high, at least for Ni⁶⁰. It seems, therefore, that in calculations for the Ni(d,t) reactions the correct asymptotic behaviour of the neutron form factor is important, and CB calculations give results less consistent than the standard (separation energy) methods.

ACKNOWLEDGMENTS

The authors are indebted to Professor R. M. Drisko for his advice and help in performing the DWBA calculations and to Professor B. L. Cohen and Professor R. M. Drisko for helpful discussions during the course of this work. Thanks are also due to Dr. R. K. Jolly for assistance in the accumulation of data and to Dr. J. K. Dickens for providing the Ni⁶⁴ target on loan. The DWBA calculations reported in this article were performed at the University of Pittsburgh computation center, which is partially supported by the National Science Foundation under Grant No. B-11309.

PHYSICAL REVIEW

VOLUME 139, NUMBER 3B

9 AUGUST 1965

α Particles from the Triton Bombardment of Li⁷, C¹², and O¹⁶[†]

F. AJZENBERG-SELOVE AND J. W. WATSON Haverford College, Haverford, Pennsylvania

AND

R. MIDDLETON University of Pennsylvania, Philadelphia, Pennsylvania (Received 22 March 1965)

A Li7 oxide layer deposited on a carbon foil has been bombarded by 13-MeV tritons from the Aldermaston tandem. The spectra of α particles emitted at 24 angles relative to the incident beam (5° to 175°) have been determined with the Aldermaston multigap spectrograph, using nuclear plates as detectors. The first excited state of He⁶ is found to have an excitation energy of 1.797 ± 0.025 MeV and a width of 113 ± 20 keV. No other excited states of He⁶ below an excitation energy of 12 MeV have been observed, for $\theta = 5^{\circ}$ to 35°. Angular distributions of α particles have been determined to the following states: $E_x=0$ and 1.80 MeV in He⁶; $E_x = 0$, 5.28+5.31, and 6.33 MeV in N¹⁵; $E_x = 0$, 2.14, 4.46, and 5.03 MeV in B¹¹. The angular distributions show strong direct-interaction features.

INTRODUCTION

HE only excergic reaction leading to He⁶ is the $Li^{7}(t,\alpha)He^{6}$ reaction with a Q value of 9.833 MeV.¹ It is therefore not surprising that most of the known information on the structure of He⁶ has been derived from work with this reaction. K. W. Allen et al.2-4 have observed two excited states of He6 with $E_x = 1.71 \pm 0.01$ MeV ($\Gamma \leq 100$ keV) and 3.4 ± 0.2 MeV (Γ < 300 keV). These experiments used low-energy tritons ($E_t < 1$ MeV), and a proportional-counter technique. The α -particle group attributed to the 3.4-MeV state⁴ was observed at $\theta = 131^{\circ}$ at $E_t = 0.24$ MeV, and at $\theta = 90^{\circ}$ at $E_t = 0.71$ and 0.90 MeV. Evidence has also been reported⁵ for one or more states at $E_x = 9.3 \pm 0.7$

MeV and possibly for a state at $E_x = 6 \pm 0.9$ MeV. The summed proton spectrum from the $\text{Li}^7(p,2p)\text{He}^6$ reaction suggests¹ an excited state of He⁶ with $E_x \sim 15$ MeV and $J=1^{-}$ or 2^{-} . It appears fair to say that only the existence of an excited state with $E_x \sim 1.7$ MeV has been established with any certainty.

While there is no question of the existence of the 1.7-MeV state, its parameters and decay modes are only poorly established. Its angular momentum and parity are probably^{6,7} 2⁺, but there has been conflicting evidence on its width and on its decay modes. There have been reports that the 1.7-MeV state decays by γ emission.^{8,9} On the other hand the absence of He^{6*} recoils.³ and the fact that the state is broad,¹⁰ suggest that the decay is by particle emission via one or both of the

[†] The exposure of the plates was carried out at the Atomic Weapons Research Establishment, Aldermaston, England. The remainder of this work was supported by the National Science

Foundation. ¹T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. (to be published).

² J. T. Dewan, T. P. Pepper, K. W. Allen, and E. Almqvist, Phys. Rev. 86, 416 (1952).

⁸K. W. Allen, E. Almqvist, J. T. Dewan, and T. P. Pepper, K. W. Allen, E. Almqvist, J. T. Dowan, and T. T. Popper, Phys. Rev. 96, 684 (1954).
⁴ K. W. Allen, E. Almqvist, and C. B. Bigham, Proc. Phys. Soc. (London) 75, 913 (1960).
⁵ D. Magnac-Valette and P. Cüer, J. Phys. Radium 17, 553 (1956); Physica 22, 1156A (1956).

⁶ E. Almqvist, T. P. Pepper, and P. Lorrain, Can. J. Phys. 32, 621 (1954).

⁷S. H. Levine, R. S. Bender, and J. N. McGruer, Phys. Rev. 97, 1249 (1955).

⁸ E. W. Titterton and T. A. Brinkley, Proc. Phys. Soc. (London) 67.469 (1954).

⁹ D. Magnac-Valette, R. Seltz, R. Bilwes, and J. Spyns, in Proceedings of the Conference on Direct Interactions and Nuclear Reaction Mechanisms Padua (1962), edited by E. Clementel and C. Villi (Gordon and Breach Publishers Inc., New York, 1963), p. 1088A.

¹⁰ F. Ajzenberg-Selove and R. Middleton, Bull. Am. Phys. Soc. 9, 391 (1964).

FIG. 1. Spectrum of α particles from Li⁷(t,α)He⁶, C¹²(t,α)B¹¹, and O¹⁶(t,α)N¹⁵ at E_t =12.97 MeV (θ $=27.5^{\circ}$). The left-hand ordinate gives the number of α tracks recorded in a 200- μ -wide "bin" of the photo-graphic plate detector; the right-hand ordinate gives the excitation energy (in MeV) in He⁶ corresponding to α -particle energies referred to the diagonal line. He⁶(0) and He⁶(1) are α groups corresponding to the ground state of He⁶ and to the excited state at $E_x = 1.80$ MeV. The location of the previously postulated state at 3.4 MeV (see text) is indicated as He⁶ "3.4." The groups labeled C_x (x=0 to 9) and O_x (x=0 to 7 and 11 to 12) correspond to states in B¹¹ and N^{15}

modes

or¹¹

$$\operatorname{He}^{6*} \rightarrow \operatorname{He}^{4} + 2n, Q \sim 0.8 \operatorname{MeV};$$

$$\operatorname{He}^{6*} \to \operatorname{He}^{5} + n, Q \sim -0.2 \text{ MeV}.$$

In fact, the branching ratio Γ_{γ}/Γ_n has been recently determined¹² to be less than 4×10^{-4} .

We decided to study the $\text{Li}^{7}(t,\alpha)$ He⁶ reaction for three reasons: (1) to determine accurately the excitation energy and the width of the first excited state of He^6 ; (2) to try to observe higher excited states; (3) to study the (t,α) reaction mechanism.

One is often able to predict the location of excited states by looking at the structure of the isobars. For instance, all states in He⁶ should be reproduced in the mirror nucleus Be⁶, and in the T=1 level structure of Li⁶. Unfortunately, only the ground state¹ and possibly¹³ an excited state at $E_x = 1.5 \pm 0.2$ MeV have been reported in Be⁶. In Li⁶, states with probable T = 1 which had been reported by Allen *et al.*⁴ at $E_x = 6.63 \pm 0.08$ and 8.37 ± 0.08 MeV have not been observed by other workers.¹ The two known T = 1 states in Li⁶ at $E_x = 3.56$ and 5.35 MeV are the analog states of the ground and first excited states of He⁶. Thus no clues can be derived concerning higher states of He⁶ from the known energy levels of Li⁶ and Be⁶.

There has been very little experimental evidence on (t,α) angular distributions, particularly for triton energies ($\gtrsim 8$ MeV) where analysis in terms of directinteraction theories might be reasonable. Only one such study¹⁴ has been published, that of the $C^{12}(t,\alpha)B^{11}$ reaction at $E_t = 10.1$ MeV. We decided to try to obtain additional data on (t,α) angular distributions.

EXPERIMENTAL PROCEDURES AND RESULTS

1. Experimental Setup

A thin target of isotopically pure ($\sim 99\%$) Li⁷, evaporated on a carbon backing, was transferred under vacuum to the target chamber of the Aldermaston multigap spectrograph. There it was bombarded by 13-MeV tritons accelerated in the tandem Van de Graaff. The outgoing α particles were detected by 25- μ thick K-minus-one Ilford emulsions located at 24 angles relative to the incident beam, in the range $\theta = 5^{\circ}$ to 175°. The magnetic-field setting (11.509 kG) was selected so as just to deflect the group corresponding to the ground state of He⁶ onto the plate detector, at the forward angles. The exposure of the plates was of 700 μC (i.e., 4.4×10^{15} tritons). Unfortunately, as we will show, the Li⁷ target oxidized despite the care taken during its transfer to the spectrograph, and its thickness can be estimated only very roughly. The thickness of the carbon backing was $\sim 15 \ \mu g/cm^2$. The target was positioned at 45° to the incident beam.

2. Spectrum of α Particles

Figure 1 shows a typical α -particle spectrum, at $\theta = 27.5^{\circ}$. Spectra were obtained at 24 angles. The groups labeled $He^{6}(0)$ and (1) correspond to the ground and first excited states. The groups labeled C and O correspond, respectively, to states in B¹¹ [from $C^{12}(t,\alpha)B^{11}$] and N^{15} [from $O^{16}(t,\alpha)N^{15}$]. The subscript denotes which state is reached in B^{11} and N^{15} . All the α groups observed at this and at every other angle can be accounted for in terms of the two states in He⁶, and in terms of known states in B¹¹ and in N¹⁵. The continuous background of α particles is consistent with the Q values for the breakup $\text{Li}^7 + t \rightarrow 2\alpha + 2n \lceil Q = 8.864 \rceil$ and $\text{Li}^7 + t \rightarrow \text{He}^5$

¹¹ An endoergic decay would not usually be possible but the width of the ground state of He⁵ is ~ 0.5 MeV. ¹² K. Hünchen, F. Kropf, and H. Wäffler, Nucl. Phys. **58**, 477

^{(1964).}

¹³ F. Ajzenberg-Selove, C. F. Osgood, and C. P. Baker, Phys. Rev. 116, 1521 (1959); see, however, J. L. Honsaker, Bull. Am. Phys. Soc. 9, 627 (1964). ¹⁴ D. J. Pullen, A. E. Litherland, S. Hinds, and R. Middleton,

Nucl. Phys. 36, 1 (1962).

FIG. 2. The broad He⁶ state at $E_x = 1.80$ MeV (He⁶(1)) is shown in comparison with nearby sharp states, at six angles. The groups labeled He⁶(0), B¹¹(0) and N¹⁵(0) correspond to the ground states of these three nuclei. The ordinate gives the number of α tracks in 0.2-mm bins; the abscissa is the α -particle energy in MeV.

 $+\alpha+n[Q=7.907]$. The location of the He^{6*} group makes it impossible to find the maximum energy of the breakup α particles, and the shape of the distribution near these two Q values. The large rise in the continuum background at $E_{\alpha} \sim 8$ MeV corresponds to the triton binding energy $[E_b=12.299 \text{ MeV}]$ and therefore to the onset of Li⁷+t \rightarrow t+t+ α [Q=-2.466 MeV].

The mean triton energy in the Li⁷ oxide target was calculated relativistically from the α -particle energies of the He⁶(0) and N¹⁵(0) groups, whose Q values are known to ± 4 keV and ± 1 keV, respectively. Results of calculations at eleven angles give a weighted average $\bar{E}_i = 12.972 \pm 0.010$ MeV in the Li⁷ oxide. A similar calculation with the B¹¹(0) groups (from the carbon backing) gives $\bar{E}_i = 12.948 \pm 0.010$ MeV.

3. The First Excited State of He⁶

The α -particle groups to the first excited state of He⁶ were studied carefully at eleven angles ($\theta = 5^{\circ}$ to 87.5°). Figure 2 shows six of the spectra for He⁶(1) compared with neighboring groups to the sharp ground states of He⁶, B¹¹, and N¹⁵. The intrinsic width of the first excited state is clearly apparent. It is determined to be

$$\Gamma_{\mathbf{c.m.}} = 113 \pm 20 \text{ keV}.$$

[The rms deviation of the values obtained for Γ at eleven angles is 11 keV.]

The excitation energy of the excited state was calculated from the α -particle energies corresponding to the midpoints of the He⁶(0) and He⁶(1) groups and $\vec{E}_i = 12.972$ MeV. We find

$$E_x = 1.797 \pm 0.025$$
 MeV

[The rms deviation of the eleven values of Q is 17

keV.] This excitation energy is appreciably different from the value $E_x=1.71\pm0.01$ MeV given by Allen *et al.*²⁻⁴.

4. Other Excited States of He⁶

A search was made for the α groups corresponding to the reported⁴ state at 3.4 MeV. No such groups were observed at any of eleven angles between 5° and 100° (see, i.e., Fig. 1): The upper limit to the intensity of the "3.4-MeV" group is 7% of the intensity of the "1.8-MeV" group [He⁶(1)], if a width ≤ 100 keV is assumed for the 3.4-MeV "state." If a width of ~300 keV is assumed, the upper limit to the intensities of the groups is 20%.

No "sharp" groups ($\leq 100 \text{ keV}$) are observed corresponding to states in He⁶ with $E_x \leq 12 \text{ MeV} (5-35^\circ)$ to $E_x \leq 4 \text{ MeV} (100^\circ)$. Above an excitation of 12 MeV, the Li⁷(t,α)2H³ background is so high that even sharp states could have been missed. The continuum background is very smooth and does not indicate the presence of groups of α particles of appreciable intensities corresponding to broad states in He⁶.

Figure 3 shows the isobaric diagram for the A=6 triad. The usual¹⁵ isobaric correction has been made to the He⁶-Li⁶ and Be⁶-Li⁶ mass differences. In calculating the Coulomb-energy difference, the crude assumption of uniform distribution of charge has been made.

5. (t,α) Angular Distributions

The angular distributions were calculated from the intensity of the α groups at the various angles, after

¹⁵ T. Lauritsen, Ann. Rev. Nucl. Sci. 1, 67 (1952); T. Lauritsen and F. Ajzenberg-Selove, in *American Institute of Physics Handbook* (McGraw-Hill Book Company, Inc., New York, 1957).

FIG. 3. The mass-6 isobaric triad. Corrections have been made for Coulomb energy differences and the n-p mass difference. See text for further details.

correction for solid angle and other geometric factors, and after conversion into the center-of-mass system.

Figure 4 shows the angular distributions of the α particles to the ground and 1.8-MeV states of He⁶. The ordinate gives the relative differential cross section in the center-of-mass system. One would expect both curves to correspond to an l=1 transfer, assuming $J^{\pi}=0^{+}$ and 2⁺ for the He⁶ states.

Figures 5 and 6 show the angular distributions to the

FIG. 4. Angular distribution of α particles in the center-of-mass system at $E_t = 12.97$ MeV. The two distributions shown are to the ground state of He⁶ and to the excited state at 1.80 MeV. When statistical errors are not shown they are contained within the data points. The ordinate gives the relative intensity of the group. The lines through the data points simply serve to connect these points.

ground state of B¹¹ and to the states at 2.14, 4.46, and 5.03 MeV.¹⁶ These states have, respectively, $J^{\pi} = \frac{3}{2}^{-}, \frac{1}{2}^{-}, \frac{5}{2}^{-}$, and $\frac{3}{2}^{-}$. The distributions to the $J = \frac{1}{2}$ and $\frac{3}{2}$ states involve an l=1 transfer, while the distribution to the $\frac{5}{2}^{-}$ state at 4.46 MeV involves l=3. The angular distributions to these states obtained at $E_t = 10.1$ MeV by Pullen *et al.*¹⁴ also show the relatively large cross section of the reaction to the ground state of B¹¹. At $E_t = 10.1$ MeV, the B¹¹(0) and (1) groups are peaked forward and back.¹⁴ Back-peaking could not have been observed under the conditions of this experiment.

Figure 7 shows the angular distributions to the ground state of N¹⁵ $(J^{\pi}=\frac{1}{2}; l=1)$, to the unresolved

FIG. 5. Angular distributions of the α particles to the ground state of B¹¹ (open circles) and to the state at 2.14 MeV (dots). See also caption of Fig. 4, and Ref. 16.

¹⁶ In Figs. 5 and 6, a relative intensity of 1000 corresponds to $d\sigma/d\Omega \sim 1.2$ mb/sr ($\pm 50\%$). Similar calculations for Figs. 4 and 7 cannot be made because of the large uncertainty in the thickness of the Li⁷ oxide layer.

(5.28+5.31)-MeV states $(J^{\pi}=\frac{5}{2}+,\frac{1}{2}+;l=2,0)$ and to the 6.33-MeV state $(J^{\pi}=\frac{3}{2}-;l=1)$. The relatively low cross section of the distribution to the unresolved 5.3-MeV states may perhaps be explained in terms of the small reduced width¹⁷ of the 5.31-MeV state, coupled with l=2 transfer for the 5.28-MeV state.

An attempt was made¹⁸ to fit these curves using a least-squares program with Legendre polynomials up to order 8. This was unsuccessful. Although it is obvious that by including Legendre polynomials up to sufficiently high order a good fit could be obtained, we felt that such an analysis would not be useful in the present state of theoretical understanding of (t,α) reactions.

Pullen *et al.*¹⁴ had made an attempt to fit their $C^{12}(t,\alpha)B^{11}$ distributions with Born approximation pickup theory. While the qualitative agreement in the

FIG. 6. Angular distributions of the α particles to the states of B¹¹ at 4.46 MeV (open circles) and 5.03 MeV (dots). See also caption of Fig. 4, and Ref. 16.

¹⁷ E. C. Halbert and J. B. French, Phys. Rev. **105**, 1563 (1957). ¹⁸ The least-squares program was made available by Dr. Lloyd F. Chase and Dr. W. W. True. Dr. John Olness of Brookhaven National Laboratory very kindly ran these calculations on the BNL computer. We are very grateful to Dr. Olness, Dr. Chase, and Dr. True for their help.

FIG. 7. Angular distributions of the α particles to the ground state of N¹⁵ (open circles) and to the states at 5.28 and 5.31 MeV (unresolved) (crosses), and 6.33 MeV (dots). See also caption of Fig. 4.

location of the most prominent maximum was fairly good, the detailed structure of the curves could not be reproduced. Further, Pullen *et al.* point out that the large backward peaks they observe show that a simple proton pick-up mechanism does not hold. At this time, the needed parameters (i.e., well depths, etc.) for more sophisticated calculations are not available.

ACKNOWLEDGMENTS

We are extremely grateful to Miss Rena Mehlman for her very careful scanning of the nuclear emulsions. Our thanks are due also to H. Marchant and to the operating staff of the Aldermaston Tandem for their assistance in making the exposure, and to Professor G. T. Garvey for his comments on the analysis of the data.