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connection, note that'

at ——max@I Jt(s')ttt"'(~)
I

(A2. 1)

as l~ ~, where
X=—l+-,',
y--Xz'

and and
(A2.2) ro'= (x/X)' —1.

We also have
bt(l+1) =1/(2l+1)!!. (A2.3)

For large I, one can use the asymptotic formula of
Watson and Nicholson, "according to which

II),&'& (x) (3)
—'t'toII&ts '

(y) exp(i srr) (A2.4)

'0 W. Magnus and F. Oberhettinger, Formulas and Theorems
for the Functions of Matitematicat Physics (Chelsea Publishing
Company, New York, 1954), Chap. 3, Sec. 3. 2 t-0.741397(l+-', )'t'. (A2.7)

In writing this expression we used the fact that, for b~,

a&, and A&, the maximum is achieved for a value of y
which tends to a constant as l tends to infinity; corre-
spondingly, m tends to zero. Ke find that as l —+ ~

bt(v) 0.845843 (l+ s)'t' "(v(i+1), (A2.5)

at 0.741397(l+-', ) '" (A2.6)
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The symmetrization postulate (SP) states that wave functions are either completely symmetric or com-
pletely antisymmetric under permutations of identical particles. It is shown by one-dimensional counter-
examples that SP is not demanded by the usual physical interpretation of the mathematical formalism of
wave mechanics unless one makes use of further physical properties of real systems; the error in a standard
proof of SP which ignores these properties is pointed out. It is then proved that SP is true for those systems
of spinless particles which have the following properties: (a) probability densities are permutation-invariant,
(b) allowable wave functions are continuous with continuous gradient, (c) the 3rr-dimensional con6guration
space is connected, (d) the Hamiltonian is symmetric, and (e) the nodes of allowed wave functions have
certain properties. The counterexamples show that SP is not a necessary property of those systems which
do not have property (c). The proof is extended to particles with internal degrees of freedom (including
spin) by noting that any observable commutes with every permutation and making use of a particular
observable acting only on internal variables. Extraneous mathematical assumptions, such as that of the
existence of a "complete" set of commuting observables, criticized by Messiah and Greenberg, are not
employed. Some comments are made on the conventional nature of the concept of identity for similar
pal'ticles; the equivalence between the usual formulation in which different species of similar particles are
treated as distinct, and that in which they are regarded as identical particles in different internal states, is
emphasized.

1. INTRODUCTION

' 'I is a well-known experimental fact that quantum-
- ' mechanical states of a system of identical elemen-

tary particles are either symmetrical (Bose-Einstein) or
antisymmetrical (Fermi-Dirac) under permutations of
the single-particle dynamical variables; more cornpli-
cated permutation symmetries seem not to be realized
in the real world. Messiah'' calls this fact the sym-
metrisatiort Postulate The pioneers .in the development

of quantum mechanics took this simply as an experi-
mentally based fact. Thus, e.g. , Dirac' states that:
"Other more complicated kinds of symmetry are
possible mathematically, but do not apply to any known
particles. "There were subsequent attempts, continuing
up to the present time, to deduce the symmetrization
postulate from other physical principles. One simple
argument, found in many textbooks, runs as follows'.
Let P be the Schrodinger wave function of a system of
identical particles, let I'P be the wave function diiiering

* Supported in part by the Public Health Service (GM
09153—04).

'A. Messiah, Quantum Mechanics (North-Holland Publishing
Company, Amsterdam, 1962), Vol. II, p. 595.

2A. M. I. Messiah and O. Greenberg, Phys. Rev. 136, 8248
(1964).

3 P. A. M. Dirac, The Principles of Quantum kIechanics (Claren-
don Press, Oxford, 1947), 3rd ed. , p. 211.

4 See, e.g. , E. M. Corson, Perturbation 3fethods in the Quantum
Mechanics of n-Itlectron Systems (Blackie and Son, I,td. , Glasgow,
1951),p. 113.
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from P only through a permutation P of the dynamical
variables (arguments of iP), and a,ssume that the precise
mathematical statement of the identity of the particles
is that the configurational probability is permutation-
invariant, i.e.,

Then it follows from (1) that

Pv'= &~it'

where c& is a, complex number of modulus unity. Apply-
ing a second permutation, one finds

2. COUNTER EXAMPLES

Counter examples to the conclusions of the above
"proof" are provided by a previously studied class of
one-dimensional models. ' We consider a system of e
identical particles confined in a one-dimensional box
0~&@~&J. These particles are assumed to have no in-
ternal degrees of freedom (not even spin); thus the
configuration of a single particle is completely char-
acterized by its one-dimensional position x, and a state
of the e-particle system can be represented by a
Schrodinger wave function P(xt xs) with 0(~x;&~L,
1&~j&&a. The boundary conditions on f are

hence
PQk=c~A =c~co4,

C~g =Cy Cq.

P(x&. x„)=0 if x,=0 or I., 1&j&rs. (7)

We furthermore assume that the particles are im-
penetrable with hard-core diameter a, in the sense that

But (4) is just the condition that the cz form a scalar
representation of the permutation group. It is well
known that there are just two scalar representations,
one being

cg= 1 for all I'

for which P is completely symmetric, the other

cp=+1, P even
=—1, I' odd

for which f is completely antisymmetric, Q.E.D.
However, this simple proof is in fact incorrect, and

more sophisticated proofs' ' involve mathematical as-
sumptions which are either in convict with known
physical principles or at least do not follow directly
from such principles. ' This is most clearly seen with the
aid of counterexarnples which help to locate the un-
warranted assumptions in the incorrect proofs and sug-
gest the additional physical information which must be
incorporated into a correct proof.

' J. M. Jauch, Helv. Phys. Acta. 33, 711 (1960).' J. M. Jauch and B. Misra, Helv. Phys. Acta. 54, 699 (1961).
7 D. Pandres, Jr., J.Math. Phys. 3, 305 (1962).' A. Galindo, A. Morales, and R. Nunez-Lagos, J.Math. Phys.

3, 324 (1962).
9 In these proofs the existence of a complete set of commuting

observables is assumed; as pointed out by Greenberg and Messiah
(Ref. 2), this assumption need not be true. Pandres (Ref. 7)
makes the further assumption that any operator which commutes
with every member of this set must be a multiple of the unit
operator; this ignores the existence of superselection rules LG. C.
Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101
(1952)g which follow from the fact that every true observable of
a system of identical particles must be symmetric in single-particle
variables. As a result, an operator can commute with all true
observables and yet not be a multiple of the unit operator. This is
the case, e.g. , for an arbitrary permutation operator I'. Another
argument found in many textbooks omits (1), instead taking (2)
as the starting point on the basis of the assertion that wave func-
tions di6ering only through a permutation of identical particles
must represent the same physical state (ray in Hilbert space) and
hence can di6er only by a constant factor of modulus unity. How-
ever, such an assertion is not supported by the physical inter-
pretation, according to which all observable quantities are bilinear
in wave functions, being expressible in terms of inner products,
expectation values, and matrix elements. Hence the ray need not
be permutation-invariant.

where the function S is defined by

S(x
2(L

(12)

sgn(x) is the algebraic sign (&1) of x, and the prime
in (1.2) implies that some of the srs(rs —1) pairs j&l
may be omitted from the product. If all pairs are
omitted then S—= 1, so Pa is identical with f~s, if all
are included, we have the previously considered" case,
in which Pz obeys Fermi kinematics" since /zan is
symmetrical (Bose kinematicsr) and, in that special
case, S is antisymmetrical. Except for these two trivial

'0 M. Girardeau, J. Math. Phys. 1, 516 (1960).
'I We prefer not to use the conventional but illogical terminology

"statistics" in referring to a restriction on allowable states of the
system which applies even (as here) to a pure state (purely me-
chanical description).

y(x, " x)=0 if

or if x;& sa or L x;& sa, 1—& j&rs. (8)

Thus the configuration space 6 consists of all ordered
sets x& - x„satisfying

-,'a&a, &I.—-,'u, 1&j&n;
)x,—xt) &a, 1&j&l&N.

If Pz is an energy eigenfunction with eigenvalue P., it
satisfies a Schrodinger equation of the form

(T+V)Pg (xt x„)=Eg(xt x„)

in 6, where T is the kinetic and V the potential energy
[not including the hard cores, which we treat by the
subsidiary condition (8)j. V may be quite arbitrary;
it need not be restricted to a sum of tvro-body
interactions.

Let P~n be a Bose solution of (10), (7), and (8),
i.e., a solution which is completely symmetric under
permutations P of the x;.Then Pz~ satisfies (1) trivially.
I.et us construct a function P~' by the prescription

pg'(xr x„)=prrn(xt x )S(xt x ),
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f andItr
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have no internal degrees of freedom. Of these three
properties, the one-dimensionality is the most import-
ant; we shall find in the next section that as soon as it
is removed, the counterexarnples fail. Thus, the absence
of elementary particles obeying other than Bose or
Fermi kinematics is intimately related to the fact that
the real world is not one-dimensional.

core core

1
0

core
L Xl

3. PROOF OF THE SYMMETRIZATION POSTU-
LATE FOR SPINLESS PARTICLES IN

THREE DIMENSIONS

Fio. 1. )(pir and ppr (schematic) for the case ep=3 and S(x&xexp)
=sgn(xI —x2), plotted as a function of x1 for Axed x2 and x~,
with x2(x~.

cases, however, QI.
' will have more complicated sym-

metry properties. "Nevertheless, it follows directly from
(11) and (12) that if z' satisfies (1). Furthermore, by
the previously given a,rguments" )tr~' satisfies the
Schrodinger equation (10), the boundary and hard-core
conditions (7) and (8), and the same regularity condi-
tions as Ps~. A simple example is shown in Fig. 1; since
the ground Bose state fP can be chosen to be real and
non-negative, we have chosen that case to illustrate the
general situation.

This counter example clearly violates the conclusion
of the "proof" given in Sec. 1, since we have found
allowable wave functions it' satisfying (1), but never-
theless obeying neither Bose nor Fermi kinematics. The
example studied clearly points out the error in the proof;
it is simply the implicit assumption that c& is inde-
pendent of the configuration" x~ x„.This assumption
is not always correct; thus, e.g. , in the example of
Fig. 1, we have

cr= &) c(i2) = —1 ~

C(lp)
——Sg11(Xp—X,)/SgI1(XI —XS) r

c(»)——sgn(x, —x,)/sgn(x, —x,),
C(les) = Sgll (Xs Xp)/SgI1 (Si Ss),

C(pet) = Sgll (XS Xi)/Sg11 (Xi XS) r

(13)

"In general, Pz' will not even belong to any single Young dia-
gram, but will be a linear combination of functions belonging to
various Young diagrams.

"In order to emphasize this point in (1)—(4), we have carefully
been even more careless in notation than the original perpetrators
of the proof.

where I is the identity permutation, and the other five
permutations are denoted in the usual cycle form. %e
use the usual notation: PQ means first Q, then E;
(123) means 1~2—+3 —+1. As soon a,s the CI are
allowed to be functions of the configuration, they no
longer form a representation of the permutation group,
so that the proof does not go through.

There are three important properties of these counter-
examples which should be emphasized: The particles
move in one dimension, they have hard cores, and they

If one attempts to extend the counterexample of the
previous section to the case of particles moving in three
dimensions, one encounters the immediate difhculty
that when the x; are replaced by vectors r;, there is no
usable analog of the function $(x, . x„) defined in
(12). This is brought out clearly by first defining

$(xi x„) in a Inore general fashion than (12), in
order to emphasize the topological reason why no non-
trivial analog S(ri r„) exists. Note first that the
configuration space 6 of e particles in one dimension
is e-dimensional. Furthermore, each of the subspaces
x, =xi is (II—1)-dimensional and flat, and hence divides
6 into two disjoint regions. It follows that the set of
all —,'II(II—1) subspaces x,=xi, 1~&J &l&n, divides ('
into precisely Is! disjoint regions ('~, 1&~p~&e!, corre-
sponding to the e ~ different possible orderings of x». x„.
If we now construct any function $(xi x ) with the
properties that it ha, s the constant value +1 or —1 in
each ('-„but may jurnp from +1 to —1 at the boundary
between any two ('~ (i.e., on any surface S,=SI), then
such an 5 can be used to construct a counterexample to
the symmetrization postulate by the method of the
previous section. " The reason the product P'=$~$
LEq. (11)7 is continuous and satisfies the Schrodinger
equation throughout 6 is simply that all discontinuities
of S (the surfaces x;=xi) lie in the interior of the region
where P~ vanishes identically because of the hard-core
conditions (8), or equivalently, because of (9) all dis-
continuities of 5 lie outside 6.

One is tempted to try to extend this argument to a
system of e particles with hard cores in three dimensions

by defining a function $(ri . r„) which is either +1
or —1 at all points in (', and jumps from +1 to —1

only on the subspaces r, = r&. Actually, however, no such
nontrivial 5 exists. To see this, note first that for e
particles in three dimensions, the configuration space is
3e-dimensional. Then, since each subspace r, =rg is

(3II—3)-dimensional, such subspaces do IIot divide ('
into disjoint regions"; instead, if one deletes from 8 all

~4 There are 2"' ' distinct S's (including the trivial completely
symmetrical and completely antisymmetrical S's, which do not
give counterexamples), since the sign of S may without loss of
generality be chosen positive in one sector 6„, but may then be
assigned at will in each of the remaining n!—1 sectors. Only
2&"(" ~) of these S's are of the form (12).

~5 A boundary space of 3e—1 dimensions is necessary in order
to divide the 3m-dimensional space into disjoint regions.
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rzrs(rs —1) subspaces r, =ri, 1&&j(i&~it, the remainder
of 8 is still corrected. Hence the only functions S which
are +1 or —1 at every point in 6 and have discon-
tinuities at most on the subspaces r, =r~ are the two
trivial cases S=—1 and S—=—l throughout 8.

This suggests that a correct proof of the symmetriza-
tion postulate should involve topological arguments re-
lated to the three-dimensional nature of physical space.
To this end, consider a system of e identical particles
enclosed in any connected three-dimensional region (R.
As in Sec. 2, these particles are assumed to have no
internal degrees of freedom (not even spin), but may
or may not have hard cores in the sense

p(rt r„)=0 if
I r,—rsI &~ ts, 1&&j(l&I, (14)

where P is the Schrodinger wave function of the system.
If there are no hard cores, P is required to vanish if any
r, is on the boundary of (R, whereas, if there are hard
cores, Il must vanish if any r, is within a distance —,ts

of the boundary. Finally, we take the shape and size
of R to be such that the configuration space 6 is
connected. "

We are now ready to proceed with the proof. As in
Sec. 1, we take as our defirsirsg property of sderstictsl

particles the requirement that configurational proba-
bility densities be permutation-invariant, i.e.,

P. Upon replacing f by /+i p and P sq&—and sub-
tracting, one finds

(Pv)'P4 (~—V)"Pv'= v*-4

Replacing P by iP in (16) and adding, one finds

(16)

I
Pv(rt' ' r )3*PI'(ri'

=a*( . . -)0(r" r-) (17)

Thus permutation invariance of probability densities

I
PI' implies that of transition densities it*/.
It follows from (15) that

(18)
with

(19)

However, (4) is not in general valid if the cs are
allowed to depend on r~ r„; instead, one finds, noting
that P permutes both the arguments of tf and those
of cg

cpss(rt' ' ' i' ) =cp(rt' r )co(Pr]' ' Pr ) (20)

in an obvious notation. As a result, the group-theoretical
argument leading to (5) and (6) fails, so that a different
method of proof must be used.

We shall first dispense with the possibility that c~
might depend on the wave function ll on which P acts.
By (19), one has

(15)
cp, t, (ri' ' ' r ) = I/cp, t, (rt' r„) (21)

for all admissible wave functions f and all permutations

"Ry definition, 8 is said to be connected if and only if for every
two points in 6, there is a continuous path lying entirely in 6
connecting these two points. I et Q= (r1 . .r„) be any point in 6,
and define the distance between any two such points to be

where the extra subscript f emphasizes the possible
dependence of cp on P. Then it follows from (17) and
(18) that

-cs t, (r, r„)—1 ~t*(ri . r„)P(ri ~ r„)=0. (22)
cp y(rl ' ' rn)-

A Putts in 8 is a parametrization Q(t) by a real parameter t, i.e.,
a one-one mapping from some interval tI ~&t ~& t2 onto some region
of t'. A continuous path is a path with the property

lim~Q(t) —Q(to) )
=0

for every t0 satisfying t& ~& t0 ~&$2. If the three-dimensional region (R
is itself connected and the particles have no hard cores, then it is
trivial to prove that the 3n-dimensional configuration space 6 is
also connected. However, the situation is much more complicated
if there are hard cores. Thus, e.g. , it is then easy to make 6 dis-
connected even for a connected (R by trapping one or more hard
spheres in a region of (R which is connected to the remainder of (R
only by a channel of diameter &a. If such pathological shapes of
(R are excluded by requiring that it be convex, e.g. , a cube or
sphere, then 8 is certainly connected if the density P(number of
hard spheres)/(volume of tR)] is low enough, although the author
is not aware of a rigorous proof. However, even for convex (R
there may be a critical density beyond which t' is disconnected.
Thus, e.g., the cubic close-packed arrangement of spheres in a
cubical (R cannot be distorted into the hexagonal close-packed
arrangement which occupies the same volume, and it is not known
whether or not there is an irregular arrangement of the spheres
with density higher than that of the cubic or hexagonal close-
packed arrangements; see, e.g., H. F. Blichfeldt, Math. Ann.
101, 605 (1929)."Messiah and Greenberg (Ref. 2) adopt a more general defini-
tion of identical particles in which (15) is given up. We shall not
consider such a generalization here.

Hence for any admissible P and y,

cs, t, (rt .r )=cs,„(r, . r„) (23)

except possibly at points where f or p vanishes. But at
points where, say, il vanishes, so must PP, because of
(15). Hence at such points (18) is true for arsy cs, so
there is no loss of generality if we also assume (23) to
be true at such points. Thus (23) is true throughout the
configuration space 6, i.e., c~ is indeed independent of
the wave function on which I' acts.

Next we show that cp must be real. To see this, one
merely has to recall that any wave function P belonging
to a nondegenerate energy level is necessarily real apart
from a constant phase factor, which can be chosen so
that P is real."Letting P act on such a f, one concludes

This is true provided that the Hamiltonian is real (not merely
Hermitian), as is the case in Schrodinger representation in the
absence of external magnetic fields and other magnetic inter-
actions (e.g. , spin-spin and spin-orbit). Even in the presence of
magnetic interactions, one is at liberty to work with the complete;
set of eigenstates of a fictitious Hamiltonian obtained by omitting
the magnetic interactions; then the proof goes through as before.
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immediately that cp is also real. Then by (19),

cp(ri. r.) =+1. (24)

It remains to be shown that c~ cannot have discon-
tinuities as a function of ry' I' where it jumps from
+1 to —1. In the proof we shall use the facts that the
region (R within which the m identical particles are
contained is connected and three-dimensional, so that
the 3e-dimensional configuration space 6 is connected,
that admissible wave functions P(ri. . .r„) are continu-
ous with continuous 3e-dimensional gradient through-
out the interior of l., and that the Hamiltonian is a
symmetrical function of single-particle variables; we
shall also use certain information concerning the nature
of the nodes of the wave functions. From the symmetry
of the Hamiltonian II it follows that

PH, E]=0 (23)

'OWe have in mind cases where the potential-energy part U
of H is a function only of positions r& ~ r . However, the same
conclusion follows if U is momentum-dependent but, at most,
quadratic in the momenta. This is the case, e.g. , for interacting
particles in an external magnetic field, where the momentum-
dependent terms arising from the magnetic field are linear in the
rgomenta.

for every permutation I', and hence that if fz is an
energy eigenfunction with eigenvalue E, then so must
I'Pp be; then by (18), the same must hold for cpPp. In
view of (24) and the presence of the kinetic-energy
terms —(h'/2m)VP in H, this can be true only if the
discontinuities of cp (if it has any) occur only at points
where both P~ and its 3n-dimensional gradient vanish. "
Furthermore, since the c~ have been shown to be inde-
pendent of the state on which P acts, c~ can be dis-
continuous only at points where all Pz and their
gradients vanish. One reaches the same conclusion by
recalling that allowable wave functions must be con-
tinuous with continuous gradient throughout the in-
terior of the configuration space 6; if this is true of f,
it must also be true of I'P, hence of cpP.

At what points can a/I P~ and their gradients vanish?
As a preliminary it is helpful to first introduce a classifi-
cation of nodes. Any nodes present at the same points
in all wave functions are, in our de6nition, kieensatical
nodes; they arise from constraints or symmetry prop-
erties common to all wave functions. We shall call a/l
other nodes (i.e., nodes not shared by al/ wave functions
of the system) orthognnality nodes; this name is justified
by the fact that in a representation in which all mem-
bers of a set of wave functions (e.g. , the energy eigen-
functions f~) are real, these nodes arise from the re-
quirement of orthogonality of diferent members of the
set. It is clear from the discussion of the preceding
paragraph that discontinuities of c~ cannot occur on
orthogonality nodes; hence we pass immediately to
further consideration of the kinematical nodes. These
may be further subdivided into coestruiet modes, e.g. ,
the regions of configuration space where hard-sphere

wave functions vanish because of overlap, ""and sym-
metry nodes, which arise from symmetry properties
common to all wave functions. The most familiar ex-
ample of symmetry nodes is that of nodes in many-
fermion wave functions at r,.= r~ which arise from the
requirement of antisyrnmetry. " For this example it is
clear that the (real) wave functions change sign at a
symmetry node, and hence do not have vanishing
gradient there. It would appear" that this is a general
property of symmetry nodes; hence cz cannot have
discontinuities on symmetry nodes.

We are ]eft, therefore, only with the constraint nodes.
For particles without hard cores contained in a, con-
nected region e there are no constraint nodes, so that
c~ cmseot have discoetielities aeymhere. For particles
with hard cores of diameter a, the constraint nodes
consist of the 3n-dimensional configuration subspaces
("rods")

~r;—ri~ &~a, 1&&j(l&&n . (26)

Within each of these nodal regions every allowable
wave function vanishes along with its 3&z-dimensional

gradient, so that if P and its gradient are continuous,
then so is cpP within this nodal region (both vanish
there) even if cp jumps from +1 to —1 within this
region. We sha, ll show, however, that if c~ has such a
discontinuity, then cpP will necessarily be discontinuous
somewhere else, outside the nodal region (inside the
allowed configuration space 6). In order to see this, we
recall that for low enough densities and reasonable
shapes of the box (R, the configura, tion space 6 is
connected"; we shall temporarily restrict ourselves to
such a case. Suppose, then, that cp is +1 at some point
Qi in t' and —1 at some other point Q2, jumping from
+1 to —1, as we follow a continuous pa, th" from Qi to
Q~, a,t some point on one of the rods (26) through which
this pa, th passes. But since 6 is connected, there exists
some other continuous path from Qi to Q2 which lies
entirely within 6, i.e., avoids all of the rods (26). Since
cp is +1 on one end of this latter path, —1 on the other
end, and ~1 a,t every intermediate point, it must jump
from +1 to —1 st at least one point on the path, hence
within 8. But by the previous arguments this is not
permitted since it would make cpP discontinuous (at

"It can be objected that the overlap regions are outside the
configuration space e owing to the requirement that in allowed
configurations no two hard spheres may overlap. However, the
global properties of c„within 6 may be related to its discon-
tinuities outside 6, as shown by the one-dimensional models of
Sec. 2; hence the terminology "constraint nodes" seem justified.

2' A fixed, impenetrable obstacle also gives rise to a constraint
node. The proof for such a node goes through in the same way
as for a constraint node due to overlap of movable hard spheres.

22 As in the rest of this section, we are considering the simplified
case of particles without internal degrees of freedom, hence, in
particular, spinless. The actual case of particles with spin will be
considered in the next section.

2' Thus, by the same argument as for the I'ermi case, any wave
function belonging to a single Young diagram (irreducible repre-
sentation of the permutation group) changes sign at a symmetry
node, since it must be antisymmetric under permutations within
each column of the Young diagram.
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least for some P). We conclude, then, that c~ cannot
have discontinuities anywhere, not even on the rods
(26), i.e., ci isindependent of ri r„, equal to either +1
or —I, throughout the configuration space 8. This argu-
ment is illustrated by Fig. 2.

Since we have now established the constancy of cp,
the group-theoretical argument (3)—(6) then shows im-
mediately that only the Bose case (5) or the Fermi
case (6) are possible, i.e., the symmetrization postulate
is proved for spinless particles in three dimensions. This
proof is completely general for point particles confined
to a connected region I,, but for particles with hard
cores it is restricted to suKciently reasonable box
shapes I, and sufFiciently low densities. "For particles
with hard cores, topological. arguments related to the
connectivity of configuration space played a crucial
role" in the proof; the theorem is true only for those

systems whose spatial conpguration space is connected.
In particular, it is not true for hard spheres in one
dimension, as shown by the counterexamples of Sec. 2.

The reader may wonder why the analysis has been
based on ordinary Schrodinger wave functions, rather
than more general abstract Hilbert vectors in an arbi-
trary representation. The essential point is that experi-
ments are carried out in a real space-time world, not
an arbitrary one; hence boundary and regularity con-
ditions on wave functions are expressed in a spatial
representation. It has thus been shown that SP is a
necessary property of wave functions of systems of
identical particles whose spatial configuration space is
coersected. Once this has been shown, it is then trivial
to prove that for such systems, SP also holds for the
wave functions expressed in msy representation in
terms of single-particle dynamical variables. The argu-
ment is found in most textbooks, and thus need not be
repeated here.

4. PROOF OF THE SYMMETRIZATION POSTU-
LATE FOR PARTICLES WITH INTERNAL

DEGREES OF FREEDOM

We now consider the more realistic case of particles
which possess not only positions r~ ~ r, but also
internal degrees of freedom labeled by variables 0~ . . r„.
Although our notation is motivated by the case that
the 0; are spin variables, it is not necessary to make this
restriction; 0; may be any set of internal variables of
the jth identical particle. A wave function will then be
denoted by lt (r&ai . r„a„), and our starting point will

again be the assumed permutation invariance of proba-
bility densities, i.e.,

)PP(rtai .r„o„)('= (P(r. tai. . r„o.„))' (27)

in ana]ogy with (15); here P simultaneously permutes
the r; and 0,

An examination of the previous proof shows that the

'4 For hard spheres in one dimension, the configuration space is
disconnected even for arbitrarily low densities.

Fxo. 2. c~is+1on the
path segment P1 and —1
on P2, with a discontin-
uity at the point Qd in-
side one of the rods

~
r,. —ri~ &a which make

up the constraint nodal
region. Some other path
P' can be constructed
from Q1 to Q2 but avoid-
ing all constraint nodes.
cp is +1 on part P1' of
this path and —1 on
some other part P2', and
hence necessarily has a
discontinuity at some
point Qq' in the allowed
configuration space C.

p)(k)

c~(r,ai r„o„)=a1. (29)

But for Pxed o.i o„, the previous arguments based on
the connectedness of configuration space and nature of
the nodes still go through, with the conclusions that c~
is independent of r~ r„ for fixed o.

~ a„, i.e., c~ can
depend at most on the internal variables:

c~=cp(a, o„). (30)

However, for discrete internal variables the total con-
figuration space 8 Lspace of all points (rrat r„o„)j
is always disconnected (the parts with different a i o „
are disconnected from each other with any reasonable
definition of connectivity) so the proof must be com-
pleted by a method which does not assume connected-
ness of C.

The method we shall use is based on the fact that
any observable 0 of a system of identical particles must
be symmetric in single-particIe variables, so that"

LO,Pj=0 (31)

for every permutation I'. Consider, in particular, opera-
tors which affect only the internal variables, of the
form"

Of(ai a.)
=P„....,„.IC(ai. ~ ~ o.„~a]' ~ o„')f(ai' a„'). (32)

'~ In fact, (31) is best taken as the definition of precisely what
is meant by the statement that 0 is symmetric in single-particle
variables."E.g., if the a, are spin variables (+ or —) of a system of spin
--,' particles, then the x component S, of spin angular momentum
corresponds to
IC(ag a. Iai'. a ').

Ig ~&'" ~ ~o'1&1' ~&j-lrrj -1'~re, —&j '~rrj+1&j+1' ~&n&n'
j=l

if one chooses the usual representation for the Pauli spin matrices.

continuity and connectedness of the configuration space
were brought in only in the last few steps; the argument
from (15) through (25) goes through unchanged except
for notation. In particular, (18) and (24) are replaced by

Pf(r&ag' ' 'rsan) =cp(rtai .r„a„)P(ria& r a„) (28)
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where the ri . ~ r„dependence of f is not indicated
explicitly since it will not enter the argument. Then"
0 is symmetric if and only if the kernel E is invariant
under application of the same arbitrary permutation to
both o-g. .o.„and o.g' .o-„', i.e.,

S. DISCUSSION

It has been shown for identical particles without
internal degrees of freedom that the symmetrization
postulate can be proved starting with the following
assumed properties: (a) probability densities are per-
mutation-invaria, nt, (b) allowable wave functions are
continuous with continuous gradient, (c) the 3n
dimensional con6guration space is connected, (d) the
Hamiltonian is symmetric (commutes with all permu-
tations), and (e) the nodes of allowed wave functions
have certain properties described in detail in Sec. 3.
Requirement (c) played a crucial role in the proof; it
was shown by means of counterexamples that the sym-
metrization postulate is not true for hard spheres in
one dimension, for which (c) fails. A similar counter-
example in three dimensions is provided by hard spheres
of diameter a moving in a channel of diameter (2a.
Actually, however, such a system is basically one-
dimensional, the configuration space being disconnected
for the same reason as in the counterexamples of Sec. 2.
Similarly, a system confined in a region S consisting
of two or more disjoint subregions has a configuration
space 6 which is disconnected in an entirely trivial
fashion. It is well known that in such a case the wave
functions need not have any particular symmetry under
exchanges between disjoint pieces of R. For normal
three-dimensional systems with a connected I., the
space 6 is connected; this connectivity played a crucial
role in the proof. The proof was extended to particles
with internal degrees of freedom by using the additional
properties (f) tha. t any symmetric observable (operator)
commutes with every permutation and that the par-
ticular symmetric operator 0 defined by (34) is such
that OP is an allowable wave function if P is.

Our basic conclusion, then, is that for systems of
identical particles with a, connected spatial configuration

space, SP is a necessary property of a)lowable wave
functions; if the spatial configuration space is not
connected, then SP is rot necessary, although, as is well

known, it may, for purposes of convenience, be coe-
sistentlyimposed without contradicting observable prop-
erties of the system. It will be noted that the assump-
tions (a)—(f) on which the proof is based are all generally
accepted and physically understandable; extraneous
mathematical assumptions, e.g. , the existence of a
"complete" set of commuting observables, were not
employed. It has, however, been pointed out by
Messiah and Greenberg' that assumption (a) is not an
inescapable consequence of the indistinguishability of
identical particles. However, we have adopted the more
conservative viewpoint that probability densities should
be invariant under permutation of identical particles.

It is important to realize„however, that the decision
as to whether two particles are identical or not is partly
a matter of convention. The elaboration of this view-

point occupies the following section.
An entirely separate question, with which we have

E(P01 ~ Po „tPo, ' Po „')
=It(0, ~„~0,' "0„'). (33)

A rather trivial class of kernels sa, tisfying (33) is ob-
tained by choosing E to be independent of o~ o„,
then (33) is satisfied if and only if E is symmetric in
o-~'- o-„'. As a particular case of such a E, we choose

where I' permutes o-&'. . o ', whereas o-&' ~ ~ o-„' is any
axed set of values of the internal variables. The corre-
sponding operator 0 then has the following effect on
any f":

Of(oio~)=.(n!) 'Qp f(P01" Po.„'); (35)

note in particular that 0 changes f into a constant
(independent of o.i. .o„). Next we note from (31),
(28), and (30) that

0$&P(&1' ' 0 )4'(r101' ' r 0 )]
=cp(o, o-„)0&(r,0, r„0„) (36)

provided that 0 is symmetric and is such that 0$ is an
allowable wave function if lt is. These requirements are
satis6ed for the opera, tor 0 de6ned by (35); hence

Zq cp(Q~1' "Q0.')4 (rtQ~1' r-Q~-')
=cp(01 "0.) Zq 4 (riQ01' r-Q0-') (37)

But the left side of (37) is independent of o 1
.o.„,as is

the pq on the right side. Hence cp(oi o„) must in
fact be indePendent of oi . o.„provided that the Pq
on the right side does not vanish. Although this sum
vanishes for some p and some choices of o.i' 0.„', it
cannot vanish for all p and all choices of 01' 0„'."
Thus, c~ is indeed independent of o.

~
. -o.„.But then,

as in Sec. 3, the proof of the symmetrization postulate
is completed immediately by (3)—(6).

'& H. Weyl, The Theory of Groups oud Quouturu Mechouics'
(Dover Publications, inc. , New York, 1950), p. 282, Eq. (1.2)."It is readily veri6ed directly from (35) that (31) is satis6ed.

'9 If one were to try to apply a similar argument to the function
c~(rj .r ) of Sec. 3 in order to shorten the proof there, one would
encounter the diKculty that Zgltt (Qr& ~ Qr„) vanishes identi-
cally if P has any irreducible permutation symmetry other than
Bose (completely symmetric), Thus the proof would go through
only if one assumed Hose symmetry from the beginning, clearly
a circular argument. On the other hand, for any choice of irre-
ducible permutation symmetry (or any mixture of such sym-
metries) with respect to identical simultaneous permutations of
both the r~ and 0;, there are some p which possess a nonvanishing
completely symmetric part with respect to permutations of
0 g

~ a„alone.
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not concerned ourselves, is that of how one decides
whether a given species of identical particles should
have Bose or Fermi symmetry, having established the
fact that these two are the only possibilities. The well-

known answer, i.e., the spin-statistics theorem which

asserts that particles with integral spin are bosons
whereas those with half-odd-integral spin are fermions,
has been proved within the framework of relativistic
6eld theory; no proof that operates in the realm of
nonrelativistic wave mechanics is known at present.

6. SIMILARITY VERSUS IDENTITY

It is well known that similar" particles can be viewed

and treated in two distinct but equivalent ways, either
as separate species of particles or as different states of a
single species. Thus, although in the old viewpoint
neutrons and protons were regarded as distinct species,
it is now customary to regard them as merely diferent
states of a single species of particle, the nucleon; one

then differentiates between the neutron and the proton
by asserting that they have different values of an in-

ternal variable called the isotopic spin. In spite of the
fact that the neutron and proton differ not only in

charge but also (slightly) in mass and magnetic mo-

ment, there nevertheless exists a one-one correspond-
ence" between the two viewpoints, such that one ob-
tains the same answers in all calculations regardless of
whether one uses the old formalism in which wave
functions are antisymmetric under permutations of
neutrons among themselves and protons among them
selves but have no particular symmetry under exchange
of a neutron with a proton, or the isotopic-spin for-
malism in which the wave function is completely
antisymmetric under all permutations of nucleons pro-
vided that the isotopic spin variable, which distinguishes
between neutrons and protons, is exchanged along with

the position and ordinary spin. Although this corre-
spondence is well understood, it seems not out of place
to restate it here, in view of the close connection with
the symmetrization postulate.

Before stating the correspondence we shall define

precisely what is meant by the term "similar. "%e shall

say that two particles are similar if and only if they
both have integral or both half-odd-integral spin and
their internal variables can be enumerated in the same

way, i.e., put into one-one correspondence. "
As an example, protons and electrons are similar.

Consider a system of one proton and one electron (hy-
drogen atom) described by wave functions of the form

+(i@0'y leo'e),

where r and 0. denote position and spin s component,

' We shall presently give a precise definition of the term
"similar. "

"See, e.g. , A. Messiah, Ref. 1, pp. 619 K..
"Cf. Messiah and Greenberg, Ref. 2, Sec. 4 and Messiah,

Ref. 1, p. 626.

f (rlo 1$1)r20 2S2)
I

(40)

where r; and 0-; are the position and spin, "whereas s;
is the species label (a,nalogous to isotopic spin s-com-

ponent), which may take on the two values + (proton)
and —(electron). We can now set up a one-one corre-

spondence between the two descriptions by the
prescription

4 (r~a ~,r,o.,) =2'"P (r~o~+, r,o.,—),
P (ra~&+, rm~~ —) = 2

—'"+(r&~i, r2~2),

4'(rlo 1+ r202+) 4'(r101 r202 )

(41)

together with the requirement'4 that P be antisym-
metric under exchange of (r,aqsq) with (r202s~). The
factors 2+'~' are necessary because of the additional sum-

mation over s~ and s2 involved in computing the norm
of P; it is trivial to verify that with inclusion of these

factors, the correspondence (41) preserves all norms and
scalar products. Furthermore, if the Hamiltonian H
acting on P is related to tha. t X acting on 4' by

H =Hg+H2+El, 2,

H, =5„+[—(h'/2 m)V'P+ V„(r,~,)5

+5„[—(6'/2m, )V'P+ V.(rgo g)j,
Hg =5„+[—(6'/2m„) &2'+ V„(rpo.g)j

+5„[—(h'/2m, )7'2'+ V, (r202)],
H12=~ +~ —Vy (r101 r2+2)+~ —~ -bVy (r202 rial)

then it is readily verified that

for wave functions related by (41); furthermore, H is

symmetric under exchange of (r&ops&) with (r&o2s&), as

is required of any observable of a system of identical

particles. The same correspondence holds for matrix
elements of any observable provided that the corre-
spondence between operators is set up in the same way
as that between (39) and (42). Thus the results of all

calculations are the same regardless of whether one
takes the usual viewpoint tha, t p and e are distinct
species or instead (admittedly artificially) views them

3' At this point we make use of the fact that the proton and
electron spin may be enumerated in the same way.

"This requirement determines I,t (rIO.I—,r20-&+), given +.

whereas the subscripts p and e refer to the proton and

electron. These wave functions 0 have no symmetry
with respect to interchange of the proton and electron.
The Hamiltonian is of the structure

K= —(Ib'/2m )V '—(h'/2m. )V' '
+V„(r„a„)+V.(r.o..)+V„.(r~ou, r.a.) (39)

in the general case where effects of external fields and

spin-spin and spin-orbit interactions are included. If we

now identify the proton and electron, i.e., regard them
as different state. of the same particle, we may describe
the system by wave functions of the form
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as identical particles in different internal states (dif-
ferentiated by s;), provided that one calculates con-
sistently in both cases.

In the general case of v similar species of particles
with e; identical particles in the jth species, described
in the conventional formulation by wave functions of
the form

+(r &i&0 &i&. . . i &i&0 „&i&
~

r &&&0 &2&. . . r„&2&0 &2& ~. . .
)(~r & &0 & &. . .r & &0 & &) (44)

where the superscript enumerates species, one can

identify all species and hence describe the system by
wave functions of the form

lP(rio'isi' ' r 0' s )
where

(46)

and the species labels s, take on all values from 1 to v.
The one-one correspondence between wave functions is
given by the following generalization of (41):

4(ri&'&0, &'& . . r„„&"&0„„&"&)= (n!/ni! n„!)&&2$(r,&~'o, &'&1. . . .r &"0. &"1 . ri&"&0.&&"&». r„&"&o-„&"&&)

P(rio i1 ' ' ' rnio'ni1rni+i&reap&2 ' ' rnipnm&Tni+n22 ' rn&rn&)

P(rio is&. . re&&-ms~) =0 unless P t'&„&,=n&, . for 1~&k ~( p.

If one requires that configurational probabilities ~P'
be permutation-invariant (including species labels as
part of the specification of configuration), then the
truth of the symmetrization postulate for systems with
a connected spatial configuration space follows by the
proof of Sec. 4, the choice between Bose or Fermi being
determined by the spin-statistics theorem. Thus f is
determined for all orders of the species labels, in spite
of the fact that (47) only directly specifies it for the
special order 1. ~ 1 2 ~ .2 ~ v ~ v. Defining the opera-
tor correspondence by the obvious generalization of
(42), one finds that the two treatments are again
completely equivalent.

If one is willing to remove the restriction that each
species contains a fixed number of particles, then the
correspondence may be operated in the other direction:
Given a system of identical particles with internal de-
grees of freedom, one may choose to regard particles
differing in the value of some discrete internal variable
as distinct species. Since, however, there will in general
be dynamical processes which change the value of that
internal variable and hence, in the latter viewpoint,
change a particle of one species into that of another,
the wave function must then in general be represented
in Fock space. For example, a system of electrons can
consistently be regarded as a mixture of two distinct
species, a "spin-up particle" species and a "spin-down
particle" species. Then an external magnetic field or
spin-spin or spin-orbit interactions will lead to terms
in the new Hamiltonian which change spin-up particles
into spin-down ones and vice versa. The familiar pre-
scription, according to which spin-independent proper-
ties of a system of electrons in the absence of magnetic
fields, spin-spin, and spin-orbit interactions may be
calculated by ignoring the electron spin but doubling
the density of states in final expressions, is readily

interpretable in terms of the spin-up —spin-down formal-
ism, since for a spin-independent Hamiltonian H in
the usual formulation the spin-up —spin-down Hamil-
tonian 3C differs from H only in notation. Nevertheless,
in a second-quantized formalism annihilation and crea-
tion operators for electrons of opposite spin umti-

commute, whereas annihilation and creation operators
for spin-up particles commu/e with those for spin-
down ones.

This property of the annihilation and creation opera-
tors clearly extends to the case of a mixture of an
arbitrary number of similar species. If one has a system
of several similar species, then it is clear that if the
species are regarded as distinct, then field operators
referring to different species commute regardless of
whether the particles are bosons of fermions. On the
other hand, if different species are identified, then the
corresponding field operators satisfy commutation
(Bose) or anticommutation (Fermi) relations. Hence
the familiar fiat of relativistic field theory, "kinemati-
cally independent fermion fields anticommute"" would
seem to imply that all fermions are being viewed as
various states of a single universal fermion, although
this is contradicted by the terminology "kinematically
independent. " From our nonrelativistic point of view,
commutation relations between distinct fermion species
would seem much more natural.
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