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Quantum electrodynamics is formulated in a gauge-independent as well as path-independent way. The
theory is manifestly Lorentz covariant. It can be obtained from the path-dependent electrodynamics of
Mandelstam by an averaging process. The commutation relations and propagators in this gauge-independent
formulation correspond to those of the Landau gauge in the conventional theory, giving this gauge a funda-
mental significance. The method is also applied to the gauge-invariant theory of neutral vector mesons with
nonvanishing mass interacting with a conserved current. The resulting theory is gauge-independent and
describes a pure spin-1 particle, the spin-0 contributions being identically zero.

I. INTRODUCTION

ECENTLY, considerable attention has been paid
to a formulation of quantum electrodynamics in

terms of fields rather than potentials. ' 4 That makes it
possible to work without any reference to particular
gauges and thus avoids all the complications and un-
physical features associated with any of them. According
to this philosophy the fundamental quantities are the
fields and the quantization is carried out directly on
them by specifying their commutation relations. The
potentials appear as derived, strictly auxiliary quanti-
ties and their introduction into the theory is merely a
mathematical device for simplifying the field equations,
just as in the classical theory.

However, the formulation by Rohrlich' is not mani-
festly covariant. It corresponds to the Coulomb gauge,
in which surface-dependent terms occur and only the
scattering matrix is invariant. The intermediate equa-
tions involve the normal vector to a space-like plane.
On the other hand, the DeWitt-Mandelstam formula-
tion is completely covariant, but involves a "path de-
pendence" of certain quantities.

In the present paper we propose a formulation of
electrodynamics in terms of field strengths which is
both manifestly covariant ued path-independent. It
thus combines the advantageous features of both pre-
vious gauge-independent formulations. The basic quan-
tity is the gauge- and path-independent operator Q,„
which is defined in terms of the Geld strengths F„„
in Eq. (9) below.

"' Support of this work by the National Science Foundation is
gratefully acknowledged.

t Present address: Laboratoire de Physique Theorique et
Hautes Energies. Orsay. Seine et Oise, France.
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The arbitrariness in the choice of the "gauge, "which
deprives the conventional potential of a direct physical
meaning, no longer affects the theory. Thus, the gauge-
independent operator Q,„may have a direct physical
interpretation as photon-field operator. The Lorentz
condition is automatically satisfied by S„as a conse-
quence of the antisymmetry of F„,. No spin-zero field
is therefore involved in the theory, as is the case, e.g.
in Stueckelberg's formulation. ' The commutation rela-
tions for Q„are derived by assigning those for the fields

F„„;they will be proven to be the same as in the Landau
gauge. The Lorentz condition is therefore consistent with
them as an operator equation, and no problem arises
requiring ad hoc measures such as the use of an in-
definite metric with the consequent appearance of un-
physical states. The success of the Landau propagator
(Zt ——Zs, finite) may thus be justified by its connection
with a gauge-independent formulation of quantum
electrodynamics. It may be interesting to note that the
recent attempts at a finite electrodynamics by Johnson
et a/. ' make use of the Landau gauge for the photon
propagator in first approximation.

These results may be extended to the theory of mas-
sive vector bosons interacting with a conserved current,
where analogous problems of gauge invariance arise. ~ '
Here too, a gauge-independent field operator 0',„may
be introduced. The physical meaning of gauge inde-
pendence in this theory is that Q„described a pure spin-1
field. The commutation relations for S„derived from
those for F„„,are

P e„(x),e„(x')j= —i(g„,—r) „rl„/H) D(x—x') .
In this formulation, the renormalizability of the theory
is therefore explicit. '

5 E. C. G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938).
6 K. Johnson, M. Baker, and R. S. Willey, Phys. Rev. Letters

11, 518 (1963);Phys. Rev. 136, 81111 (1964).
V. I. Ogievetski and I. V. Polubarinov, Zh. Eksperim. i Teor.

Fiz. 41, 247 (1961) LEnglish transl. : Soviet Phys. —JETP 14, 179
(1962)].

'A. A. Slavnov, Zh. Eksperim. i Teor. Fiz. 44, 1119 (1963)
LEnglish transl. : Soviet Phys. —JETP 17, 754 (1963)g.
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The path average performed on the potential can also
be applied to the electron field. The path-dependent,
though gauge-independent field

+(x,s) =L(x,s)P(x), L(x,s)=exp—
0

a.(s)s dt

+(x)= @(x,e)d'0= L(x)1t (x)
27r2i

involves the unit vector e, of Eq. (8). The path inde-
pendent + is now related to the path-dependent one by

representations of the commutation relations, ""Eq.
(9) fixes the one which is gauge-independent.

Consider now the quantization of the free fields,

[F„,(x),F,.(x')j= id„, ,.D(x—x'),
wp v~ gwp~v~a+gvw~w~p

—g„,a„a„—g„,a„a . (22)

In order to find the corresponding commutation relations
for 8„, we note first thk. (10) implies, for any function
f(x) with appropriate asymptotic behavior and any one
of the indicated contours, that

in complete analogy to (9). f(*)=
4x'i

1
8" 8„&»f—(x+y)d4y

y
2

V. GAUGE- AND PATH-INDEPENDENT
ELECTRODYNAMICS

In the classical case we can start with the eonlocol'
modification of the usual Lagrangian density

18„8 —f(xay) d'y
471-'i y'

The vector operator

(23)

L= 'F Fw"+—j -Rw+L&[%( (21)

where 8„(x) is defined by (9).The basic fields are there-
fore J „„and %. The homogeneous Maxwell equations
then imply (11) and the antisymmetry of F„„implies
(20). The inhomogeneous equations follow in the usual
fashion.

We note that of the various gauge-dependent choices
which would follow from (11)and which lead to different

can thus be defined by"

1
8 '„f(x)—=a—8„—f(xay)d'y.

4m-'i y'

A simple calculation now yields

i 2 1 1
[O',„(x),O'„(x')]= 8& —8" —d'yd'y'[F„, (x+y),F„,(x'+y') j

4m' y2 y
2

1 2 1 /1
=Z d4yd4y'( —

g „ti (w)ei 'iwi+g ti i~iti i*i
4~' y' &y"

g p (w)ri (~)+g,p (*)p~ iwiD(x —x'+y y')

~p, v
i(g a' a jB—t'r „x.—) —

„~(.g„.—.—'13(x—x'). (25)

The gauge- and path-independent potentials therefore
have nonlocal commutation relations which are formally
just those employed in the Landau gauge.

However, the essentially nonlocaIl nature of the po-
tentials plays an important role: Depending on the
asymptotic conditions, a different contour is to be taken
in the definition of 8 „, Eq. (24), which is implicit in
(25). It follows that the commutation relations of the
interacting fields depend on their asymptotic behavior.

It is obvious that the Loren. tz condition (20) holds as
an operator equation and that it is consistent with the
commutation relations (25). The usual difTiculties aris-
ing from the inconsistency of (20) with the commuta-
tion relations in various gauges therefore do not occur
here.

In exactly the same way as in (25) one finds

~yv
(a.(*)~V)) = —'(z"— &+(*—*)

"A. Peres, Nuovo Cimento 34, 346 (1964).
'w B. Zumino, J. Math. Phys. 1', 1 (1961)."S. Kamefuchi and H. Umezawa, Nuovo Cimento 31, 429

(1964); 32, 448 (1964).
'5 When f is a generalized function, Eq. (24) is a convolution of

such functions. These are more conveniently discussed in momen-
tum space. In a future paper it will be shown that a consistent and
unambiguous formulation of the operator 8 ' can be given in that
space for all the generalized functions v hich occur in quantum
6eld theory. The present paper is therefore restricted entirely to
x space.
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Again, we have formally the same expression as in the
Landau gauge. The success of this gauge in the recent
formulation of quantum electrodynamics by Johnson
et al. ' may thus find here an independent justification.

VI. MASSIVE NEUTRAL VECTOR-FIELD INTER-
ACTING WITH A CONSERVED CURRENT

The theory of a massive neutral vector-field inter-
acting with a conserved current may be given a form
similar to electrodynamics. ~ Gauge invariance plays a
similar role in the formulation to the one it plays in
electrodynamics —the Lagrangian, the field equations,
and the equal-time commutation relations being in-
variant under gauge transformations.

The simultaneous equations

((-i zzz )4 o jo= zg47zz4

(V ~+~)4=44 "VA,
(27)

are invariant under the simultaneous transformations

but the condition

4o~ 4o+~oA

f~ expfigAjf,

8"Q„=0,

(2g)

(29)

usually imposed to eliminate the spin-0 field, is not
gauge-invariant unless A is restricted to solutions of the
wave equation. Of course P„ itself is also gauge-
dependent, as is evident from (28).

A gauge-independent formulation is, however, pos-
sible by using the fields P„„asbasic operators; they are
assumed to satisfy

cl X4'zzv+ 4)okr X+ cl~fizz =0 ~ (30)

A gauge-independent potential C is now defined in
terms of p„, by

and the propagator

.(
(2'(O'. (x) O'.(x')))o= —

zl g,.— ID.(x—x') . (26)

BoBp

Lc.(x),~ (x')3= —
zl g"— ~(x—x') (33)

and its propagator is
Beclv

(T(c„(x),e„(x'))),= i
~
g„„—— A, (x—x'), (36)

where the definition (24) is used again.
This result makes the renormalizability of this theory

manifest, no Dyson transformation being required. ""
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APPENDIX 1

The invariant functions D (x) will be assumed known
and defined as before. "It is then easy to verify that for
any function f(x) for which the integrals converge

1
f(x)d4x=—D (x)f(x)d4x

4z2i g X2

or, symbolically,

1
=D (x).

4~2' X2 C

(A1)

(A1')

The contours C are depicted in Fig. j.. The above equa-
tions hold for Dg, Dg, D~g, and D~g, as well as for D+,

This result was to be expected, because only the spin-0

part of the field p„depends on the gauge. ' A gauge-
independent formulation therefore must have the ab-
sence of this part as a consequence,

In the free case one quantizes the basic fields P„,
according to

Le„(*),e,.(*')j= d„,-~( —")
in analogy to (22). Exactly as before, the commutation
relations for the C „are found to be

C„(x)=
4~2 ez

1
y„,(x+y) 8"—d'y,

p2
(31)

CA CR

where CI is the contour of any inhomogeneous D-
function.
The first Eq. (27) now reads

(v —m')c„= —j„,
where j„is conserved on account of the second Eq. (27).

Equation (30) and (31) combine to yield ClR

c,

and
cio@v civzIzp, =err (32) FIG. 1. The contours in the x' plane.

(33)

exactly as in (11) and (20). Equation (33) is now gauge-
indeperzdezzt, , in contradistinction to (29). It requires a
conserved current as source in Eqs. (27) and (27').

F. Dyson, Phys. Rev. 73, 929 (1948).
zz R. J. Glauber, Progr. Theoret. Phys. (Kyoto) 9, 295 (1953).
"M. Jauch aud F. Rohrlich, The Theory of P/zotorzs zzrzd

I."/ectrons, (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955) (second printing, 1959).The second printing
contains corrections of various misprints.
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and

=2Di (x)
4x'i X' t.-p

1 1
=-,'iDi(x) .

4~'i x't t.-,

(A2)

(A3)

It is to be noted that the above contours C (x) for in-
tegration in the complex x' plane are different from the
contour C (p) for the corresponding Fourier trans-
form. '8 In fact, one has Cii(x) = C~(p), C~(x) = —C~(p),
etc. Only the contour for D is unchanged, C(x) =C(p).

D, and D. Slight modifications are necessary for
D~ and Dy)

APPENDIX 2

F„„(x+y)8"D&(y)d'y =0, (A4)

where D&(y) is an invariant function satisfying the

homogeneous d'Alembert equation. Substitution of (11)
and use of (20) yields

In this Appendix we sketch the proof that S„(x)as de-
fined by (9) is independent of the particular contour in
the x' plane, as long as this contour corresponds to an
invariant function which satis6es the iehomogeneous
equation (10).To this end it suffices to show that

8"(8„S„D&—S„B„D&)d4y = —
I

l
)
i(8„8pDii Q,„BpDii) d'—o . (AS)

Since D& depends only y and
I yl and is independent of the direction of y, the integration over the directions can

be carried out. Using the Fourier transform we have for any function f(x+y) and with &v=
I kl,

f(*+y)D~(y) d'y= f(&)"'*+"' *'"*'+""d'»~(y)
I y I

'd
I y I

d'0
(2~)'

], sino)
I y I

f(&)e'"' '"'*'e '"'"'d-4y D (I y I
yo)

Now all homogeneous functions D~ can be written as

D~ nDi+PD, ——

where n and P are constants. Since Di involves the
principal part of 1/y', the above integral will vanish
in the limit y —+ ~~ by the Riemann-Lebesgue
lemma. But D(y) «(y)8(y'). The lyl integration above
then yields a term proportional to

2ie '"g' sin-coy'= e'&~ "'»' e 'i"+"'»'. -(A6—)-
Again, the limits y —+ ~ ~ would give a vanishing re-
sult were it not for the possibility of a factor h(a& —k')
or 8(co+&') in f(k).

Consider the 6rst such factor. In the limit y' —+ &~
only the first term in (A6) will survive. But the result is
independent of whether the limit y' ~ +~ or y« —+ —~
is taken. Thus, the two integrals over the spacelike
planes in (A5) will exactly cancel. The same is true for
a factor 8(~+A'). This proves Eq. (A4).

Thus, the definition (9) of the total potential 8„ is
indeed independent of the choice of the inhomogeneous
contour Ci. The two terms in the decomposition (13)
are each of course not independent of these contours.
And, in particular, the equal-time commutation rela-
tions for the retarded 6elds 8„'"which follow from (25)
are also contour-dependent.


