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Our previous discussion on the validity of the phase-shift representation is further developed. An example
treated in a previous work based on a separable-potential model is given in an improved method to show
that such a representation fails in more general cases than those considered recently by Bander, Coulter,
and Shaw, based on a simpli6ed lit/D model. It is also shown that Sr(s), the imaginary part of the elastic
phase shift, is a boundary value of a function which connects the elastic 8-matrix element in the physical
sheet to that in other Riemann sheets Co.nsequently, ht(s) should be so chosen as to satisfy certain mathe-
matical conditions as well as to fit experiments. The simplest example of such a function is given.

l. INTRODUCTION AND SUMMARY

~ 'HERE has been a question' about the validity of
the phase shift representation proposed by Ball

and Frazer' for the elastic 5-matrix element:

kt(z) " 8r s
S(s)=exp 2i

() ds, (1)
, kt(s)(s —s)

~= 2'tt/T'tt", (2)

where T11 and T11' are the elastic scattering ampli-
tudes in the physical and the second sheet, respectively.
For such a resonance Eq. (1) cannot be valid because the
right-hand side gives no zeros. To include such poles and
zeros it has been proposed" that the form of (1) be
modl6cd to

(&t+V)(&t—V*) &t " ~r(s)5= exp 2i— ds, (3)
(&t—V)(&t+7*) — n "&t(s)(s—z)
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where s is the total energy squared, s is its complex ex-
tension, k1 is the momentum in the elastic channel, s2 is
the inelastic threshold energy squared, and 81 is the
imaginary part of the elastic-scattering phase shift.
Although similar representations have been proposed
to include purely elastic effects, ' we shall consider only
the representation (1) to avoid unnecessary complica-
tions. If there is a resonance below or near the inelastic
threshold, it is usually associated with a complex conju-
gate pair of poles of the elastic scattering amplitude in
the second Riemann sheet in the squared complex-
energy plane. At the positions of these poles, the elastic
5-matrix element has zeros in the physical sheet due to
the relation4

with Rey&0, Imp(0. In this representation, however,
we cannot predict a resonance solely on the basis of in-
elastic eRects (8r).

Recently, Bander, Coulter, and Shaw' showed, by an
exact calculation based on a soluble two-channel PI/O
model, that there is certainly a case in which the repre-
sentation (1) is not valid. The particular case considered
in detail is that of a bound-state resonance (a resonance
below the inelastic threshold which goes into a bound
state in the inelastic channel as the coupling between
channels is switched oR). For this example we can see
directly that (1) is not valid for the reasons discussed
above. The case of a bound-state resonance allows a
simple interpretation for a weak coupling between
channels. On the other hand, we can consider the
opposite extreme of a strong coupling between channels,
and show again that (1) is not always valid. In Sec. 2, an
example in such a case is given without using the zero-
range approximation as used in a previous work. ' This
suggests that the failure of (1) is more general than con-
jectured in Ref. 6.

This example suggests also that poles may sometimes
move into another Riemann sheet, named sheet IV in
the following, which is connected to the second sheet
through the inelastic cut. In this case the representation
(1) is certainly valid in principle. It is shown in Sec. 3,
however, that hr(s) is a boundary value of a function
which connects the 5-matrix element in the physical
sheet to that in sheet IV, and therefore has some
logarithmic singularities in the complex s plane. Conse-
quently, the function 6r(s) should satisfy some mathe-
1Tlatlcal conditions as well as 6t the experiments. It
should be noted that the same argument applies also to
the case of the modified representation (3).

In Sec. 4, the simplest example of 6q satisfying such a
condition is given in terms of a variable ~ which is the
conformal transform of the momentum. ~ This example
shows also that a strong absorption does not necessarily
give a significant eGect in elastic scattering.

2. AN EXAMPLE IN TWO-CHANNEL MODEL

We consider a two-channel model in which each
channel consists of two nonrelativistic spinless particles
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with equal masses; the channel with lower (higher)
threshold is labeled by 1(2). We use the separable-po-
tential method (or equivalently, a two-channel pair
theory with different cutoff functions in each channel),
which is similar to the N/D method. The particular case
of a strong coupling between channels is given by
assuming the following potentials:

(s I ~e I ")= (s 1') U—'g;,-(" i,)-"—',
with the particular choice,

lower

a)&0, Pi&0

a2&0, P2&O

~ I
I — s -s

2 2 l

upper

a, ~O, pj~0

a2&O, P2& 0

g11 g22

This extreme case is of theoretical interest because it
gives a mechanism which is essentially the same as that
in the one-pion-exchange model for the second reso-
nance in xX scattering, taking into account the ply
channels "

Two integrals appear which take simple forms:

k,ds
)

sr . (s' —1,)(s' —s—is) 2 a;—ik;

IK
upper

ci &0, P) &0

a2&0, P2&0

IQ
. lower

a, &0, P, &0

ag0, P2&0

l
s -s2 2 I

where s,(i= 1, 2) is the threshold energy squared, and

k, =-,'(s—s~)'~' a, = -,'(s;—i~) 'i'& 0.

FIG. 1. Complex k2 plane. There are two sheets connected
through the cuts along the imaginary axis starting from the
branch points ~-';i(s2 —s1)'i". The 6rst quadrant in the "first"
sheet, for example, is mapped onto the upper half of sheet I in
the complex s plane, and so on, as indicated in the 6gure.

The scattering amplitudes have a common denominator
function D(s) given by'

with

(at+Br)(as+Ps) &0,

We can prove that the amplitudes considered here
have no poles in sheets I or III. For example, in the
upper half of sheet I ( &o0, P;&0), each factor in —Imf
is positive, so that there is no solution of (6). In the

G'=(Srr) 'st '~'ss '~'grss. lower half of sheet III (a,&0, P;(0), Eq. (6) can be
satisfied. In this case, however, it is evident thatThe poles of the amplitudes are obtained from the

equation

f(k1)k2) = (a1 ski) (as sk2) 6
y (4)

or by denoting real and imaginary parts of k; by o.; and
P;, respectively,

«f= (at+Pr) (a2+P2) &1&2 G', (&)

—Imf =~r(as+Ps)+~s(ar+Pr) =o. (6)

The analytic continuation of D(s), as a function of a
complex squared energy s, defines four Riemann sheets. '
Sheet I is the physical one, sheet II is connected to
sheet I through the unitarity cut between s1 and s2,
sheet III is connected to sheet I through the cut above
ss, and sheet IV is connected to sheet II (III) through
the cut above ss (between s~ and ss). These sheets cor-
respond to various choices of signs of rr's and P's, as
illustrated in Fig. 1 (the complex ks plane). It is suSci-
ent to consider only the upper or lower half of each
sheet, since the functions on the other half-plane are
determined completely by the reality condition.

8 K. Itabashi) M. Kato, K. Nakagawa, and G. Takeda, Progr.
Theoret. Phys. (Kyoto} 24, 529 (1960).L. F. Cook, Jr., and B.W.
Lee, Phys. Rev. 127, 283, 297 (1962).
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or equivalently,
Q1% 82 )

In the model considered in Ref. 6 with t1= t2, this relation
cannot be satisfied, and this is the reason why this model
gives no poles in this region. A little further investiga-
tion' shows that the pole moves in the upper-left direc-
tion (as indicated by the arrow in Fig. 1) into sheet II

ro Along the real axis below sz /or, in Fig. 1, along the imaginary
axis above sri(ss —sql'I' and below ri(ss sql'I''j—, poles—can
appear in any sheet.

so that (5) cannot be satisfied. On the other hand, poles
can appear either in sheets II or IV. We shall focus our
attention on a pole on the real axis above s2 which is the
boundary between sheets II and IV and corresponds
to the negative real axis in the ks plane (nt&0, ots(0,
P, =O). Equation (6) gives

~r/( —~s) =ar/as.

The left-hand side is larger than unity; therefore we
must choose
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for an increasing g~2', and in the lower right direction
into sheet IV for a decreasing g~2'.

The foregoing arguments show that, in addition to the
case of a bound-state resonance (characterized by a
sufficiently negative gss and relatively small gts), there
is certainly some other case in which poles appear in
sheet II, and zeros of the elastic S-matrix element appear
in the physical sheet due to the relation (2), thus in-
validating the representation (1). We must, therefore,
be careful in applying (1) when a resonance occurs be-
low or near the inelastic threshold whatever its cause.
It seems rather difficult to get a more definite criterion
for the validity of (1) or (3).

3. ANALYTIC CONTINUATION OF ELASTIC
S-MATRIX ELEMENT

~upper lower

0
t

The foregoing example shows also that poles can
appear in sheet IV; the associated eGect is a large cusp
in the inelastic threshold. This situation can be realized
in general, as emphasized by us' " and more recently
by I'razer and Hendry, "by changing some parameters
slightly from the values corresponding to a resonance
just below the inelastic threshold. In this case the modi-
fication as in (3) is not necessary. It is, however, ex-
pected that the presence of poles in sheet IV imposes
some restrictions on the form of 8z(s). This will be con-
firmed by investigating the analytic continuation of the
S-matrix element to other sheets. It will be also found
that the same kind of restriction on bz(s) is necessary
even in the representation (3) in which poles appear in
sheet II.

Using Eq. (2) we can prove the relation'

Sn= (Sz) (7)

An exactly parallel calculation gives

SIII—(Szv) —i

S (s+ie) =S (s+ie)

k t " 3z(s') ds'
= exp %2z-

., kt'(s' —saic)

which shows that at the positions of a complex conjugate
pair of poles of S', there must be a pair of zeros of S"'
and vice versa. The continuatipn pf Sr pr Srr tp Srrr pr
S'v through the inelastic cut is provided by (1). For
example, along the real axis s) s~, we have the relation

FIG. 2. Complex co plane. Each portion is mapped onto the cor-
responding sheets in the complex s plane, as indicated in the
figure. The poles ( x) in sheet IV and zeros (o) in sheet III are
shown as an example.

It should be noted that this relation can also be veri-
fied by using (3).

If we define the quantity 3z(z) by the equation

Sizz(z) Si(z)—i expL —4&z(s)], (10)

then Eq. (9) shows that 8z(s) is a boundary value of
bz(z) along the real axis s) s». Similar relations between
other sets of sheets can be obtained by using (7) and
(8). For the case where poles appear in sheet IV or sheet
II and no poles in any other sheets, 8z(z) should have
corresponding logarithmic singularities according to
(10)."Therefore 8z(s) must be so determined as to give
such analytic properties when it is continued to the com-
plex s plane. An arbitrary function 8z(s), even if it
appears to fit the experimental data in a limited range
of energy, does not always satisfy such a requirement,
and may lead to a wrong result when it is substituted
into (1) or (3).

In the example in Ref. 6, 3z(z) actually has such
singularities, because it was calculated from the two-
channel amplitudes which have poles in appropriate
sheets. (The zeros of S that appeared in the physical
sheet for g~2(g22, the critical value, should go into sheet
III for gss)gss ) This is the reason why an agreement
was obtained between two methods of calculation for
g22) g22 ~

ki " bz(s')ds'
=exp %2z-

„kr'(s' —saic)
4hz(s) (9)—

4. SIMPLEST EXAMPLE OF 01

We shall give the simplest example of the form of 8z(s)
which satisfies the requirement stated above.

S(s&i )e'e '"&'&

"Y.Fujii, Nuovo Cimento 34, 552 (1964).
'2W. R. Frazer and A. W. Hendry, Phys. Rev. 134, 31307

t,'2964).

"The same conclusion is obtained also when two pairs of poles
appear in sheets II and III, or III and IV, unless they exactly
coincide with each other. Such a coincidence may be exceptional
as long as the poles appear near a threshold. See, for example, the
paper by Y. Fujii, M. Ichimura and K. Yazaki, Progr. Theoret.
Phys. (Kyoto) 32, 320 (1964).
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Re cdt & Im
an't

if they are in the same position in the complex s plane;
therefore we cannot determine which resonance and
cusp phenomena occur only by knowing bz, as was al-
ready pointed out in Ref. 7.

On the other hand, the function Bz(co) is defined by

S(o~)$(—co) = exp L
—48z(oi)],

0
l

Fzo. 3. Schematic plots of p((o) = lkP/s)0'insl= 1—expL —4&l(ol)3,
versus co.

according to (10), since by changing the sign of oz,

co —+ —co, S~ and S" go into S' ' and S', respectively,
and vice versa. By using the form (11) we have

~2 ~ +—2 ~2 ~ —2

C02 Q7
2 C02—Co

*2

A convenient representation of the S-matrix is ob-
tained in terms of the variable or which, introduced by
Kato, ' is a conformal transform of the momentum k~,
given by

The four Riemann sheets in the complex s plane are
mapped onto a single sheet in the complex co plane, as
indicated in Fig. 2. The branch points s~ and s2 cor-
respond to o~= &i and &1, respectively. (The physical
thresholds correspond to oi=+i and +1).The portions
along the real axis s&s~, s~&s&s2, s)s2 are mapped
onto the imaginary axis, the circle of unit radius cen-
tered at the origin, and the reaJ. axis, respectively.

The elastic S-matrix element in the "one-pole approxi-
mation" is given by'

CO GO GO CO

~(~)= lail'
co—cot, co cog

If co~ is chosen as

Reoii) 0, Ima&, (~)0, I ~i
I &1,

then S(s) has a pair of poles in sheet II (IV) (correspond-
ing to oui and —o~i*), and a pair of zeros in sheet I
(III) (corresponding to o~ie ' and —

cubi '). The function
Bz(oi), defined by

takes the form

which coincides with (12) for real or (corresponding
to $)ss).

In Fig. 3, we show schematic plots of the quantity
$(cu)=(ki'/w)o. ;„,i=1—e """& for ~d»1 (physical re-
gion s)ss). There are two distinguished forms accord-
ing to the location (actually the argument) of the pole
cubi. A simple measure of the magnitude of $(o&) may be
given by its asymptotic value 1—

I
oui

I

' for ~e ~~, which
is smaller for the pole lying closer to the unit circle (or
closer to the real axis si &s& ss in the complex s plane).
This suggests that a strong absorption does not neces-
sarily give a significant effect in elastic scattering (a
sharp resonance below, or a big cusp at the inelastic
threshold).

On the other hand, the ratio

o;.,i 1—ISI' 1+ Io~ I'oi' —1

o, i I1—Sl' 1—loi, l'cu'+1

is a monotonically increasing function of co for co & 1, and
also increases as Ioiil goes to unity. This is consistent
with the fact that this ratio appears in the dispersion
integral of the inverse partial-wave amplitude, whose
real part is essentially k~ Re cot8. ' It is also noted that
the ratio in (14) depends only on the magnitude of o~i.

The argument of ~~ is evidently related to the value of
the real phase shift at a particular energy, say s2, and,
therefore, corresponds to the subtraction constant which
is important in the representation for k~ Re cotb. '

which certainly vanishes a,long the unit circle (cor-
responding to the real axis si&s&ss). It can also be
noted that the right-hand side of (12) does not depend
on the sign of Imo) ~ for real or. This means that the poles
on sheet II and those in sheet IV give the same bz(s)
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