PHYSICAL REVIEW VOLUME

139,

NUMBER 3B 9 AUGUST 1965

Comments on Relativistic Supermultiplet Theories*

STEVEN WEINBERGT
Department of Physics, University of California, Berkeley, California
(Received 22 March 1965)

It is proved that no well-behaved group of unitary operators on physical Hilbert space can have ir-
reducible representations containing all spin states of the particles involved. It is shown that the recently
proposed U (12) symmetry evades this theorem by acting on the “generalized M function,” rather than on
the physical Hilbert space. Some other possible evasions are also discussed.

I. INTRODUCTION

ESPITE their apparent empirical success, the
SU(6) symmetry' and its offspring have evoked
intense unpopularity. The trouble is generally ascribed
to an incompatibility with Lorentz invariance, though
there seems as yet to be no general agreement as to
precisely where this difficulty lies.? Meanwhile, the
Trieste? and Rockefeller Institute* groups have bravely
developed a U(12) symmetry which they claim to be
perfectly well defined and compatible with Lorentz
invariance. The purpose of the present note, written
by an outsider, is to make this situation understandable
to other outsiders, and perhaps even to insiders as
well. I offer a very simple proof, that it is impossible
to extend SU (6) to a decent group of unitary operators
on the physical Eilbert space (much less on quantum
fields). However, this does not contradict the U(12)
work, because the U (12) symmetries do not act on physical
particle states, but rather on the purely formal indices
on what may be called a “generalized M function.” The
recent realization of a conflict with unitarity seems to
close off this loophole, thus forcing us to return to the
search for the meaning of SU (6). Some possible paths
for this search are listed in Sec. V.

II. A PESSIMISTIC THEOREM

I assume that the group of all physical symmetries
which commute with the four-momentum operators P*
is the direct product of the translation group and some
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other group G. The latter group shares no members with
the Poincaré group, and until recently we would all
have assumed G to consist solely of intrinsic symmetries
like SU(3). In this case the physical irreducible repre-
sentations of G would consist of multiplets of states
with fixed momentum p, fixed spin j, and fixed-spin
% component o.

It is the distinguishing and exciting feature of the
new symmetries of the SU(6) type that they act on
spin as well as isospin, so that an irreducible represen-
tation of G consists of a supermultiplet of states
|p,n,0), where p is a fixed momentum, # runs over a
set of particle names, and ¢ runs for each # over all
the 27,41 possible values of the spin z component.
(The supermultiplet may or may not include more than
one value of 7,.) For geG we then have

glpn,0)=20 Guorna(g; D) D1 07), (1)

n’a’

with G, an irreducible set of unitary matrices, satisfying
the group property

G(g1; PG(g2; P)=G(g182; p). @)

I will also tentatively assume that a given super-
multiplet transforms under G according to equivalent
representations for all different p, so that there is a
unitary matrix ®&(p) with

S(g;p)=06"(p)5(g; 0)&(p) Q)
®0)=1. 4)

The possibility of relaxing this assumption is discussed
in Sec. V.

It will now be shown that the above assumptions
(and in particular the irreducibility of G) are in-
consistent with Lorentz invariance, except of course in
the trivial case where all particles have spin j,=0. The
Lorentz transformation properties of the states |p,n,0)
have been completely described by Wigner®; if A is
the unitary operator corresponding to a Lorentz
transformation x* — A*,x*, then®

Aip,nﬂ—):Z, Dd’d(jn)[W(A7p)]Ip7n70',>- (5>

5 E. P. Wigner, Ann. Math. 40, 149 (1939).

6 The states |p,n,0) will be normalized covariantly, so that a
factor w(p) appears in the scalar product but not in the trans-
formation rule (5).
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Here D@ is the familiar (2j-1)-dimensional unitary
representation of the rotation group, and W(4A,p) is
the “Wigner rotation®”’ [see Eq. (28) below]. It will
be convenient to write (5) as a transformation of the
supermultiplet

A | p)n10->= Z ”Eﬂ’a’."o(A 5 p) |Apan,70-/> (6)

with £ the unitary matrix
oen’.a’,nv(A; p)Ean’an’a(j'l)[W(Aal))]- (7)

If g is in G then so is AgA™!, and we can readily
calculate from (1) and (6) that

S(AgA; p)=£71(A,p)S(g; Ap)L(A,p). ®)

(Incidentally, this implies that G cannot be p-in-
dependent, though I will not show this here.) Using (3)
in (8) then gives

G(A71gA; 0)=671(A,p)G(g; 0)6(Ap), ©
where
§(A,p)=B(Ap)LA,p)B (D). (10)

But (9) implies that & 1(A1A2,p)E(A1,p)E(As,p) com-
mutes with G(g; 0) for all g, and since the G(g; 0) form
an irreducible set, this matrix must be equal to a
numerical factor  times the unit matrix, or

E(A1,p) 8(A2,p) =7 (A1,A5,p) E(A1A2,D). (11)
Also, (10) shows that & is unitary, so
Iﬂ(AhAz,P) [ = 1' (12)

[In the same way we could show that &(A,p) is p-
independent, up to a phase. ] Hence we have constructed
from ® and £ a unitary, finite-dimensional ray represen-
tation (A ; p) of the homogeneous Lorentz group. But
there are not any such representations, so our assumptions
are inconsistent with Lorentz invariance.

Strictly speaking, there is one unitary finite-dimen-
sional ray representation of the homogeneous Lorentz
group, namely, the identity

&A,p)=1. (13)

But it is easy to see that in this case all particles in the
supermultiplet would have zero spin, for setting p=0
and A equal to a rotation R in Eq. (10), we find in
general that

gn'a’,my (R,O) = oen,a’,nq(R,O) = 5n’nDn’a(jn)[R] . (14)

With all particles spinless, our group G reduces to an
ordinary group of intrinsic symmetries.

It is perhaps worth repeating that an ordinary group
like SU(3) does not lead to the contradiction found
here, because a set of states with different spin z
components would not furnish an irreducible represen-
tation of such a group, so that (11) could not be deduced
from (9).

STEVEN WEINBERG

III. FIELD THEORY

As an example of what goes wrong when we try to
impose a symmetry of the type discussed in Sec. 1I,
let us consider a theory containing a Heisenberg
representation field ¥4, (%) which transforms according
to the (4,B) representation of the homogeneous
Lorentz group”:

Akbab(x)Ai-l =Dup ,ab(A’B) (A)'Q//a’ 4 (A'L) . (15)

The indices a, o’ and b, &’ run by unit steps from — 4
to +4 and —B to +B. (For instance, if A=1, B=0
or A=0, B=14 then ¢ is the part of the Dirac field with
vs5=-+1 or ys=—1.) These are the most general
irreducible field transformation laws.

Suppose there exists a symmetry g which acts on the
spin components of ¥, but not on «x:

T War(0)g=T0p, 0 v¥ar1r (). (16)

[We omit SU(3) indices.] It is then possible to compute
precisely what g does to one-particle states. For Lorentz
invariance and Eq. (15) tell us that

Ol (®) [ pN)

Fm\T  ptmi\ Y
=N CAB(]')\,a'b')<P~> (g_*)

a’b’ w w

XDatL'(A)[R(ﬁ>]Dbb’(B)[R(ﬁ)]eip.w' (17)

Here |0) is the exact vacuum, |p\) the exact one-
particle state with momentum p, spin j, and helicity A,
NN a normalization constant, and C 4 5 the usual Clebsch-
Gordan coefficient; p= |p|, w= (p>+m?)'2, and D) as
before is the ordinary (24+1)X(24-+41) rotation
matrix, with R(p) the rotation that takes the z axis
into the direction of p. Since g leaves x unaltered it
must take |p,\) into a state of equal energy and mo-
mentum, which for a stable particle can be at most a
linear combination of helicity states

glp,h>=§ S () [p\). (18)

Similarly, ¢ must leave the vacuum invariant. Inserting
(18) and (16) in (17) allows us to solve for G, and we
find that

Gna=2 2 X X Cas(jN,a"b")

B oal’ b altl b
ab a’'b’ a’’b’"" a’’’b

X[ (pm) /] [ (ptm) J TV
X Drrar OLRA(B) D01 PR s
X Dara LR (B) 1Dy s BLRP)I[ (p4-m) /0]

XL(p+m)/w]*Can(jN,ab). (19)

" The free fields with these transformation rules are constructed
in Sec. VIII of S. Weinberg, Phys. Rev. 133, B1318 (1964), and
more explicitly in Vol. IT of the lecture notes of the 1964 Brandeis
Summer Institute of Theoretical Physics (to be published).
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If g is a unitary operator then the matrices Gy and
Tarpr o will both have to be unitary, but the presence
of the factors (p+m)/w in (19) makes this impossible
(for T nontrivial). We see very clearly that there is no
trouble in the nonrelativistic case p<Km, where (p~+m)/w
~1, but that as we pass into the relativistic regime
we lose the unitarity of our operator g.

However, the trouble here is not merely an in-
consistency with the theory of free or interacting
quantum fields (as has been sometimes claimed).
Rather, as we have shown, it is simply impossible to
interpret any symmetry that yields supermultiplets as
a group of unitary operators on physical Hilbert space.

I1V. THE 144-FOLD WAY OUT

The theorem of Sec. IT can also be interpreted as
saying that a Lorentz-invariant S matrix cannot be
invariant under any group of unitary matrices of the
supermultiplet type, i.e., whose irreducible pieces
connect all spin states of the particles on which they
act. But this theorem can be evaded by passing from
the S matrix to a less directly physical object, the
‘“generalized M function,” which can be roughly
described as the S matrix with its external-line wave
functions omitted. In fact, this seems to be the path
taken by Beg and Pais* and by Delbourgo, Salam, and
Strathdee.? Before discussing their symmetry, it will
be necessary to provide a short general explanation of
how (and why) we introduce the M function.

To define the generalized M function?® in terms of the
S matrix, the first step is to associate with each super-
multiplet of one-particle stales a representation Dy (A)
(usually nonunitary and reducible) of the homogeneous
Lorentz group. The indices V do not directly correspond
to particles in the supermultiplet; rather there are
usually more indices than particles, and a particle »
at rest with J,=o will be associated with a “wave
function” uy (#o). The only immediate requirement on
these wave functions is that when A is restricted to an
ordinary rotation R they must satisfy the trans-
formation law

S Dy (R)uy (no)=>" uy(no')Dy 9 (R), (20)
N o’

where D@ is, as before, the ordinary (27+4+1)X (25+1)
rotation matrix. This condition tells us that for A
restricted to the rotation group, ©(A) breaks up into
irreducible pieces, each corresponding to one particular
particle type 7, and characterized by spin j.. The
“wave function in flight” for a particle » with J.=¢
and momentum p can then be defined by

uy (pno)= %:’ Dy (L(p))un: (no),

(21

8 ) functions were introduced by H. Stapp, Phys. Rev. 125,
2139 (1962), using the representation (3,0) for spin j=3. See also
A. O. Barut, I. Muzinich, and D. N. Williams, Phys. Rev. 130,
442 (1963).
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where L(p) is the pure Lorentz transformation® that
takes our particle from rest to momentum p.

For example, the supermultiplet of quarks could be
associated with a representation Dy/x(A) defined by
splitting the N index into a Dirac index a and a
SU (3) index #, with

gDa’n',an(A)ESOI’a(A)an'n7 (22)

where Sur4 is the familiar four-dimensional (3,0)® (0,3
Dirac representation of the homogeneous Lorentz
group. In this case we should find that

Uan (PN0) =8 ntta(po) (23)

where #q(ps) is nothing but the usual Dirac wave
function in momentum space, satisfying

(iptyt+m)u(p,e)=0.

(Usually the wave functions are far more complicated
than this.) It should be emphasized, both for this
example and in general, that the wave functions
uy (pno) are not wave functions in the sense of represen-
tatives of a state in physical Hilbert space. They are
purely formal objects, whose sole purpose in physics
is to allow us to define free fields or M functions. (For
complicated reasons it is possible to find the hydrogen
fine structure by playing with Dirac wave functions
as if they actually were state vectors, but this is an
accident, and a misleading one.)

The generalized M function can now be introduced
by the statement that the connected part of the S
matrix takes the form

(24)

(p1soy,- - - | S| panaoa, - - )
= X

NiNg---

%Nl* (pﬂ’hlfl)' . 'MNz(p2%2tT2) tee

XMNI...,Nz...(pl---,pg'--). (25)
The . . . indicate that there may be other particles
besides particle 1 in the final state, and other particles
besides particle 2 in the initial state. The S matrix
would naturally take the form (25) if we constructed the
interaction out of free fields

‘I/N (x) = Z dsp{ a‘(l’r”yg)ew UN (p,n,a)

(26)

~+creation terms} .

In this case the M function would be the Fourier
transform of the true-vacuum expectation value of the
time-ordered product of Heisenberg representation fields
¥ny, ¥a,', etc. But whether or not we believe in field
theory (or even in supermultiplets, for that matter)
the introduction of the M function in Eq. (25) is of
great importance, because it allows us to state Lorentz

9 As far as I know, the word “boost”” was first used with this
meaning by A. S. Wightman in lectures at Princeton before 1957.
But I could be wrong.
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invariance as the invariance of M under a group of
momentum-independent matrices:

My g (D1 - - ,p2- - )
= y Z Dy vtV (A) - Dy, @ (A) - - -
e XMoo nye(Ap1 - -, Apa- - +).
For we note from (21) that
% D v (M) sy (pro)

= Z SDN'NH(L(Ap))S)N//N(L‘l(Ap)AL(p))uN(no).

NN

27

But Z71(Ap)AL(p) is just the Wigner rotation
W (A,p)=L(Ap)AL(p)
and so Eq. (20) shows that
% Dy w (A)uy (pno)
= wy (Apn,o ) Do WV (A,9)). (29)

(28)

Hence the transformation law (27) for the M function
together with the transformation law (29) for the wave
function give, when substituted into (25), the correct
S-matrix transformation law

(pror- - | S|pansos- - +)
= Z Dﬂl'al(jl)*(W(Aypl))' o

gi’ay’ .-
XDaz’n(h)(W(A;pZ))’ ..

X{Apimay'- - - | S|Apansgs’- ). (30)

The great virtue of the M function lies in general in
that it reduces the wretchedly complicated Poincaré
invariance requirement (30) to a problem of finding
Clebsch-Gordan coefficients for the komogeneous Lorentz
group so as to satisfy (27).

We can now understand how to evade the theorem
of Sec. II. Suppose that we try to impose on the M-
function additional symmetry requirements of the form

MNl"'Nz"'(pl‘ c P2 )
= @Nl,Nl(l)*(g). . @Nz'NQ(Z)(g)' ..
XMyyooy .. (31)

where the @(g) are various representations of some
group G. In contrast with the situation described in
Sec. II, a symmetry principle like Eq. (31) has the
features:

(P1---p2---),

(1) There is no need for the matrices @(g) to depend
on momentum. If @(g) satisfies (31) then so does
D(A) @(g)D'(A), but can be momentum independent
because D(A) is momentum independent.

(2) The matrices @(g) cannot be unitary (unless
@=1) because there are no finite-dimensional unitary
representations of the homogeneous Lorentz group.

WEINBERG

But now there is no need for @(g) to be unitary, since
it does not arise from a unitary operation on Hilbert
space.

(3) There is no need for the spin and parity content
of the representations D(A) to be in exact correspond-
ence with that of the particles in the corresponding
supermultiplets. For instance, the Dirac (3,0)® (0,3)
representation of the homogeneous Lorentz group
(including space inversion) contains 3+ and 3~ represen-
tations of the subgroup of rotations and space in-
version, but it can be (and usually is) used to construct
M functions for 4+ particles alone.

By using generalized M functions as the arena for
symmetry principles we gain considerable freedom, but
against this we must set several serious disadvantages:

(1) Itis difficult to conceive how a dynamical theory
could embody a symmetry of this type. I¢ should be
realized that o condition like Eq. (31) can generally not
even be stated as a linear relation among S-matrix elements.
For this to be possible, the quantities @(g)u(p,n,0)
would have to be expressible as a linear combination
of wave functions %(p,n’,0’), and we can see in the
example of the quark supermultiplet that they will
generally not commute with (ip*y,+m) and hence will
take us out of the space of quark “wave functions”
satisfying Eq. (24). This typically happens when we
define the M function using an irreducible representation
9D(A) of the homogeneous Lorentz group which contains
more spins and parities than does the supermultiplet.

(2) The unitarity relation for the .S matrix becomes
a set of nonlinear equations for the M function, which
can be written symbolically as

ImM=MEM?,

where 2 is a sum over ¢’s of a product of »u'’s for each
particle. For instance, for each quark 2 contains a factor
(—ip+m)/2E. But 2 will then not be U (12) invariant,
and we must entertain grave doubts whether any
U (12)-invariant M function can ever yield a unitary .S
matrix. [A very recent article by Bég and Pais' shows
that the quark-quark scattering matrix does indeed
come out nonunitary, for just the above reason. ]

(3) The future of such a radically new kind of
symmetry principle will depend on the verdict of
experiment. A recent letter" from Princeton shows
that some specific predictions of U(12) are in strong
disagreement with experiment.

V. OTHER WAYS OUT

In closing, we list below some other possible ways of
evading the limitations imposed by the theorem of
Sec. II.

10 M. A. B. Bég and A. Pais, Phys. Rev. Letters 14, 509, 576(F))
(1965). The conflict with unitarity was apparently also realized
by C. N. Yang, and by the team listed in Ref. 11.

1 R. Blankenbecler, M. L. Goldberger, K. Johnson, and S. B.
Treiman, Phys. Rev. Letters 14, 518 (1965).



COMMENTS ON RELATIVISTIC SUPERMULTIPLET

(1) Groups with many inequivalent representations. If
a group G of the type described in Sec. II has only one
irreducible representation of a given dimensionality and
spin-parity content, then the assumption stated in Eq.
(3) is unavoidable. If it has more than one such ir-
reducible representation then we might try dividing
momentum space into different equivalence classes, p
being equivalent to p’ if the representations G(g; p) and
G(g; p’) are equivalent. (In order to avoid the contra-
diction found in Sec. IT it would be necessary to suppose
that for each p there is a Lorentz transformation A
such that p is not equivalent to Ap.) It would be
particularly repulsive to imagine momentum space
divided discontinuously into a finite number of such
equivalence classes, so the most natural possibility
would be for G to have an infinite number of inequiv-
alent representations of the same dimensionality and
spin-parity content. (Each p might then be an equiv-
alence class by itself.)

This is possible if G is not semi-simple. For instance,
it might be that the group of all symmetries commuting
with P* contains the translations as an invariant
Abelian subgroup, but does #of factor into the direct
product of the translation subgroup and some other
group. Or there might exist invariant Abelian subgroups
of G consisting of new kinds of translation operators.!?
Neither possibility seems to offer much promise.

(2) Nonunitary S-matrixz symmetries. We might try
to impose a symmetry condition on the S matrix itself
instead of the “generalized M function,” but without
insisting that the symmetry matrices be unitary. We
would then find a representation §(A ; p) of the homoge-
neous Lorentz group just as in Sec. IT, but there would
now be no reason for it to be unitary and hence no
contradiction.

The trouble here is that the spin-parity content of
this representation would have to be identical with
that of the particle supermultiplet. [For spin this is a
direct consequence of Eq. (14); the argument is
identical with respect to parity.] But the represen-
tations of the homogeneous Lorentz group (including
space inversion) have an undesirable parity content ; for

12T, Fulton and J. Wess (to be published).
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every half-integer spin particle there must appear
another of opposite parity. [For instance, the (%,0)
@ (0,3) Dirac representation contains + and 1~ parts.]
Thus alternative (2) leads us to a parity doubling,
either through the introduction of new baryon states,
or by the inclusion of antibaryons in the same super-
multiplet as baryons. We have already remarked in
Sec. IV that a symmetry defined on the M function
escapes this difficulty because there is no one-to-one
correspondence between the particle states and the
vectors on which the symmetry acts. Also, the S matrix
probably must be nonunitary if subject to nonunitary
symmetry requirements.

(It is not impossible that the weak interactions could
possess a nonunitary S-matrix symmetry of this type.
If we exclude space inversions, then the homogeneous
Lorentz group has non-parity-doubled representations,
like the two-component (%,0) representation, which
contains spin § just once. Insisting on a strict non-
unitary GL(6) symmetry for the S matrix would yield
such an &(A,p), and would predict a V-minus-4
structure for the four-quark matrix elements.)

(3) Inexact symmetries. Conceivably we should not
even try (as we have been doing) to imagine a universe
with exact supermultiplet-generating symmetries which
approximates the real universe [as we do for approxi-
mate symmetries like SU(3)], but should derive in-
trinsically approximate relations in some other way,
perhaps from current commutation rules.!

(4) Specific dynamical models. Finally, it may be that
the new supermultiplet theories are really just like their
Wignerian archetype, in that they arise from specific
bound-state models of elementary-particle structure,
and simply tell us nothing at all about scattering
processes with large relative velocities. I personally
favor this last possibility, but time will tell.
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