuum) transitions with no
external lines. These diagrams may occur either by
themselves or as parts of complete diagrams. The terms
corresponding to such diagrams all involve in6nities.
They are the worst terms, as they prevent one from
getting a solution to represent even the vacuum state.

The usual procedure of physicists in quantum field
theory is to neglect such terms altogether, and to excuse
themselves by saying that such terms could not corre-
spond to anything observable. This neglect involves a
drastic departure from logic. It changes the whole
character of the theory, from logical deduction to a
mere setting up of working rules.

The other terms in the expansion, those corresponding
to Feynman diagrams without e-v parts, may also con-
tain divergent intergrals. But they can be dealt with

by the technique of renormalization, which one can to
some extent justify in the case of electrodynamics,
where the coupling constant is small.

The Schrodinger equation, handled on these lines,

enables one to deduce practical results; namely, the
Lamb shift and the anomalous magnetic moment of the
electron, which are found to be in very good agreement
with experiment. The theory is thus undeniably a
brilliant success. But the price one must pay for this
success is to abandon logical deduction and replace it
by working rules. This is a very heavy price and no
physicist should be content to pay it.

NONEQUIVALENCE OF THE HEISENBERG
AND SCHRODINGER PICTURES

Let us re-examine the foundations of quantum
mechanics and try to find out where things go wrong in
the application to electrodynamics. We have a Hamil-
tonian H which gives sensible results in the Heisenberg
picture, but which we cannot use in the Schrodinger
picture. It would appear from this that the Heisenberg
pictureis a good picture, the Schro'dirtger picture is a bad

picture, aud the two pictures are not equiwalertt, as physi-
cists usually suppose.

There is, of course, the connection (4), (5) between
the two pictures. If we accept the Heisenberg picture
as a good picture, we can obtain from it, by the trans-
formation (5), the vectors ~Ae) of the Schrodinger
picture. These vectors vary with the time according to
(7) and satisfy Schrodinger's equation (3).

Now Schrodinger's wave function P consists of the
coordinates of a vector

~
A) satisfying (3). It seems that

we can obtain ~A) to satisfy (3) but we cannot find lt.
This must mean that the vector ~A) satisfying (3)
cannot be represented by coordinates. Any vector in
Hilbert space can be represented by coordinates. The
vector ~A) must therefore be in some more general
space than a Hilbert spac" -a space having many more
dimensions than Hilbert space.

We are thus led to look upon electrodynamics in the
Schrodinger picture in the following way. The inter-
action is so violent that if we start with a particular
state vector in Hilbert space to represent the initial
state, it gets knocked right out of Hilbert space in any
time interval, however short. It moves about in some
more general space, in which it cannot be represented

by coordinates, and thus one cannot construct a
Schrodinger wave function. We may call these more
general vectors "ket vectors. "

The dynamical variables of the Heisenberg picture
cannot now be operators in Hilbert space, but must
operate in the more general ket vector space.

A MODEL HAMILTONIAN

To illustrate the relationship between the Heisen-

berg and Schrodinger pictures one may consider a model
Hamiltonian which is suKciently simple for one to be
able to solve the equations accurately, but yet contains
features that correspond to the essential difhculties of
quantum electrodynamics.

Let us take as our dynamical variables at any
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time an infinite set of fermion emission operators
g„(r=1,2, , ~) and their conjugate absorption op-
erators p,*.They satisfy

g„g,+g,g„=0,
g„g, +g, g,=b„.

Take as the Hamiltonian

at time t, we may introduce a ket vector
~
St) satisfying

gr*(t')
~
St)=0 for all r. (12)

We may do this for each va, lue of t. Let us determine the
connection between the

~
5,) for different values of i.

From (6),

g +(i) &'sett tg s:(0)&—artlt*

H = —,'u„, (g,g,—g,*g,~), (9) so (12) gives

where the a„are real numbers and a„=—a,„.This II
is physically real.

Introduce a ket vector ~$) satisfying

,g*i 5)= 0 for all r.

Now

so we get

*(0)e 'Ittt" ~S)=0

g,*(0)
i Stt) = 0,

5 )= e'~tttt
~

S,)
Let us try to get a, solution of the Schrodinger equation
(3) with the state vector ~A) initially equal to ~$).
%e have

H (5)=-', ~„g„g,~$),

~
5) qttrs+pqgrgsgpgq

~
5) 4rtt+spqrg'gs 'gp'gq

~
5) ~

The second term reduces to

2 +rs+sr
~
5) ~

The coefficient of
~
S) here may very well be infinite,

even for a bounded matrix u. As a simple example we

may take a to be such that its square is minus the unit
matrix. (The minus is needed because the matrix a is
skew). Under these conditions Hq

~
5) does not exist.

There is then no solution of the Schrodinger equa, tion

(3) with the vector ~A) initially equal to ~$), if ~A) is
restricted to lie in the Hilbert space provided by power
series in the g's applied to ~$). Is there a solution if

~A) is not so restricted? According to (7) the solution
should be

e sHtttt t 5)—
so the question is, "Can we give a meaning to this
quantity, in spite of our failure to do so when we expand
the exponential?"

Let us work. in the Heisenberg picture. The Heisen-
berg equations of motion give

Zrsgr qGpq(grgp 'gq 'gp 'gq gr)s'
Irfbg p

—Cga'Yjy p

so
i~ gr ~ryCpqgq ~
Sg2-

Taking the special example with a'= —1, this gives

gT

/TED

whose solution with any given initial condition is

g„(t)= cos (t/ttt) g, (0)+i sin(i/It) u„g,*(0).

Thus the solution of the Heisenberg equations of motion
leads to no infinities.

Associated with the Heisenberg variables g„(t),g,*(t)

apart from an arbitrary numerical coefficient.
The

~
Sq) of (13) is just the same as the

~
5) of (10) in

the Schrodinger picture, so ~$ t) is the quantity (11),
which is a solution of the Schrodinger equation. Thus
we ctttt give a meaning to the qmatqtity (11). In the
Heisenberg picture it is on the same footing as the
quantity

~
Stt) and merely refers to a different time. The

Heisenberg picture thus leads us to introduce ket vectors
more general than Hilbert vectors, defined by (12).

Although we cannot get a solution in Hilbert space
for the Schrodinger equation with the initial vector

~
S),

we can get a solution with a diferent initial vector.
Consider a ket

~
V) satisfying

(g„*+~„g,) ~

I")=0.
The va, rious conditions here for different r values are
consistent since, as one easily checks, the quantities
g,*+tt,„,g, and g+pg pqgaqnticommute.

We now find

q (gr+&rpgp ) (gr +ttrsgs) 'q ('gr'gr +'gr 'gr)

The la.st term here is an infinite constant and may be
discarded. Then H~ I')=0 and the constant vector

~
F) is a solution of the Schrodinger equation.

THE NEED FOR THE HEISENBERG PICTURE

The Hamiltonian of quantum electrodynamics is es-

sentially similar to that of this simple mode. The
physical states that we are interested in are close to the
physical vacuum, with all negative-energy electron
states occupied. These correspond to kets close to

~
S)

in the model. Such kets in the Schrodinger picture do
not remain in a Hilbert spa, ce. The kets close to

~
Y) of

the model correspond to states in electrodynamics for
which nearly all the negative-energy electron states are
occupied. Such states differ too much from physical
reality to be used in calculations of physical problems.

Thus we see that we cannot use Schrodinger wave
functions in electrodynamics. The Heisenberg equations
of motion remain available to us, although they are, of
course, considerably more complicated than in the
model.



QUANTUM ELECTRODYNAMICS WITHOUT DEAD WOOD 8 687

The dynamical variables in the Heisenberg picture
cannot be represented as matrices or as operators in
Hilbert space. They are something more general, whose
precise mathematical nature is unknown. We may call
them q numbers. All that is known about them is that
they are noncomrnuting quantities satisfying de6nite
commutation relations. We may carry out ca,lculations
in the Heisenberg picture by making algebraic de-
ductions from the commuta, tion relations. Ke may do
this without knowing the mathema, tical nature of the
qua, ntities with which we a,re working.

Our lack of knowledge of what q numbers are pre-
vents us from setting up a theory of them with mathe-
matical rigor. We ca.nnot define limits of q numbers, so
we cannot give a rigorous meaning to processes of inte-
gration or differentiation applied to q numbers. Even
though we cannot a,spire to complete rigor, we may set
up a theory with a reasonable practical standard of
logic, rather like the way engineers work. Engineers do
not aim at complete rigor. In their calculations they
continually neglect quantities which they believe can
be neglected without invalidating their results, ba,sing
this belief on previous experience, or maybe just feeling.
The physicist working with q numbers will have to
develop a similar feeling for what can be neglected.

Using the Heisenberg picture for quantum electro-
dynamics, we may try to solve the equations by a similar
perturbation method to that used for the Schrodinger
equation, expanding everything in powers of e'/he We.
get the solution as. the sum of an infinite number of
terms, which again correspond t.o Feynman diagrams,
with similar divergent integrals. There is great simi-

larity to the calculations in the Schrodinger picture,
but there is the important difference that terms corre-
sponding to v-v diagrams no longer arise.

The reason for the difference is that, if one starts
with zero in the Heisenberg picture, it remains zero,
while if one sta, rts with the vacuum in the Schrodinger
picture, it does not remain the vacuum. In that way the
Heisenberg picture avoids the worst difFiculties of the
Schrodinger picture. Those that are left, the divergent
integrals in the non-v-v terms, can be ta.ckled by limiting
processes involving renormaliza. tion.

We now see that, if we want a logical qua, ntum electro-
dynamics, we must work entirely with q numbers in
the Heisenberg picture. All references to Schrodinger
wave functions must be cut out a,s dead wood. The
Schrodinger wave functions involve infinities, associated
with v-v Feynman diagrams, which destroy all hope of
logic.

SOLUTION OF THE HEISENBERG
EQUATIONS OF MOTION

There are two kinds of solutions one might consider:

I. One might solve the equation (1) directly and get
N as a function of ( and of constants of the motion, say
n. The n's, of course, are q numbers, and dot/dt=0.

The n's might be the q's and p's a.t some stand;t. rd time
/0, or they might be other constants.

If one considers this method relativistically, it reads
as follows: One takes a Geld quantity F (pp) at a general
point in space-time xo,x~,x2,x3 and expresses it in terms
of constants of the motion and the four parameters x.
The constants of the motion are q numbers. The ques-
tion arises, what should one take them to beP There
are two interesting possibilities:

I-a Orte might take them to be the field quurttities ut some
standard time $0.

I-b. One might take them to be the irtgoing fields (or the

outgoirtg ortes).
I-a has the advantage that there are known simple

commutation rela, tions between the constants of the
motion, while I-b has the advantage that it gives mani-
festly relativistic solutions. Kith I-b one would have to
calculate the commutation relations between the ingoing
6eld quantities by successive approximations.

II. One might 6nd a q number E involving the time
explicitly as well as involving the Heisenberg dynamical
variables, such tha. t it is a constant of the motion. Then
E satis6es

ihdK/dt=ihBK/Bt+KH HK= 0. —
In a relativistic theory, E would involve the field
quantities at time xo for a,ll x& x2 x3, as well as involving
xo explicitly.

Kith II, as with I-a, the result will not be manifestly
covariant. II has the advantage over I-a that only one
time variable appears in the solution. I-a has the two
times, the time of the 6eld point and the standard time
$0. II has the further advantage in that, in looking for
a simple integral of the Heisenberg equations, one might
be led to a quantity of physical importance, e.g. , the
operator of simultaneous creation of a particle and its
entourage of associated particles at a certain time.

I have found II the most convenient method to work
with, in spite of its not being manifestly covariant. It
can be set up in terms of an interaction representation
analogous to the usual interaction representation of the
Schrodinger picture.

I.et the Hamiltonian be

H=Hp+V,

where Ho is the energy of the electrons alone plus the
energy of the electromagnetic field alone and V is the
interaction energy. Suppose each q number p is trans-
formed to a new q number (t' by

(f—etHpt/p]e —Apt/p

There is no doubt about the existence of the unitary
operator e'~0"" because Ho is quite a simple operator.

The explicit dependence of &f on t is, of course, dif-
ferent from that of ].The connection between them is

~It
et'Hpt/tt( ih H (+HAH (e

—tFIpt/p

Bt E N )
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If we take $ to be the E of Ecl. (15), the transformed
Et' satisfies

BE)
ih = V)Et' Et—Vt.

alt
(16)

BEt (')/Bt =0, (17)

ihBEf("+')/Bt= VtE)(")—E$ ~()
Vf v=0, 1,2, . (18)

from which the various Ef( ' may be obtained by suc-
cessive integrations. Ke can then transform back to get
the various E("'. Equation (17) tells us that E)") is a.

dynamical variable at time t, not containing t explicitly.
We may start off with any such Ef(0) and proceed to
calculate E$ and E.

APPLICATION TO THE ANOMALOUS MAGNETIC
MOMENT AND THE LAMB SHIFT

The interaction energy between the electrons and the
electromagnetic field is J'A„j)'d'x. To calculate the
anomalous magnetic moment, we must suppose there is
a static magnetic field present. To calculate the Lamb
shift we must suppose there is a sta, tic electric field
present. Static fields may be described by potentials,
Q,„say, which are functions of x~, x2, x3 but do not vary
with the time. They are thus not dynamical variables,
but c numbers. They give rise to a, further term in the
Hamiltonian, namely, J'O, „j"d'x, which should be
included in Ho, not in the perturbation V.

As our working dynamical variables we take the
Fourier components A„I„A„I,* of the electromagnetic
potentials, defined at each instant of time by

&
—i(k x)+.A +&((k I) d8$p1c pk )

dA„,/dx()=i ~0 A„ie"k'*)—A„i*e'(k "' d'x,

the suKx x on the left here meaning x~ x2 x3. We also
take the f, f„* variables referring to emission and
absorption of an electron into various stationary sta.tes
for the static field 8,„.

As we are interested in a one-electron problem, we
ta,ke for Et(0) the operator of emission of a,n electron
into some positive-energy state, say P;. Such a choice
for Ef(" satisfies (17). We proceed to calculate Ef("
and Ef('). This gives us Et, and hence E, to the
accuracy e'/hc.

The only explicit dependence of Et' on 3 is caused by
the interaction.

If we count V as small we can solve (16) by a, pertur-
bation method, putting

Ef=Ef'"'+Ef"'+Ef(')+'
Ke find

Ke get E as a function of our working dynamical
variables A„k,A„k*,p„,p ~. These are noncommuting
quantities, q numbers, so the form in which E appears
depends on the order in which we arrange them. To get
a standard form for E, we must arrange the q numbers
in some normal order in every term in E. We assume
this normal order to be that in which all emission op-
erators are to the left of all absorption operators, in
conformity with the usual practice. The emission
operators are A„k for all p, f„* for positive-energy
sta, tes, and P„ for negative-energy states.

With E arranged in the standard form, we pick out
those terms that refer to the emission of one electron
and do not contain any other emission or absorption
operators. We find that such terms are a multiple of the
initial emission operator f,*.The time variation of the
coefFicient then fixes the energy of the emitted electron.
We find that Et."& provides no correction to the energy
and E(') provides a correction of order e'/hc.

In this way we can calculate in the Heisenberg picture
the change in the energy of an electron produced by the
perturbation J'A„j"d'x. The results are similar to those
obtained from the usual calculation in the Schrodinger
picture, with discard of the e-e terms. For the free
electron there is a logarithmic infinity, which can be
eliminated by a renormalization of the mass-parameter
in the Hamiltonian. In the calculation of the Lamb shift
a further logarithmic infinity arises, which can be
eliminated by a renormalization of the charge-parameter
in the Hamiltonian. The remaining terms give just the
usual anomalous magnetic moment and Lamb shift,
to the order e'/hc.

The calculations in the Heisenberg picture are quite
logical, except for the occurrence of infinities which
can be handled by renormalization. To make the theory
completely logical one-would have to cut o6 the high-

energy part of the interaction, so as to make bm and
be finite. As the infinities are only logarithmic one can
choose the cutoff at a fairly high energy value, say of
the order 10' eV, and have Bet/m and 8e/e small, of the
order 3%, so that they can legitimately be looked upon
a,s small corrections.

The cutoff, of course, results in the theory not being
relativistic. However, the departure from Lorentz in-
variance becomes serious only for processes involving
energies comparable with the cutoff energy and one
cannot in any case expect quantum electrodynamics to
be accurate for energies much beyond 10' ev, because
it neglects mesons and neutrinos. The Hamiltonian of
quantum electrodynamics is thus necessarily an in-
complete one and the cutoff does not reduce its domain
of applicability to a serious extent.

PHYSICAL INTERPRETATION

Ke have the equations of quantum electrodynamics
in the Heisenberg picture. To get a complete physical
theory we need to set up some general method for their
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physical interpretation. The usual interpretation of
quantum mechanics involves the Schrodinger wave
function and so cannot be used. We must find a new one.
The preceding calculations of the anomlaous magnetic
moment and Lamb shift use some special assumptions
for physical interpretation, which we need to generalize.

An important feature of these calculations was the
normal ordering of the various factors in each term.
This normal ordering of a q number becomes significant
when it is multiplied into a ket ~0i) such that every
absorption operator at time t gives zero when multiplied
into ~0,). Then when the q number is multiplied into

~
0,), only those terms of the normally ordered expression

survive that contain no absorption operators.
The ket ~0,) may be considered as representing the

vacuum state at time t. This state is special to the time ]
with respect to one particular Lorentz frame of refer-
ence. There is no universal vacuum state in the present
theory. The ket ~0,) of course does not satisfy the
Schrodinger equation.

For the general physical interpretation of the theory I
propose two assumptions:

I. Each physical state corresponds to a q number, say
E, that is a constant of the motion in the Heisenberg
picture. Emay be expressed as a function of the dynami-
cal variables at time t and of t explicitly, and then
satisfies (15).

II. For the state corresponding to E, what one can
observe at time t is determined by the product E~0,).
Thus if E is expressed in terms of emission and absorp-
tion operators at time t and is arranged in the normal
order, only those terms with no absorption operators
will contribute anything observable. The other terms
are latent at time f. Each of the terms with no absorp-
tion operators is associated with certain particles in
certain states. We may assume that the square of the
modulus of its coefficient is an intensity for these par-
ticles being observed at time t.

I use the word intensity and not the usual work
probability because these quantities cannot be normal-
ized. If one normalized them at one time, they would
not remain normalized. They are related to probabilities
in the sense that, if the intensity is zero, the correspond-
ing probability is zero; if the intensity is large, the
probability is large. I cannot at present make the con-
cept of intensity more definite. The interpretation for
quantum mechanics in the Heisenberg picture is thus
rather vague.

You may be dissatisfied with a theory for which the
equations are definite but the physical interpretation
is vague. But if you refer to the historical development
of the ordinary quantum mechanics, you will see that
the equations came before their physical interpretation.
For both the Heisenberg and Schrodinger theories, first
came the equations of motion. Then applications were
made to various simple examples for which it was not
hard to guess a physical interpretation. It needed a few

years and quite a number of successfully worked-out
examples before people were led to a complete under-
standing of the uncertainty relations and the general
physical interpretation. With the present reformulation
of the basic equations, one may expect that it will again
need a few years of development and a number of
successful examples before their physical interpretation
becomes completely clear.

The above interpretation in the Heisenberg picture
should be compared and contrasted with the usual one
in the Schrodinger picture. The present ket ~0,) plays
the role of the usual vacuum ket

~ 0), with the difference
that the present one depends on the time t while the
usual vacuum ket does not. The quantity E

~
0,) of the

present theory corresponds to the usual wave function
at time t. They both determine what is observable at
time t, acc,ording to similar rules. But there is no de-
terminism for E~ 0~) as there is for the wave function.
The value of E~O,) at time t does not determine the
value of E ~0,') at time 3'. This may be illustrated by a
simple example. Ke may take E to be just an absorption
operator at a certain time to. Then E~Oio)=0. But we

may very well have E~ &0)AO for t/to. The present
theory thus involves a greater amount of indeterminacy
than the usual quantum mechanics.

GAUGE INVARIANCE

There are some constraints on the Hamiltonian in
electrodynamics, associated with the gauge invariance
of the theory. With Fermi's form of the theory, as was
used here in the section on anomalous magnetic moment
and Lamb shift, the constraints are

BA„/Bx„=0

holding at all points in space-time. They are written as
weak equations, with the sign=, because they cannot
be used freely, like identities. In the classical theory one

may not use them inside Poisson brackets. In the
quantum theory one may multiply them by factors on
the left, but not by factors on the right, in general.

Developing the Heisenberg picture with these con-
straints, one introduces the subset of kets

~
I') sa, tisfying

at all points of space-time, and the subset of q numbers
that commute with BA„/Bx„at all points of space-time.
These kets and q numbers are gauge-invariant. They
are the only physically important quantities in the
theory.

Ke may eliminate quantities that are not gauge-
variant from the Hamiltonian. This is the so-called
transformation to the Coulomb gauge. The variables
describing the longitudinal components of the electro-
magnetic field then disappear from the Hamiltonian and
in their place we get the Coulomb energy between the
electrons. The transformation may be carried out with-
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out reference to the Schrodin~«er picture, so it is appli-
c.~hie to t.he present theory.

In our calculation of the anomalous magnetic moment
and Lamb shift, we started from a ICt&'& =/, * which is
not gauge-invariant, and refers to the emission of a bare
electron. It would be better to start with a modified

f,* which is gauge-invaria. nt and refers to the emission
of an electron together with its Coulomb field. This
modified P,* ma, y be defined as in my paper. ' Likewise
we worked with a ket

~
0~) which is not gauge-invariant.

It would be better to work with a modified ket which
is gauge-invariant and which is more appropriate to
describe the physical vacuum at time t.

The calculation in terms of these gauge invariant
quantities is more complicated as many new terms
appear in the equations. These terms, however, are
not of the right quality to influence the energy, to the
order e'/Ac, so the results of the calculation stand. It is
rather unsatisfactory, however, to have these new terms
appearing in the equations because their physical
significance is not clear.

The source of these complications is that, although
our total Hamiltonian is gauge-invariant, we split it
into two parts, Ho and V, which are not separately
gauge-invariant, and then assume that V is small. It
is not very satisfactory to have a whole perturbation
technique based on the assumption of the smallness of
a quantity J'A„j"d'x which is not gauge invariant.
However, one sees from the results that the assumption
works for one-electron problems. IR would not work for
two-electron problems in which the Coulomb force is
important.

' P. A. M. Dirac, Can. J. Phys. 33, 650 (1955).

I'urther development of the theory will require
better understanding of which quantities can be assumed
to be small.

CONCLUSION

The present theory based on the Heisenberg picture
is closely connected with the usual one based on the
Schrodinger picture. There is much similarity in the
details of calculations in the two theories. But there is
the underlying difference that the present calculations
all follow logically from certain general assumptions
applied to a suitable Hamiltonian, while the previous
calculations made use of working rules without a logical
connection between them.

The treatment of quantum electrodynamics described
here does not break new ground. It clears away dead
mood on the old ground, showing up the essential good
features of the theory and enabling one to avoid the
difhculties and bad logic that arise merely from the use
of the wrong picture. All the brilliant successes of the
older theory are retained.

Of course the development of quantum theory pro-
posed here should not be considered as detracting from
the value of Schrodinger's work. The Schrodinger
picture is a very good one for all those problems in which
only a finite number of degrees of freedom are effective,
such as problems in which the electromagnetic inter-
action can be represented by Coulomb forces, and it will

continue to be used extensively as it is then simpler and
more convenient than Heisenberg' s. Only when one goes
to an infinite number of degrees of freedom does one
find that the Schrodinger picture is inadequate and that
the Heisenberg picture has more fundamental validity.


