
P H YS ICAL REVIEW VOLUME 139, NUMBER 2B 26 JULY i965

Error and Convergence Bounds for the Born Expansion
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For scattering in nonrelativistic quantum mechanics, the range of validity of the perturbation expansion
is studied by viewing the expansion as being generated by an iteration procedure, and applying to it a
fundamental theorem for iteration processes. The theorem provides a sufhcient condition for convergence
and, at the same time, gives upper bounds on the error generated in truncating the expansion at a given
number of terms. These error bounds for the wave function are in turn used to Gnd upper bounds on the
truncation error for the S-matrix expansion. Bounds for the exact S matrix are also given. These results
are illustrated by applying them to the simple case of one-particle potential scattering, for both the plane-
wave and partial-wave analyses.

I. INTRODUCTION

~DRIVEN a system with Hamiltonian H=Hp+) V,~ one of the most generally applied methods of
solving for its quantum scattering states is the Born
perturbation expansion, ' which expresses the wave
function as a power series in P . In examining the range
of validity of this method —that is, the radius of the
circle of convergence in the X plane —there have been
applied to date two major approaches:

(1) Bounds on the radius of convergence are obtained
by comparing, term for term, the Born expansion with
another power series known to converge, and

(2) One studies the determinantal solution

t=e+&(D@fd), (1.1)

where f and P are the scattering and free wave func-
tions, and the operator D and number d are expressed
as power series in X. These power series always con-
verge for non-pathological cases; hence the radius of
convergence of the Born series is ~)t, ~, where )t, is the
smallest zero' of d P,).

In this paper another major approach is developed,
which will turn out to be a variant of (1) above. The
Born expansion is viewed as being generated by an
iterative process, and we make a simple, straightforward
application of a fundamental theorem for iteration
procedures. This theorem (for our purposes we shall
call it the Banach-Weissinger theorem') has been
curiously ignored by physicists; for convenience it is
presented in Appendix 1. The theorem immediately
provides a sufFicient condition for convergence equiva-
lent to a lower bound on the radius of convergence of
the Born series.

In addition to the question of its domain of validity,
a subject of considerable interest is the error involved in
truncating the Born series after a given number of
terms. Despite its importance for numerical calcula-
tions, studies in this area have been sparse. 4 In addition
to providing a simple, trarisparent starting point for
investigating the convergence of the Born expansion,
the Banach-Keissinger theorem automatically yields
upper bounds for the truncation error.

The core of this paper is the next section where the
above program is effected for the general case of E-
particle, nonrelativistic quantum scattering. The re-
sults are also used to obtain bounds for the T matrix.
We then go on to illustrate these results by applying
them to the simple case of one-particle potential
scattering. Section III deals with plane-wave scattering;
partial-wave scattering is treated in Sec. IV.

II. THE BORN EXPANSION AS AN
ITERATION PROCEDURE

Henceforth, we shall consider the coupling constant X

of the previous section to be incorporated into V and not
explicitly displayed. P(x) shall represent a continuous
but otherwise arbitrary function of x= (xr,xs, . ~ .,xtv);
we shall reserve the symbols fp and f„for eigenfunctions
of the unperturbed and full Hamiltonians:

Hpfp ——Elt p,
and

De6ne the functional F as

F(~)=~.+«~

' See for example M. L. Goldberger and K. M. Watson, Collision
Theory Uohn Wiley tk Sons, Inc. , New York, 1964); or T. Y. Wu
and T. Ohmura, Quantum Theory of Seattert'ng (Prentice-Hall,
Inc., Englewood CliRs, ¹wJersey, 1962).

~ In this connection see I. Manning, J. Math. Phys. 5, 1223
(1964), which relates d(X) to the behavior of p at the origin.' The theorem was apparently discovered by S. Banach,
Fundamental Math. (Warsaw) 3, 160 (1922), and independently
rediscovered by J. Weissinger, Z. Angew. Math. Mech. 31, 245
(1951) and Math. Nachr. 8, 193 (1952). In the Russian literature
one frequently 6nds it referred to as the contraction mapping
principle. See for example V. V. Nemitsky, Uspekhi Mat. Nauk. 1,
141 (1936) LAmer. Math. Soc. Translations, Ser. 2, 34, 1 (1963)).

8

where

=—4p+ G(x,x') V(x')P(x')dx',

G= (E—He+pe) '.

(2 1)

Then the Born expansion' ' is generated by the sequence
$0 $1 $2 ' ' ' where

~., =~(~.) (2.2)

4 T. Y. Wu and T. Ohrnura (Ref. 1), Sec. C.4.
~ M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398

(1953).

495



B 496 I RW I N MA N N I N 6

Let W(x) be a, fixed, continuous, positive, finite, but Using sr=0 as a simple example, we have
otherwise arbitrary function. We shall use the norm

II+II ™»(I+(x) I/W(*)). (2 3) Tr —— it p(x) V(x)gp(x)dx,

Note that
(2 4)

so
(2.16)

with

Q=lllax IG(x,x ) V(x')
I
W(x')dx', (2.5)

W(x)

which implies that Eq. (A1.5) of Appendix 1 is satisfied.
The Banach-Keissinger theorem now tells us that a

sufhcient condition for the convergence of the Born
expansion is

(2.6)

Substituting this bound and Eq. (2.15) into the
inequality

we get
I T-I&

I
2'1l+

I
T-—Tif,

I2'-I &P(1—~) 'II@II' (217)

The 2'-matrix bounds require that P exist; with this
understanding, all of the above bounds are valid
whenever o.& 1.

III. PLANE-WAVE POTENTIAL SCATTERING

For one-particle plane-wave potential scattering the
Green's function is' (we use units such that h= nr = 1;
E= sk')

4 =~(it.).
exp(ill r—r'I)

) (3.1)G (r,r') =—We also have the truncation-error bounds

IV
—lt ll&~(1—~) 'lilt —0--ill

&~"(1—~) 'Ill —
~t II

(2 8)
and Eq. (2.5) becomes

(2.9)
I
V(r')

I

n =1Tlax W(r') d'r'.
2s W(r) I

r—r'I
(3 2)&--"(1--)-'ll~.

ll (2.10)

in which case the sequence (lt „) converges to the wave
function f„s atisf ying the Lippman-Schwinger equa-
tion' '

T„+1=Pp(x) V(x)—it (x)dx, (2.11)

so that the T matrix for the scattering problem is T„.
Also put

P=— W'(x)
I V(x)

I
dx. (2.12)

These bounds can be used to obtain bounds on the
truncation error for the S matrix: Write

For 8'= 1, the convergence condition n&-,' has been
found by Zemach and Klein. ' In addition to a simpli6ed
derivation, we have the improvement of Eq. (2.6). For
the remainder of this paper we shall be most often con-
cerned with bounding the quantity cr of Eq. (2.5). It
should be kept in mind tha, t once W(x) has been fixed
and the corresponding n determined, we automatically
have all the bounds of Eqs. (2.8) to (2.10), (2.13) to
(2.15), and (2.17).

Let

The above bounds then yield

I2' —2'~rl &PIIAII'lilt' —4' ll

&~-(1—-)-'ll~.-~.—II Il~. ll (2 13)

&P~"(1—~) 'Ilitr —
~tpll II&II (2 14)

n(') =2 U(r)rdr.

U(r)—=maxi V(rp, (p) I
.

8,y

Then for 5'= 1 we have o«n(", with

(3.3)

(3.4)

&~--+ (1--)-'ll~.ll (2 15) IV. PARTIAL-WAVE POTENTIAL SCATTERING

The above takes the approach of aiming at bounding
the error in an approximate calculation. One can also
aim at 6nding bounds for T„itself. In fact, by calculat-
ing or otherwise bounding T„+~, one can use the above
expressions to bracket T„with arbitrary precision.

L. Collatz, Z. Angew. Math. Phys. 4, 327 (1953).
7 B.A. Lippmann and J. Schvringer, Phys. Rev. 79, 469 (1950).

In this connection see L. Spruch, Lectures in Theoretical
Physr'cs (Interscience Publishers, Inc., New York, 1962), Vol. IV,
p. 161.

f„(r)= (sc„(r)/r) V1„(r), (4.1)

9 Ch. Zemach and A. Klein, Nuovo Cimento 10, 1078 (1958).

1. General Formulation

For simplicity, consider the potential to be spherically
symmetric. )The extension to the more general case is
straightforward or, at the expense of obtaining cruder
bounds, one may use the U(r) of the previous section. $
For a given partial wave, the wave function may be
written



ERROR AND CONVERGENCE BOUNDS FOR BORN EXPANSION 8497

and the Born expansion in this case can be represented'
by a sequence of functions No, uj, N2, ~ ~ converging
to I„:

I
T„l &2&r 'bP(v)P (1—&r) 'k'" ' (4.17)

bounds of Sec. II have an obvious transliteration to the
present case; for example Eq. (2.17) becomes

with
u.+i=F(u.), (4 2) where

F(u) =f(r)+ G(r,r') V(r')u(r')dr', (4.3)
p„= r'"I V(r) I

dr. (4.18)

where
G(rr') = i&r—f(r()g(r&),

f(r) = (2k/&r)'"r jt(kr),

g(r) = (2k/rr)'"rht "&(kr),

Examining the above expression for n, one obtains a
(4 4) useful bound by noting that cr&u&'& with

(4 5)
&r&'& = max 2k r "+'

I

ht&'& (kr)
I

r' "+'
I y &

(kr') V(r')
I

dr'
J

us= f(r). (4.7)

f(r) V(r)u. ,(r)dr, (4 g)

In the above r& and r& are, respectively, the lesser and
greater of r and r', j~ is the spherical Bessel function, '
and h~o& is the spherical Hankel function of the first
kind. Ke also have

+k" 'bt(v) r "+'lht ' (kr') V(r')
I
dr

n&'& = 2k "bt(v) r'"+'
I
h &'& (kr') V(r')

I
dr', (4.19)

If the requirements listed below are met, the derivative
with respect to r of the above bracket is always nega-
tive"; this function therefore achieves its maximum
at r=o, yielding

With the norm

one finds

with

T~= —x' slI18 .

llull =max(l u(r)
I /IV(r))

(4.9)

(4.10)

(4.11)

providing that

0& v& [+1 and lirn r'V(r) =0.

2. Bounds Useful at A11 Energies

a= max
2kr

IV(r)

Using the formulas of the previous paragraph for
cr, p, and II fll, set v= rs; the bounds thus generated by
the expressions of Sec. II are ones useful at all energies.

In addition to o.&') of the previous paragraph, we
obtain another bound on n by defining the quantity

X «'I jt(kr&)ht"'(kr&) V(r')
I

IV(r')«', (4.12)
at=—max (xx')&to

l
jt(x&)ht&'&(x&) I, (4.20)

and all of the corresponding results of Sec. II apply here
as well.

We will find it of interest to explore the particular case

(4.13)

Introducing the quantity (further discussed in
Appendix 2)

bt(v) =max(l jt(x) I/x"-'),

n "&= 2atP&ts. (4.21)

The fact that a~3) &1 implies convergence of the Born
series was found by Kohn, Eq. (11.14) of his work. "
The truncation-error bound given by our Eq. (2.15)

which is further discussed in Appendix 2. Equation
(4.12) yields

a&a~3&,

where v=-,'and

one finds Lwith the W(r) above)

II fll = (2/ r)'t'bs( )ktv (4 13)

The quantity bt (v) will exist as a finite number only if

0& v&i+1, (4.16)

and we therefore shall restrict ourselves to this range
for v. With the substitution of u„ for f, the various

&o x
~

hto& (x) ~
is a monotonically decreasing function of x, as can

be seen from the representation

t (2l—k}!(2l—2k)!
x~(ht&&&(x) )s= Z (2x)&s st.

k!$(l k) !/'—
/Handbook of 3IIathentatical Functions, edited by M. Abramowitz
and I. A. Stegun (National Bureau of Standards Applied Math.
Series No. 55, U. S. Government Printing OAice, Washington,
D. C., 1964}g.

u W. Kohn, Rev. Mod. Phys. 26, 292 (1954).
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with n=n"& was found by Kohn (Ref. 11), in his
Eq. (12.2).

We note from Appendix 2 that a~ —& 0 as l —+ ~;
hence, for P»s finite, u ~ 0 and not only does the Born
expansion always converge for l sufficiently large, but
u„~ u, (and Ni ~ f) according to the bounds of Sec. II.

3. Bounds for Zero Energy

In the limit k —+ 0 one has
~ ji (x)

~

—& x'/(21+ 1) !!and

~k&(x)
~

~ (2/ —1)!!/x'+'. Using these expressions, we

And

where

n"'= (l+-')—
'Pigs, k=0, and 0& & &3+1. (4.22)

For s &l this result was obtained by taking the zero-
energy limit of Eq. (4.12); for & =3+1 one takes the
limit of n&'&, Eq. (4.18).

The fact that o, '4'&1 implies convergence is Kohn's
result, (Ref. 11), his Eq. (11.2). For»=l+1, the zero-

energy limit of our bound (2.15) is Kohn's Eq. (12.3).

4. Bounds Useful at Low Energies

In this case it is advantageous to put p equal to (+1
or, if Pi+i does not exist, the highest value for which P„
does exist. Again, all of the bounds of Sec. II are of
interest. In particular, Eq. (2.17) becomes

) T„[(2Pz-(2E+1)!!(1—n)7 'Pi~ik"+'. (4.23)

(If p&+i does not exist, we get a corresponding result
involving the factor P,lP" '.)

This result should be compared with the familiar
theorem" that, as k ~0,

~

T„! ck2&+' (4.24)

where c is some constant. In making a comparison we

note that this theorem is valid whenever p$+$ exists,
whereas Eq. (4.23) has the shortcomings that it furt:her

requires o.& 1 and does not rule out the possibility that

~

T„'! will approach zero as k to some power higher than
(21+1). On the other hand, our bound (4.23) is valid
at all energies, while Eq. (4.24) is a statement only
about the limit as k —+ 0 (with the constant c undeter-

mined); when one wants to apply this theorem for k

small but nonzero, he has to somehow decide what
constitutes being "close enough" to k =0.

S. Bounds Useful at High Energy

The appropriate choice in this case is p=0. Define
the quantity, further discussed in Appendix 2,

A i—=max xx'
~
j&(x()k&&'& (x))

~

. (4.25)

"See, for example, L. D. Landau and E. M. Lifshitz, Quantum
Mechanics (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1958).The most general statement of this theorem
seems to be by D. S. Carter, as quoted by R. G. Newton, J. Math.
Phys. 1, 319 i1960l.

Equation (4.12) yields

with
o, &o.('&,

ni'&=2A, P k- (4.26)
(an.d & =0).

Note that ni'& —+ 0 as k —+ ~ gas does ~~us~~ of Fq.
(4.15)7; we thus have the result that if ps exists, the
Born expansion always converges for k sufficiently
large"; in the limit k~ ~ we further have u„—+N~

(and ui —+ 0) according to the bounds of Sec. II. This
statement is the analog of the result found for plane-
wave scattering by Zemach and Klein. '

The above bound o«e") is valid for all energies. For
the limit k ~ ~ one gets a somewhat sharper bound
by using Eq. (4.18):

i&. "& ~ 2b&(0)Psk '

V. CONCLUDING REMARKS

(4.27)

In this paper we have restricted ourselves to the
perturbation expansion for the scattering wave obeying
boundary conditions stipulating an outgoing spherical
wave, the asymptotic behavior of the wave function
being given by the T matrix. Another perturbation
expansion frequently encountered is that for a standing
spherical wave" whose asymptotic behavior is given by
the E matrix which, for partial waves, is the quantity

EI,= —m=' tan5. (5 1)

We could equally well have applied the Banach-
Weissinger theorem to obtain bounds for this case.

Instea, d of the iteration procedure (2.1),

one can consider
(5 2)

The sequence generated. by f„+&=GQ ) is a sub-
sequence of that generated by F(f); the Banach-
Weissinger theorem applied to G(f) yields bounds of
higher precision than those obtained from F(f). For
plane-wave scattering this approach leads to a sim-
plified derivation of the results of Zemach and Klein. '

A subject which should be investigated is the applica-
tion of the Banach-Weissinger theorem to perturbation
theory for bound states in quantum mechanics. In this
case, one might take as a starting point the iteration
procedure generating the perturbation expansion of
Brillouin and Wigner"

FQ) =Pp+(1/E —Hs) PVP, (5.4)

' The fact that p0 finite implies that the Born expansion con-
verges in the limit k —+ ~ is Kohn's result (Ref. 11), in his
Eq. (11.8).

14 Wu and Ohmura (Ref. 1), pp. 45 8. ; W. Kohn (Ref.. 11),
part I; L. Spruch (Ref. 8).

'5 P. M. Morse and H. Feshbach, Methods of Theo~etica/ Physics,
(McGraw-Hill Book Company, Inc. , New York, 1953), Sec. 9.1
and the references cited there. Also see G. C. Wick, Rev. Mod.
Phys. 27, 339 (1955).
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where P is the projection operator

(5.5)

Then the sequertce fo, fi, fs, ~ ~ defiried by

f-+i= ~(f-) (A1.8)

APPENDIX I: THE BANACH-WEISSINGER
THEOREM FOR ITERATIVE PROCESSES

The presentation here closely follows that of Collatz.
We recall the definition of a Banach space" S as being
a normed linear space which is complete; tha, t is, for
every sequence {f } in g with the property

lim llf —f„Ii=0, (A1.1)

there exists an element f, also in g, with the property

»mllf —f-II=o (A1.2)

Hilbert space is a particular case of a Banach space.
The Banach space of most interest to us here is the set

of all functions &P(x) which are continuous over an arbi-
trary but fixed domain ot the variable x—= (xi,xs, ,xtv);
our norm will be

il~bll
=max(I ~b(x) I/li'(x)) (A1.3)

where W(g) is a fixed, positive, bounded, continuous,
but otherwise arbitrary function. The following sub-
space is also a Banach space: the set of all continuous
functions &P (x) lying within a sphere of radius j&.

' centered
on some fixed element &o(x):

(A1.4)

The demonstration that these are Banach spaces is
elementary. "We also easily see that the wave functions
ot quantum mechanics constitute (or are embedded in)
a Banach space."

The Banach-Weissinger theorem can be stated as
follows": Let Ii be a sirtgle i&alued mappin-g of a Bart&ich

space g irito itself which satisfies, for et&ery f and g in 8,
the Lipschits coriditi ori

zozth
ll~(f) —F (g) II &~llf—gll

n(1.

(A1.5)

(A1.6)

"See, for example, I. N. Sneddon, IIundbgch der I'hysik, edited
by S. Flugge (Springer-Verlag, Berlin, 1955), Vol. II, p. 198.

'7 The key steps of this demonstration would involve using
theorem (3.11) of W. Rudin, Principles of Mather&tatscal Analysis
(McGraw-Hill Book Company, Inc. , New York, 1953), and
constructing a proof similar to that of his theorem (7.12).

I Banach-space approaches to quantum mechanics have been
used by W. Hunziker, Helv. Phys. Acta 34, 593 (1961);J. G.
Belinfante, J. Math. Phys. 5, 1070 (1964); and C. I.ovelace,
Phys. Rev. 135, B1225 (1964).

Let fo be some elemerst of 8, let fi be defiried by fi=F(fo),
assd suppose that llfi —foll is finite arid that g corttairts all
elemerits h irt the sphere

Ilh —fill &~(1—~)-'llfi —fo ll (A1 7)

is coritairied iri the sphere (A1.7) arid cori&&erges Liri the
sense of (A1.2)j to &i unique elemerit f„which lies in this
sphere arid has the property

Furthermore,
f-= I"(f-) (A1.9)

APPENDIX 2: THE QUANTITIES bt(v), at,
AND A)

These quantities are defined by Eqs. (4.14), (4.20),
and (4.25). bi(—', ) is Kohn's mt, while ai ' is his si."
Tables of these quantities can be constructed from
tables of spherical Bessel functions; we give the results
for the erst few values of l in Tables I and II. In this

TABLE I. The quantity bi(v) =max( jt(x)/x~').

1.00000
0.851241
1.00000

1.06310
0.658413
0.436182
0.333333

1.11082
0.573257
0.306792
0.104025
0.0666667

1.14931
0.520794
0.241746
0.0574848
0.169359
0.00952381

TAI3LE II. The quantities at=max x
~
ji(x)hi&'&(x)

~

and A&=max x'~ ji(x)hi&'&(x) (.

1.00000
1.00000

0.488633
1.13302

0.359375
1.24105

0.292746
1.33218

' W. Kohn (Ref. 11), Table V., Eq. (11.15), and Table VII.

llf.—f-II «(1—~) 'llf= f--ill
&~"(1—&)-'Ilf,—f,ll. (A1.10)

Once the theorem is stated its proof is so simple we
sketch it here: For m&e,

llf= f-II & llf- —f-ill+ llf-i —f- II+."
+ llf-+i —f-II

&( '+ " '+ . +ot")I f f II—
&~"(1—~) 'llfi —fo ll,

so the sequence {f„}satisfies (A1.1), thus implying the
existence of a limit element f„ in S. The above also
shows that the entire sequence lies in the sphere (A1.7).
It is then a simple exercise in epsilonics to show that the
sphere also includes f„, that f„sati sfies (A1.9), and
that f„ is unique. For ri=1, Eq. (A1.10) then follows
from Eq. (A1.7); this in turn implies Eq. (A1.10) for
arbitrary e, as can be seen by thinking of starting the
original iteration sequence with f„ i instead of fo.
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connection, note that'

at ——max@I Jt(s')ttt"'(~)
I

(A2. 1)

as l~ ~, where
X=—l+-,',
y--Xz'

and and
(A2.2) ro'= (x/X)' —1.

We also have
bt(l+1) =1/(2l+1)!!. (A2.3)

For large I, one can use the asymptotic formula of
Watson and Nicholson, "according to which

II),&'& (x) (3)
—'t'toII&ts '

(y) exp(i srr) (A2.4)

'0 W. Magnus and F. Oberhettinger, Formulas and Theorems
for the Functions of Matitematicat Physics (Chelsea Publishing
Company, New York, 1954), Chap. 3, Sec. 3. 2 t-0.741397(l+-', )'t'. (A2.7)

In writing this expression we used the fact that, for b~,

a&, and A&, the maximum is achieved for a value of y
which tends to a constant as l tends to infinity; corre-
spondingly, m tends to zero. Ke find that as l —+ ~

bt(v) 0.845843 (l+ s)'t' "(v(i+1), (A2.5)

at 0.741397(l+-', ) '" (A2.6)
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Perinutation Symmetry of Many-Particle Wave Functions*

M. D. GIRARDEAU

Irtstitttte of Theoretkat Science aid Departmertt of Physics, Uaioersity of Oregon, Z~rcgene, Oregon
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The symmetrization postulate (SP) states that wave functions are either completely symmetric or com-
pletely antisymmetric under permutations of identical particles. It is shown by one-dimensional counter-
examples that SP is not demanded by the usual physical interpretation of the mathematical formalism of
wave mechanics unless one makes use of further physical properties of real systems; the error in a standard
proof of SP which ignores these properties is pointed out. It is then proved that SP is true for those systems
of spinless particles which have the following properties: (a) probability densities are permutation-invariant,
(b) allowable wave functions are continuous with continuous gradient, (c) the 3rr-dimensional con6guration
space is connected, (d) the Hamiltonian is symmetric, and (e) the nodes of allowed wave functions have
certain properties. The counterexamples show that SP is not a necessary property of those systems which
do not have property (c). The proof is extended to particles with internal degrees of freedom (including
spin) by noting that any observable commutes with every permutation and making use of a particular
observable acting only on internal variables. Extraneous mathematical assumptions, such as that of the
existence of a "complete" set of commuting observables, criticized by Messiah and Greenberg, are not
employed. Some comments are made on the conventional nature of the concept of identity for similar
pal'ticles; the equivalence between the usual formulation in which different species of similar particles are
treated as distinct, and that in which they are regarded as identical particles in different internal states, is
emphasized.

1. INTRODUCTION

' 'I is a well-known experimental fact that quantum-
- ' mechanical states of a system of identical elemen-

tary particles are either symmetrical (Bose-Einstein) or
antisymmetrical (Fermi-Dirac) under permutations of
the single-particle dynamical variables; more cornpli-
cated permutation symmetries seem not to be realized
in the real world. Messiah'' calls this fact the sym-
metrisatiort Postulate The pioneers .in the development

of quantum mechanics took this simply as an experi-
mentally based fact. Thus, e.g. , Dirac' states that:
"Other more complicated kinds of symmetry are
possible mathematically, but do not apply to any known
particles. "There were subsequent attempts, continuing
up to the present time, to deduce the symmetrization
postulate from other physical principles. One simple
argument, found in many textbooks, runs as follows'.
Let P be the Schrodinger wave function of a system of
identical particles, let I'P be the wave function diiiering

* Supported in part by the Public Health Service (GM
09153—04).

'A. Messiah, Quantum Mechanics (North-Holland Publishing
Company, Amsterdam, 1962), Vol. II, p. 595.

2A. M. I. Messiah and O. Greenberg, Phys. Rev. 136, 8248
(1964).

3 P. A. M. Dirac, The Principles of Quantum kIechanics (Claren-
don Press, Oxford, 1947), 3rd ed. , p. 211.

4 See, e.g. , E. M. Corson, Perturbation 3fethods in the Quantum
Mechanics of n-Itlectron Systems (Blackie and Son, I,td. , Glasgow,
1951),p. 113.


