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Quantum electrodynamics is formulated in a gauge-independent as well as path-independent way. The
theory is manifestly Lorentz covariant. It can be obtained from the path-dependent electrodynamics of
Mandelstam by an averaging process. The commutation relations and propagators in this gauge-independent
formulation correspond to those of the Landau gauge in the conventional theory, giving this gauge a funda-
mental significance. The method is also applied to the gauge-invariant theory of neutral vector mesons with
nonvanishing mass interacting with a conserved current. The resulting theory is gauge-independent and
describes a pure spin-1 particle, the spin-0 contributions being identically zero.

I. INTRODUCTION

ECENTLY, considerable attention has been paid
to a formulation of quantum electrodynamics in
terms of fields rather than potentials.'~* That makes it
possible to work without any reference to particular
gauges and thus avoids all the complications and un-
physical features associated with any of them. According
to this philosophy the fundamental quantities are the
fields and the quantization is carried out directly on
them by specifying their commutation relations. The
potentials appear as derived, strictly auxiliary quanti-
ties and their introduction into the theory is merely a
mathematical device for simplifying the field equations,
just as in the classical theory.

However, the formulation by Rohrlich? is not mani-
festly covariant. It corresponds to the Coulomb gauge,
in which surface-dependent terms occur and only the
scattering matrix is invariant. The intermediate equa-
tions involve the normal vector to a space-like plane.
On the other hand, the DeWitt-Mandelstam formula-
tion is completely covariant, but involves a “path de-
pendence” of certain quantities.

In the present paper we propose a formulation of
electrodynamics in terms of field strengths which is
both manifestly covariant end path-independent. It
thus combines the advantageous features of both pre-
vious gauge-independent formulations. The basic quan-
tity is the gauge- and path-independent operator @,
which is defined in terms of the field strengths F,,
in Eq. (9) below.
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The arbitrariness in the choice of the “gauge,” which
deprives the conventional potential of a direct physical
meaning, no longer affects the theory. Thus, the gauge-
independent operator &, may have a direct physical
interpretation as photon-field operator. The Lorentz
condition is automatically satisfied by @, as a conse-
quence of the antisymmetry of F,,. No spin-zero field
is therefore involved in the theory, as is the case, e.g.
in Stueckelberg’s formulation.® The commutation rela-
tions for @, are derived by assigning those for the fields
F,,; they will be proven to be the same as in the Landau
gauge. The Lorentz condition is therefore consistent with
them as an operator equation, and no problem arises
requiring ad hoc measures such as the use of an in-
definite metric with the consequent appearance of un-
physical states. The success of the Landau propagator
(Z1=Z,, finite) may thus be justified by its connection
with a gauge-independent formulation of quantum
electrodynamics. It may be interesting to note that the
recent attempts at a finite electrodynamics by Johnson
et al.® make use of the Landau gauge for the photon
propagator in first approximation.

These results may be extended to the theory of mas-
sive vector bosons interacting with a conserved current,
where analogous problems of gauge invariance arise.”8
Here too, a gauge-independent field operator &, may
be introduced. The physical meaning of gauge inde-
pendence in this theory is that @, described a pure spin-1
field. The commutation relations for @, derived from
those for F,,, are

L@u(x),q(x")]=—i(guw— 9,0,/ ) D(x—x") .

In this formulation, the renormalizability of the theory
is therefore explicit.®
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GAUGE INDEPENDENCE AND PATH INDEPENDENCE

II. DEWITT-MANDELSTAM FORMULATION

Maxwell’s equations may be simplified by introducing
the potential 4,, (u=0,- - -, 3), through the equation

Fou=0,4,—9,4,. (1)

Actually, Eq. (1) does not determine the potential 4,
uniquely. The field tensor F,, does not change if 4,
undergoes a gauge transformation (of the second kind),

AM_)AM,=A#+8#A)

where A=A(x) is a scalar function which vanishes at
infinity
Alx) >0 as a*— o (u=0,---,3).

If the electromagnetic (e.m.) field is coupled to a matter
field the gauge transformation on A4, must be accom-
panied by a gauge transformation (of the first kind) of
the matter field, in order that the field equations remain
unchanged,

¥ — ¢/ =explieA Y.

The arbitrariness in the choice of 4, may be regarded
as the origin of difficulties which arise in connection with
the quantization of the e.m. field.

The DeWitt-Mandelstam!? formulation of electro-

Ap—a,=—=
B g ., 83 dx* OE

JA /‘0 das 0z° 02°

dx+

ie.,
A,(x)= / ,a@* —-ds 5)

Then, if a, and a,’ describe the same field, but in two
different gauges, the operators 4, and 4,/,

9z

0
Ay=a,+9,A, AE—/ a.(z)—dE
—o a¢

and
0z°

0
Al=a,/+3., A’E——/ a, (z)—d¢,
o a¢

coincide (gauge independence of A4,). Thus Egs. (2)
and (2) enable us to pass from a class of gauge-dependent
potentials to a field variable which is gauge-independent.

The gauge-independent matter-field operator is de-
fined by

T=exp[ieA ]y,
where A is given by Eq. (2"). The gauge independence of
¥ is easily shown:
W =exp[ieA Ty =exp[ieA”]
Xexp[ie(A—A") J=exp[ieA ' .

0 da, 02° 0z
+ / — i)
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dynamics tries to overcome these difficulties by intro-
ducing gauge-independent field operators. The tensor
F,, and a suitably defined gauge-independent operator
W are chosen as the basic fields.

We start by defining a gauge-independent potential.
Let a, and ¢ be the potential and the matter field opera-
tor in some arbilrary gauge. A gauge-independent po-
tential A4, may be defined by the following gauge
transformation:

Ay=ay+0,A, (2)
where

0 aza
A= ——/ a.(z)—dE. 2"
e dg

Here z¢(x,£) are four arbitrary single-valued differential
functions of the space variables x, and a parameter £,
which transform like a four-vector and satisfy the
boundary conditions

2#(x,0)=a*, @)
Elim z#(x,£) = spatial infinity.° 4)
The path integral in (2 ) is to follow a space-like path.

It is easy to show that A, is gauge-independent. One
has in fact

0 d 9z° 0 da, dzP 3z°
ds—/ aq.(z)— d£=—/ dé
o I3

— Oz° Ox* 3§

0 0 9z° 9z’
= / F,o(z) —d{—a,,
o J dx+ OE

— Of Ox* Ox*

These operations are possible also in the quantized
theory as long as the paths for A and A’ are the same.
It is not difficult to verify that ¥ coincides with the field
operator introduced by Mandelstam.

As the Eq. (5) uniquely determines the gauge-
independent potential once the field tensor F,, is given,
electrodynamics may be formulated either in terms of
A, or in terms of F,,. The latter alternative has been
followed by Mandelstam.

The above definition of 4, needs two remarks. First,
on starting from Eq. (5) and using 9zF 3.
+8,F,=0, the relation (1) may be obtained only if
explicit use is made of condition (4). Secondly, according
to the definition (5), 4, depends not only on F,, but
also on the chosen path z,(x,#) along which the integra-
tion is performed. Thus the theory, while no longer
gauge-dependent, now becomes path-dependent, and
this may be regarded as just another kind of “gauge.”

The above-mentioned path dependence may be re-

9 Spatial infinity here means any limit which is sufficiently re-
mote in a space-like direction from x,, so that the field vanishes
there; at this limit 4, may without loss of generality be set equal
to zero. We shall return to this assumption later.
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moved by performing a sort of average over all possible
paths. We shall see that such a procedure leads to re-
sults related to the usual gauges.

III. NONCOVARIANT PATH AVERAGE

Following Belinfante,* we put

gh= xu_|.. e“E
and choose the Lorentz frame in which
=0, =1, t=—r=—|z2—x]|.

The lines z“(x,%) are then confined to straight lines at
{=const, converging to the field points x in arbitrary
directions given by unit vectors e. Equation (5) re-
duces to

Ay(x)= / Pou(e)eid 6)

(sum over dummy indices). The potential 4, now de-
pends on the direction of e. This dependence is removed
by averaging Eq. (6) over all possible directions e. By
straightforward manipulation one obtains

_ aQ d/ 1
A,.(x)=/AM~—=/d3z Fw(z)—(—-—)
4 0z;: \4mr

- / d3[ViF,(2)]/ (4nr). (7)

Here dQ is the infinitesimal solid angle in the direction
e. Equation (7) gives explicitly

_ divE(z,t) _ curlE(z,?)
A“(x)=/d35——~—, A=/d3z—-——. 7
4rr

4rr

Thus the potential A, coincides with the potential in
the Coulomb gauge.

Asit should be expected, the average performed above
has led to noncovariant results due to the choice of the
plane /= const as a privileged plane in a given Lorentz
frame. This breaks the manifest covariance just like
the definition of the Coulomb gauge, divA=0.

IV. COVARIANT PATH AVERAGE

In order to obtain a Lorentz-invariant result we must
perform a covariant average, i.e., an average over
paths covering a Lorentz-invariant region. Now, the
Lorentz-invariant subregions of Minkowski space are
the space-like region outside the light cone, the time-
like regions inside it, the light cone itself, and the whole
space. Averaging over straight lines covering any of the
first two regions leads to divergent integrals unless
special prescriptions are given.! Therefore, we shall
average over all straight lines converging to the point
where the potential has to be calculated.
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Putting
Z=%t+e6f, ee==+1 (8)

(with the plus sign if the line is space-like and the minus
if it is time-like), and using Eq. (5), we have:

V—

Ay(x)= / Fo(e)

0 '
= f Fu(x+y)—df,
0 4¢

where the new variables y’=2"—2” and {=(y"y,)?, have
been introduced.

We now wish to average over all directions of the unit
vector ¢. To this end we note first that in 4-dimensional
Euclidean space

dYy=d*ydys=}d;d*Udus/(1+pe?)? ,
c=0uwm?, we=yd/|y|,

where 0<¢{ < and — o <u<-+ . The transition to
Minkowski space is governed by the relation y;=1y°
but permits two alternative distortions of the path
along the real y4 axis to one along the imaginary v
axis, viz., by a rotation by iw—e or — (37 —¢). Those
alternatives give contours in the complex y° plane which
avoid the poles according to y°=z=(|y|+ie) or
y°=+(|y| —ie). They correspond to the Digz and Diy
functions, respectively. Time symmetry is preserved if
we take the contour for 2(D1g—D14)=%(Dr—D4)=Dp
as indicated in the Appendix. The choice of any of these
contours is completely determined by the asymptotic
conditions.

The integrals in Minkowski space are thus evaluated
over p=9°/|y| = —iug with the above contour choices
in the p plane,

diy=diydy"= 10500 (du/ (1—12)%).

The surface of the pseudosphere in M is

©  du
[
—o (1 —”2) 2

The direction average of 4 ,(x) now becomes, choosing
one of the above contours, Cg, C4, Cig, or Ci4,

1
Q#(x)—:———/A”(x,e)dKQ
2w

Fu(x+ Y seare
ort . y) 4 ¢ (1—u2?

v

2r%

Fu(xty)
* y(yy)“‘

_ L / w(x+y>——(y12)d4y. ©
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Here y>=1y,y~ and the integral extends over all Minkow-
ski space, restricted only by the path C,. The resultant
@, are obviously Lorentz-covariant.

The result (9) could also have been obtained as fol-
lows. One notes that 1/x2? is the Green function for the

inhomogeneous d’Alembert equation,
O(1/x%)=—4n%5(x), (10)

provided that both sides of the equation are regarded as
distributions, the left side being defined by one of the
paths Cg, C4, Cig, or C14. Consequently, for any of
these paths

i 1
Fuv = /F,w + aaa"‘(-—)d“
(x) e (x+y) " y

—1 1
— —— af 4,
= / 0uF w(x-3)3 (yQ)d ,

since the surface integral vanishes. If the homogeneous
Maxwell equations hold, this becomes

i 1
() = —o — af 4,
Fou(x) o /(a,,F,.,, 9,F 4a)0 <y2)d y.

Hence, if we define @,(x) as in (9), this equation yields
3,8,—9,@,=F,,. (11)

Equation (9) may be put into the form:

; at ; Fu(a+
@,L(x)=£—2 /a”F,“(x—I—y) yl ! /6v< ( y))d4y

- ¥y 4r? y?
i [ ju(xt+y) i Fu(x+y)
_— # diy- /av( s >d4y ,

A2 y? 472 y?
(12)

where an integration by parts has been performed and
use has been made of the inhomogeneous Maxwell
equations,

FF,=—J,.

Equation (12) provides a decomposition of @, into a
“bound” and a free field

Q= @, P+ @, ", (13)
because

D@p,(b):_jﬂ and D@M(I)zo, (14)

Consider, for example, the bound field produced by the
contour Cy; according to the Appendix,
__1_ J u(x+y)d4

y= / Ju(x+y)D4(y)d*y

dn% ) oy

- / JADDale— )t / Da(—2)j,(2)d%.
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The well-known retarded and advanced functions are
here denoted by Dg and D 4. Thus,

@Mmt(x)z /DR(x”z)ju(z)d4z

L[ e,
47r21: Ca y2

(15)
The asymptotic behavior of this function leads to the
identification

. 1
@in(x) =—
47"21 CaA

Fyu(x+y)
av(————

; )dy‘i . (16)
y

The expression (15) is easily seen to be equivalent to the
Sommerfeld representation of the retarded potential.l

The decomposition (13) can thus be written as
@“__: @‘uret_l_ a“in: @“adv_i_ @’Lout (13/)

depending on the choice of the contour, C4 or Cg, re-
spectively. Of special interest is the decomposition

A“(x):A,,(‘”(x)—I-fIF(x), 17)

which is obtained as the arithmetic mean of Eqs. (13')
and which is time-symmetric. It plays an important role
in the classical theory of point charges.!! Here

1 Ju(x+y)
a"("‘) (x) _—_%(@”rec_*_ @"adv) —_ / » __d4y (18)
8r% Jop y?
and
@) =5(@u™+ @)
1 Fou(x+y)
g 6"(——”————}}—)d4y. (19)
8% J op y?

They also satisfy (14).

We note parenthetically that a decomposition of @,
according to the contours C1z and Cy4 also leads to (13)
and (14) and the arithmetic mean of these two leads
also to (17).

The antisymmetry of F,, assures that the Lorentz
condition is satisfied as an identity:

i 1
Q) =— /0"Fw(x+y)3”~d4y
Ax? 3?2

1 1
=—— [ Fu(x+v)0*9—d*y=0.
4 ) " y?

(20)

The absence of a spin-zero field is thus proven also for
the case of interactions. This result combined with (14)
yields charge conservation.

1 A. Sommerfeld, Ann. Physik 33, 649 (1910). See also C.
Mgller, T'he Theory of Relativity (Oxford University Press, Oxford,
1960), p. 144 ff.

1F, Rohrlich, Phys. Rev. Letters 12, 375 (1964). See also
F. Rohrlich, Classical Charged Particles (Addison-Wesley Publish-
ing Company, Inc., Reading, Massachusetts, 1965).
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The path average performed on the potential can also
be applied to the electron field. The path-dependent,
though gauge-independent field

W20 = L(r,O(a) L(x,e>=exp[— [ ac,(z)evds]

involves the unit vector €, of Eq. (8). The path inde-
pendent ¥ is now related to the path-dependent one by

T

1
V(x)=— /‘I/(cc,e)d@zl(x)gb(x)
2 2

in complete analogy to (9).

V. GAUGE- AND PATH-INDEPENDENT
ELECTRODYNAMICS

In the classical case we can start with the nonlocal
modification of the usual Lagrangian density

Lz_i'Fwa_}"].ﬂ@“‘i‘Lf[‘I’]; (21)

where @,(x) is defined by (9). The basic fields are there-
fore F,, and ¥. The homogeneous Maxwell equations
then imply (11) and the antisymmetry of F,, implies
(20). The inhomogeneous equations follow in the usual
fashion.

We note that of the various gauge-dependent choices
which would follow from (11) and which lead to different

ROHRLICH AND F.
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representations of the commutation relations,!?~14 Eq.
(9) fixes the one which is gauge-independent.
Consider now the quantization of the free fields,

[F (), po(") 1= 1d e D(—2")
d#p»WEguPavaf*'gwauap

— 800,09, 85,0400 (22)

Inorder to find the corresponding commutation relations
for @,, we note first thalt (10) implies, for any function
f(x) with appropriate asymptotic behavior and any one
of the indicated contours, that

1 1
f@)=— [ 9*—9,9 f(x=ty)d*y
4 2, y2

T

1 1
et o D) eniy
P " flxty)dty

The vector operator

(23)

(0 )u=07"=

ol

can thus be defined by's

T

a-uﬂx)si% / a#(;)ﬂxiy)d‘*y. (24)

A simple calculation now yields

Laai=(2) [ ap(i?)a'v(i)dww’[mp(xﬂ),F,,<x'+y'>]

7/

y

7 \?2 1 1
- 1<_—> /ap<—)a,a(———)d4yd4y,(_gﬂvap(y)0ul(y)+gwa#(z)av(z)
Ag? y? y2

= _i(g}“’_ G“IME),)D(X—x') = '—'/L.(g;.w_

The gauge- and path-independent potentials therefore
have nonlocal commutation relations which are formally
just those employed in the Landau gauge.

However, the essentially nonlocal nature of the po-
tentials plays an important role: Depending on the
asymptotic conditions, a different contour is to be taken
in the definition of d1,, Eq. (24), which is implicit in
(25). It follows that the commutation relations of the
interacting fields depend on their asymptotic behavior.

It is obvious that the Lorentz condition (20) holds as
an operator equation and that it is consistent with the
commutation relations (25). The usual difficulties aris-
ing from the inconsistency of (20) with the commuta-
tion relations in various gauges therefore do not occur
here.

9,9,
>D(x— 2.
O

_g;urap(y) ay(x)-l_gpva;t(z) a’g(y)D(x— xl—l—y—y/)

(25)

In exactly the same way as in (25) one finds

3,0,

= e

{(@u(x) @,(2") Yo= —i(g,w—

12 A. Peres, Nuovo Cimento 34, 346 (1964).

13 B. Zumino, J. Math. Phys. 1, 1 (1961).

14§, Kamefuchi and H. Umezawa, Nuovo Cimento 31, 429
(1964) ; 32, 448 (1964).

» When fis a generalized function, Eq. (24) is a convolution of
such functions. These are more conveniently discussed in momen-
tum space. In a future paper it will be shown that a consistent and
unambiguous formulation of the operator 97! can be given in that
space for all the generalized functions which occur in quantum
field theory. The present paper is therefore restricted entirely to
x space.
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and the propagator

w0y

d
(T(@u(x) @W(x")))o=— i(g,,,,—-
O

>Dc(x——x') . (26)

Again, we have formally the same expression as in the
Landau gauge. The success of this gauge in the recent
formulation of quantum electrodynamics by Johnson
et al.5 may thus find here an independent justification.

VI. MASSIVE NEUTRAL VECTOR-FIELD INTER-
ACTING WITH A CONSERVED CURRENT

The theory of a massive neutral vector-field inter-
acting with a conserved current may be given a form
similar to electrodynamics.” Gauge invariance plays a
similar role in the formulation to the one it plays in
electrodynamics—the Lagrangian, the field equations,
and the equal-time commutation relations being in-
variant under gauge transformations.

The simultaneous equations

(O—-m)$pp=—j,= —igiz')’y\b ’
(y-o+Myy=i¢ry ¥,

are invariant under the simultaneous transformations

@n

—_
¢l‘ ¢M+ (?#A b (28)
¥ — expligAly,
but the condition
=0, (29)

usually imposed to eliminate the spin-0 field, is not
gauge-invariant unless A is restricted to solutions of the
wave equation. Of course ¢, itself is also gauge-
dependent, as is evident from (28).

A gauge-independent formulation is, however, pos-
sible by using the fields ¢,, as basic operators; they are
assumed to satisfy

6X¢uv+ ap(ﬁy)\_l— 814))\”: 0. (30)
A gauge-independent potential ® is now defined in
terms of ¢, by

7 1
By(x)=— / (et )—dty,  (31)
472 C1 y2

where C1 is the contour of any inhomogeneous D-
function.
The first Eq. (27) now reads

(AO—mH)Py=—jyu, (27

where 7, is conserved on account of the second Eq. (27).
Equation (30) and (31) combine to yield

8,8,— 0,9,= ., (32)
and

9P, =0 (33)

exactly as in (11) and (20). Equation (33) is now gauge-
independent, in contradistinction to (29). It requires a
conserved current as source in Egs. (27) and (27).
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This result was to be expected, because only the spin-0
part of the field ¢, depends on the gauge.” A gauge-
independent formulation therefore must have the ab-
sence of this part as a consequence,

In the free case one quantizes the basic fields ¢,
according to

[bus(),$00() 1= idup,ro A (x—2) (34)

in analogy to (22). Exactly as before, the commutation
relations for the &, are found to be

0,0,

[,(x),8,(x') ]= '—i(gyy—
O

)A(x—-x’) (35)

and its propagator is

9y

0y
(T(@,(0), ()= —i(g,w——>Ac<x—x/) . (36)
O

where the definition (24) is used again.
This result makes the renormalizability of this theory
manifest, no Dyson transformation being required.!8:1”
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APPENDIX 1

The invariant functions D,(x) will be assumed known
and defined as before.1® It is then easy to verify that for
any function f(x) for which the integrals converge

1
— | —f(x)d%x= /Da(x)f(x)d‘*x (A1)
41T2i Cq :X12
or, symbolically,
———| =Dy(x). (A1)
4m? %2l ¢,

The contours C, are depicted in Fig. 1. The above equa-
tions hold for Dg, D4, D1r, and D14, as well as for D,

Ca Cr Ce /— \'\C
i D
Ca (o
P R G
" —
PP R——
Cr Cs

Fic. 1. The contours in the ° plane.

16 F. Dyson, Phys. Rev. 73, 929 (1948).

17 R. J. Glauber, Progr. Theoret. Phys. (Kyoto) 9, 295 (1953).

18 M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons, (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955) (second printing, 1959). The second printing
contains corrections of various misprints.
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D_, and D. Slight modifications are necessary for
Dp and Dy,

1
——| =2Dp(x) (A2)
472 x? cp
and
11 I
— —| =%iDy(x). (A3)

4n% a2l ¢,

It is to be noted that the above contours C,(x) for in-
tegration in the complex x° plane are different from the
contour Co(p) for the corresponding Fourier trans-
form.'8 In fact, one has Cr(x)=Cy(p), Ci(x)=—Ca(p),
etc. Only the contour for D is unchanged, C(x)=C(p).

/6”(8,.@VDH*— @,9,D)d* :—-(/ '—/ )(GVG,DDH— ®@.90Dy)d% .
¥t y'>—w
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APPENDIX 2

In this Appendix we sketch the proof that @,(x) as de-
fined by (9) is independent of the particular contour in
the «° plane, as long as this contour corresponds to an
invariant function which satisfies the szhomogeneous
equation (10). To this end it suffices to show that

/ Fu(x+y)9Du(y)dy=0, (A4)

where Dpg(y) is an invariant function satisfying the
homogeneous d’Alembert equation. Substitution of (11)
and use of (20) yields

(AS)

Since Dy depends only ° and |y| and is independent of the direction of y, the integration over the directions can
be carried out. Using the Fourier transform we have for any function f(x+y) and with w=|k|,

1

/ fle+y)Du(y)ddy=—-— / F(R)el =ik @+ 4k Dy (y) | y| 2d |y | d2Q

(2m)?

Now all homogeneous functions Dy can be written as
Dp=aD1+6D,

where o and B are constants. Since D; involves the
principal part of 1/9? the above integral will vanish
in the limit y°— 4+ by the Riemann-Lebesgue
lemma. But D(y)~ e(y)8(y2). The |y| integration above
then yields a term proportional to

2i¢= 0 singyd= i o=k — =itk

(A6)

Again, the limits y*— 4= would give a vanishing re-
sult were it not for the possibility of a factor §(w—%°)

or §(w+£°) in f(k).

1.
_/f(k)eik-x—ikoxoe—ilc°y°d4y/DH(|y|’y0)
T

sinw|y]|

lyldly|.

Consider the first such factor. In the limit y°— == o0
only the first term in (A6) will survive. But the result is
independent of whether the limit 4° — 4o or y?— — o
is taken. Thus, the two integrals over the spacelike
planes in (AS5) will exactly cancel. The same is true for
a factor 8(w+£°). This proves Eq. (A4).

Thus, the definition (9) of the total potential @, is
indeed independent of the choice of the inhomogeneous
contour Cr. The two terms in the decomposition (13)
are each of course not independent of these contours.
And, in particular, the equal-time commutation rela-
tions for the retarded fields @, which follow from (25)
are also contour-dependent.



