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Let V (r) be a potential repulsive and singular at the origin, and A a physical quantity (say, the scattering
length) associated with it. Let V(r,u) be a regulated version of the potential V(r); U(~,a) is nonsingular for
0.)0 and coincides with U(r) for o. =0. Let A (0) be the corresponding scattering length. It is usually as-
sumed that A (0) =A. Simple counterexamples are presented, namely, cases when A and A (0), although
both well defined and finite, are different. The existence of these counterexamples sheds doubt on the
validity of a theorem given by Khuri and Pais. This doubt is substantiated by noting that the proof of the
theorem contains an unjustified exchange of two limiting processes.

1. INTRODUCTION

ECENTLY there has been an upsurge of interest
in the problem of scattering on singular poten-

tials, ' 4 mainly as a testing ground for the validity of
the Peratization technique introduced by Feinberg and
Pais to deal with unrenormalizable field theories. ' The
program of Peratization may be briefly formulated as
follows (we refer immediately to the potential problem,
where the situation is much better understood than in
field theory): Let V(r)=ge(r) be a potential more
singular at the origin than the centrifugal term, and
repulsive in that neighborhood. It is well known that
under these circumstances the scattering problem is
well defined and all the quantities of physical interest
exist. For simplicity we focus our attention on the
scattering length A, as has been customary in these
studies. This quantity, considered as a function of the

coupling constant g, has a singularity at g=0, due to
the singular nature of the potential. Thus the power
expansion in g of A has a vanishing radius of con-

vergence, and if one tries to compute its coefficients, for

' N. N. Khuri and A. Pais, Rev, Mod. Phys. 36, 590 (1964).
~ N. Limic, Nnovo Cimento 26, 581 (1962); E. Predazzi and

T. Regge, ibid. 24, 518 (1962);M. Giffon and E.Predazzi, ibid. 33,
1374 (1964); G. Tiktopoulos and S.8.Treiman, Phys. Rev. 134,
8844 (1964); A. Pais and T. T. Wu, J. Math. Phys. 5, 799
(1964);Phys. Rev. 134, 81303 (1964); L. Bertocchi, S. Fubini,
and G. Furlan, Nuovo Cimento 32, 745 (1964); 3$, 633 (1965);
H. Cornille and E, Predazzi, Phys. Letters 10, 149 (1964);Nuovo
Cimento 35, 879 (1965); H. Corniiie, ibid. 36, 1316 (1965); H.
Cornille and E.Predazzi, University of Chicago (unpublished); E.
Del Giudice and E.Galzenati, University of Naples (unpublished);
K. Meetz, Nuovo Cimento 34, 690 (1964); J. M. Charap and N.
Dombey, Phys. Letters 9, 210 (1964); N. Dombey, University
of Sussex (unpublished).

'A. Arbuzov, A. T. Filippov and O. A, Khrustalev, Phys.
Letters 5, 205 (1964); H. H. Aly, Riazuddin and A. H. Zimer-
man, Phys. Rev. 136, 81174 (1964};T. T. Wu, Phys. Rev. 136,
81176 (1964); M. A, Ahmed and D. B. Fairlie, University of
Durham (unpublished); H. H. Aly, Riazuddin, and A. H. Zimer-
man, Nuovo Cimento 35, 324 (1965); H. Cornille, CERN (un-
published); F. Calogero and M. Cassandro, Nuovo Cimento (to
be published).

4 F. Calogero and M. Cassandro, Nuovo Cimento 34, :1.712
(1964).

' G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963); 133,
8477 (1964); Y. Pwu and T. T. Wu, ibid. 133, 81299 (1964).

8

instance by perturbation theory, one generally stumbles
into infinities. '

The technique of Peratization has been devised just
to overcome this diNculty. It works as follows: First
of all the potential is regularized, i.e., the one-parameter
family of potentials V(r,n) =ge(r, n) is introduced, with
the properties (i) that V(r,n) is nowsingglar for n) 0 and
(ii) that V(r,n) coincides with V(r) where n vanishes
Associated with this family of potentials there exists a,

corresponding one-parameter family of scattering
lengths A(n). Thanks to condition (i) these are now
analytic functions of g in the neighborhood of g=0,
provided n&0. Thus they have, for 0.)0, the power
expansion in g

A(n)= 2 a-(n)g"
n=o

with nonvanishing radius of convergence p(n) On the.
other hand, when n vanishes p(n) also shrinks to zero;
moreover the coefFicients a„('n) diverge. '

At this point the instructions of the Peratization
program become relevant. They direct us to investigate
in detail the behavior of the coefFicients a (n) as n
vanishes, separate out the most singular terms, insert
only this part of a„(n) in the sum in Eq. (1.1), carry
out the summation, and finally approach the limit
n —+ 0. The procedure is deemed successful if the
function A~ thus computed provides, in some sense
which need not be discussed here, a reasonable approx-
imation to the original scattering length A. Both cases
in which Peratization succeeds and cases in which it
fails are discussed in the literature. '

Presumably a precondition for the success of the
Peratization scheme is that the complete scattering
length A(n) corresponding to the regulated potential
V(r,n) converge, as n vanishes, to the scattering length
A corresponding to the original potential V (r):

1im A (n) =A .
n—&0

6 The possibility that the series diverges but its coefficients
are finite exists (Ref. 4). This case is of no interest as regards
Peratization.
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It is reasonable to expect that this will happen generally
in view of condition (ii) above. In fact a proof that it
occurs, for the potentials V(r) =gr and for a special
class of regulated potentials, has been published. '
However, . if the class of regulated potentials is un-
restricted except for (i) and (ii) above, it is indeed
possible to find examples which violate the condition
Eq. (1.2). A remarkably simple instance is displayed in
the following section, and is further discussed in a
slightly more general case in Sec. 3. Although these
examples do not fall within the class of regularized
potentials considered by Khuri and Pais, ' their existence
sheds some doubt upon the validity of the Khuri-Pais
theorem even for the cases in which it is supposed to
hold. This doubt is substantiated in Sec. 4 by a scrutiny
of the proof of the theorem, which reveals the unjustified
exchange of two limiting processes. Some concluding
remarks are collected in Sec. 5, and some mathematical
details in an Appendix.

Units are chosen so that 6=2m=1, where ns is the
mass of the scattering particle.

2. A SIMPLE COUNTEREXAMPLE

We consider the potential

V(r) =gr ', g) 0, (2.1)

and the family of regulated potentials

V(r,n) =gr '[exp( —2n/r) ng '/' exp—(—n/r)). (2.2)

Clearly this family satisfies the conditions (i) and (ii)
of the preceding section. Note however that the
regulated potentials are not linear in g. To avoid any
misunderstanding we emphasize that here, and always
in the following, g and g'~' are positive.

The scattering length A(n) is easily obtained from
the asymptotic behavior of the corresponding radial
wave function

with
C( ) =exp( —g'"/ ). (2.8)

Thus u(r, n) becomes the irregul/Jr solution of the
(zero-energy 5-wave) radial Schrodinger equation

u" (r) = V(r)u(r), (2 9)

and it is multiplied by a constant factor which vanishes
exponentially as 0; vanishes.

C'( —n 1 2n 'g"')
A(n)=g'" 1—2——

e ( n, 1;—2n-'g'/')
(3.3)

Note that, for a general value of n, the function A (n)
now does depend on n.

We then investigate the limit of vanishing e. If e
is a non-negative integer, C ( n, 1; s) —becomes a
(Laguerre) polynomial of degree n, so tha, t

3. A GENERALIZATION OF THE
PRECEDING EXAMPLE

In this section we consider a slightly more general
family of regulated potentials, namely,

V(r,n) =gr '[exp( —2n/r)
—(2n+1)ng '/' exp( —n/r)). (3.1)

For 0.=0 these potentials reduce to that given in Eq.
(2.1). The case treated in the preceding section corre-
sponds to v=0.

The radial wave function corresponding to this
potential is now (see the Appendix)

u(r, n) =r exp[—g"'n 'e "/~)

XC(—n 1 2n 'g"e—/'), (3.2)

where 4 (a,c; s) is the confluent hypergeometric func-
tion. ~ From this we obtain (see the Appendix) the
scattering length

u(r n) —r exp[ n—igl/2e —a/r] (2.3) C (—n, 1;s),—+ const&&s"

It turns out that A (n) is independent of n, and we find

A (n) =g'". (2.4)

u(r) = r exp[—g'"/r), (2.5)

we find for the scattering length the well-known result

g1/2 (2 6)

Thus the scattering length is negative, as was to be
expected, and it has the opposite value to that obtained
through the regulated potential, Eq. (2.4).

It is also interesting to investigate what happens to
the radial wave function u(r, n) as n vanishes. We find

u(r, n) —~ C(n)r exp[g'/'/r),
a—&0

(2.7)

On the other hand, from the radial wave function
corresponding to the original potential, Eq. (2.1),
namely,

limA (n) = g' "
a~0

if n=0, 1, 2, 3, (3.4a)

limA (n) = —g'" if n/0, 1, 2, 3 . (3.4b)
rx—+0

In conclusion we see that, unless e is a non-negative
integer, the sca,ttering length A (n) tends to the correct
scattering length A [Eq. (2.6)]. If instead n is a,

7 Bateman Manuscript Project, Higher TrarIscerldenta/ Pursc-
tions, edited by A. Erdelyi (McGraw-Hill Book Company, Inc. ,
New York, 19S3), Vol. I. The equations of this volume will be
referred to by a capital 8 followed by their number.

and the ratio C'/4 in Eq. (3.3) vanishes proportionally
to n. On the other hand, if e is not a non-negative
integer, 4(—n, 1; s) r„const)&s " 'e' and therefore
the ratio C'/C in Eq. (3.3) tends to unity as n vanishes.
Thus we find



B 604 F. CALOGERO

non-negative lntegel', t.lie scat tel ing length A (n),
corresponding to the regulated potential V(r,n), Eq.
(3.1), tends to the negative of the correct value as n
vanishes.

Finally we discuss the limit of the radial wave
function as o, vanishes. We find

(p, (r,n) = r+g"'+O(1/r) . (4.4a)

The second solution does not vanish at the origin and is
chosen so that it converges asymptotically to unity:

The first solution p&(r, n) is the radial wave funct. ion,
normalized so that its asymptotic behavior is

n(r,n):C„(n)r exp(g"'/r),
n-+0

n=0, 1,2, (3.5a) rp, (r,n) = 1+0(1/r), (4.4b)

C„(n)=C„n"+' exp (g"'/n), (3.6b)

and C„, C„ independent of n. We thus see that in all
cases u(r, n) becomes, as n vanishes, a, solution of the
ra, dial Schrodinger Eq. (2.9). However, if n is a, non-
negative integer, it becomes the irregular solution,
multiplied by a constant which vanishes as n tends to
zero; otherwise it becomes the regular solution, multi-
plied by a constant which diverges as o. vanishes.

n(r,n):C„(n)r exp( —g'"/r), m/0, 1, 2. (3 5b)
n~o

with

as may be easily verified by expanding Eq. (4.2) with
a= 2x„—~ as e vanishes.

It should be emphasized that all these properties
refer to the case n) 0. On the other hand in the limit
of vanishing n we find

pi(r, 0) = r exp(g'i2/r), (4.5a)

y&(r, 0) = (4g) 'i'rLexp(g'"/r) —exp( —g't'/r)]. (4.5b)

The second equation. is obtained by expanding E(2x)
as x„and x diverge while their difference tends to g"'/r.
The expansion is performed by partial integration.

We also indicate explicitly, for later reference, the
behavior as r vanishes. We find

4. CRITIQUE OF THE KHURI-PAIS THEOREM 0 i(r n) =«xp(g'"/n)L1+O(r)] (4.6)

yi(r, n) = r exp[(g"/n) (1—e ~")], (4.1a)

v 2(r n) = (r/n)expL —(gi"/n) (1+e '")]&(2x), (4.1b)

In this section we discuss the theorem given by
Khuri and Pais, ' which states that, independently of
the type of regularization (within a certain class),
A(n) converges to A as n vanishes. We refer in this
discussion to the simple example of Sec. 2. We are
aware that this example does not fall within the class
of regularized potentials considered by Khuri and Pais
and that therefore it does not provide a direct counter-
example to their theorem. But we use this example only
to pinpoint the weak spot in the proof of the theorem.
As we show below, this lies in the exchange of two
limiting processes. While we demonstrate explicitly that
such an exchange is not permissible in the case of our
example, it is generally true (including the cases con-
sidered by Khuri and Pais) that the excha, nge is
unjustified. Thus the proof of the theorem is invalid,
although of course its thesis may still hold in certain
cases (in fact, in most cases).

First of all let us introduce two (properly normalized)
independent solutions of the (S-wave zero-energy)
radial Schrodinger equation with potential V(r,n),
Eq. (2.2).

These are (see the Appendix)

+i(r; n) =A (n)/r, (4.8b)

+2"'(r; n) =
t ~i(r,n) —g'"~~(r,n)]/r, (4 8c)

(1/r)+O~ "&(r; n) = p2 (r,n)/r (4.8d)

Let us then examine the definition of the scattering
length A(n) given by Khuri and Pais. ' One definition
is given in Eq. (2.17) of their paper, and by an exchange
in the priority of the two limiting processes n —+0,
0 ~ 0, their Eq. (2.18) is derived. This exchange is not
justified, and it is the weak point in the proof, as we
show below. However, rather than discuss these equa-
tions, which require some integrations, we consider an
equivalent definition of the scattering length, which is
also proposed by Khuri and Pais. ' It follows from their
Eq. (2.12), namely,

@2(r n)=%~&'&(r n)+A(n)%'2&'t(r n) (4.9)

p~(r n) =exp( —g'"/n)[1+O(r)]. (4.7)

The second equation is obtained expanding E(2x) in
the neighborhood of @=0.

We now construct the functions 4's introduced by
Khuri and Pais. ' They are

+(r; n) =+i(r; n)+e, (r; n), (4.8a)

with

dt e'/t, (4 2)

and from the requirement that +(r;n), Eq. (4.8a),
vanish in the origin. We thus find'

*=(g'"/n)e '" (4.3a)

A (n) = g'I' —limg&p, (a.,n)/q 2(o,n)].
a —+0

(4.10)

x„=g'"/n. (4.3b)
We write 0- in place of r to adhere to the notation of Khuri

and Pais.
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The question at issue is now the possibility of ex-
changing the limits n —+0 and 0- —&0. This is clearly
forbidden, because using the explicit expressions previ-
ously given, we find

lim lim[q i(o.,n)/p2(a, n)] =0, (4.11a)
n~o a.—+0

lim limey, (o.,n)/p2 (o,n)] = 2g"'. (4.11b)
o'~0 u~o

This result, which of course agrees with those of
Sec. 2, settles the question of the breakdown of the
Khuri-P ais proof. '

5. CONCLUDING REMARKS

Ke have shown, on the basis of explicit examples,
that the procedure of first regularizing a singular
potential, subsequently computing the physical quanti-
ties apposite to the regularized potential, and finally
taking their limit as the regulating parameter vanishes,
may lead to an incorrect result, namely, a result diferent
from that corresponding to the original (unregularized)
potential. This finding may be considered to shed some
doubt on the validity of the Peratization approach to
field theory. Actually the doubt it raises is more funda-
mental, because it refers to the regularization procedure,
which is preliminary to Peratization. However, an
overly pessimistic attitude should not be inferred, in
our opinion, from the present results. For one thing, as
emphasized by Khuri and Pais, ' there is a major
difference between a regulated potential and a regulated
field theory, in that a regulated potential is still a bona

fide potential, while a field theory regulated by means
of a momentum-space cutoff is not a boca fide (i.e.,
relativistically invariant, local, probability-conserving)
field theory. Moreover we have shown that in the
potential case things may go the wrong way, but they
need not do so.

It is in fact interesting to speculate on the underlying
reasons for the failure of the regularization procedure
to yield the correct result in some cases. One hint which

may be enlightening is the observation that in the
examples considered the regulated potential contained
an attractive part. A physically reasonable conjecture
would be to associate the breakdown with regulated
potentials which are attractive at short distances. On
the other hand, the example of Sec. 3 shows clearly that
any attempt at a detailed physical understanding of the
reasons for the anomalous behavior is doomed to failure,
as there does not appear to be any possibility of
ascribing a physical significance to the special values
n=0, 1, 2, 3. -, of the parameter n entering in the
definition of the regulated potential. Even aside from
the question of the physical understanding of the break-
down of the regularization method, these examples also

suggest that the purely mathematica/ problem of giving
conditions on the unregularized and regularized
potentials sufhcient and necessary for the success of the
regularization approach has no simple solution.

We also wish to comment on the question of Peratiza-
tion itself. In the Introduction we stated that presum-

ably a precondition for its success is the fact that the
regularization procedure employed be itself successful.
The noncommittal adverb "presumably" was employed
to allow for the (very unlikely) possibility that, even
when regularization fails, Peratization might work; or,
more explicitly, that even when 2 (n) does not converge
to 3 as n vanishes, A„(defined as in Sec. 1) does
coincide with A, or at least provides a good approxima-
tion to it. It is however trivial to check that this is not
the case in the example of Sec. 2 (although in that case
the use of a regularized potential which is nonlinear in

the coupling constant is outside of the usual rules of
the Peratization program).

Finally we mention the possibility of manufacturing,
using the results of the Appendix, regularized potentials
which are of the type considered by Khuri and Pais'
and which might therefore provide direct counter-
examples to their theorem. In fact, with the choice

where y is an arbitrary real constant, Eq. (A1) provides
such a regularized version of the potential Eq. (2.1).
Similarly the choice

(5.2)

yields a regularized version of the potential gr ' which

is also in the class considered by Khuri and Pais. '
However, while the scattering lengths A (n) correspond-

ing to these potentials may be obtained immediately
from Eq. (A10), a complete discussion of their limit as
n vanishes requires a more detailed analysis than we

were able to find in the literature of the behavior of the
confluent hypergeometric function C (a,c; s) as both a
and s diverge. ' On the basis of the preceding remarks we

expect that the anomalous behavior, if it is present at
all with these potentials, occurs only in the first case
and only when y is negative.
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APPENDIX

In this Appendix we discuss the (S-wave zero-energy)
radial wave function and the scattering length in the
presence of the regular potential

V(r) =r '$g~ exp( —2n/r)+gi exp( —n/r)], n) 0. (A1)

The radial wave function is that solution of the radial

It is presumably always true, however, that the regular-
ized function N(r, o.) becomes, as a vanishes, a solution of the
Schrodinger equation corresponding to the unregularized potential.
However, only if it becomes the regular solution (i.e., vanishing
in the origin) may we expect the regularization procedure to
be successful.
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Schrodinger equation

u" (r) = V(r)u(r) (A2)

with
u (r) = re—*C (-', —k, 1; 2x),

x=(g'"/ )exp(—r/ )

k= —gc2 "'/(2n).

(A4)

(A5)

(A6)

C (a,c; s) is the confluent hypergeometric function. '
A second independent solution of the radial Schrodin-

ger equation (A2) )but not of Eq. (A3)j may be easily
obtained, if kW-„substituting in Eq. (A4) the function
0 (~~ —k, 1; 2x), de6ned by Eq. (B6.7(13)), in place of
the function C(2' —k, 1; 2x). In the special case k=-',
(which corresponds to the example discussed in Secs. 2

and 4) a second solution may be obtained by considering
directly the equation for the conAuent hypergeometric
function, Eq. (B6.1(2)), in the special case a=0, c=1.
We find in this case that a second solution of the radial
Schrodinger equation is

characterized (up to a normalization constant) by the
boundary condition

u(0) =0. (A3)

As may be verified by direct substitution, we have

the scattering length A must be an analytic function of
both coupling constants g;, i= 1, 2, in the neighborhood
of g;=0. This is evident by inspection as regards the
dependence upon g~, because C(a,c;s) is an entire
function of a. Since C (a,c; s) is also analytic in z, it is
also evident that A is analytic in g2'/', except possibly
for an essential singularity due to the fact that as g2
vanishes k diverges. It is however easily seen that this
essential singularity cancels out in the ratio 4'/C, and
in fact using Eq. (B6.9.1 (18)) one recovers in this limit
the correct scattering length due to the potential
V(r)=g&r 4 exp( —n/r). )Actually a simpler way to
obtain the quantities relevant to this case is to set gI= 0,
which implies k=0, and use Eq. (B6.9.1(10)) to trans-
form the conAuent hypergeometric function into a
Bessel function; and then perform the substitution
g2 ~ gy, n ~ n/2. ]

It remains to be shown that 3 is actually analytic
in g& and not only in g2'". To do this it is sufficient to
show that A is an even function of g'/'-. In fact, using the
Kummer transformation Eq. (B6.3(7)), one may rewrite
the equation for the scattering length in the form

4'(2 —k, 1 2x„)
I/2

C(-,'—k, 1;2x„)

where
zv(r) =re *E(2x), (A7)

C'(-', +k, 1; —2x„)
(A12)

C (-', +k, 1; —2x„)

E(a) = dt e'/t. (A8)

These functions are used in the discussion of Sec. 4.
The scattering length A is defined by the asymptotic

behavior of the radial wave function u(r), Eq. (A4),
through g~(0)+g2(0) =g (A13)

which displays this property.
Finally we mention that, if we consider the constants

g, (n) and g2(n) as functions of n, then the potential
Eq. (A1) provides a regularized version of the potential
Eq. (2.1) provided the condition

We obtain

with

u(r) - const)& fr+A+0(1(r)$.

y(-', —k, 1; 2x„)

x„=g2'"/n.

(A9)

(A10)

(A11)
g (n)+2g2(n) - f/n, —(A14b)

holds. The cases studied in this paper are of this type.
Another possibility is the choice of two functions g&(n),
g2(n) with the properties

gi(n)+g2(n) -~ g, (A14a)

Here, as everywhere else, the prime denotes differentia-
tion with respect to the last argument.

Note that, because the potential Eq. (A1) is regular, V(r)=gr 4+fr (A15)

for in such a case the potential (A1) provides a regular-
ized version of the potentia, l


