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ing in terms of a spin-independent, purely imaginary
amplitude. The incorrect energy dependence of vector-
meson-exchange amplitudes is the most important
shortcoming, and prevents a meaningful determination
of vector-meson coupling constants. "Another difficulty
is the violation (or near violation) of the unitarity
bound in some reactions (e.g. , Ep ~ E*N*).

(1I) The physical assumptions of the model (and
also the mathematical approximations) are most reliable
at small production angles and at energies such that
many partial waves participate in the reaction. Precise
data in this domain would allow definitive tests of
theory.
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A soluble model of SU3-invariant meson-vecton interactions is investigated. ay-p mixing is introduced as
a soluble, symmetry-breaking interaction. Small form-factor effects in this interaction are also treated.
Mass renormalization is carried out to study higher order e6ects in the Gell-Mann —Okubo formula for
mesons. Two new mass formulas for vectons and an equation relating vecton masses to meson masses is de-
rived. Finally, relations between bare coupling constants are studied. The agreement with experiment is
generally good.

1. INTRODUCTIOÃ

' 'N view of the apparent success of the octet version of
~ ~ unitary symmetry (SUs)' ' it is of increasing im-
portance to obtain some understanding for the sur-
prising validity of the Gell-Mann —Okubo mass formula
(GMO formula). '4 It has been derived in first-order
perturbation theory with respect to the symmetry-
breaking interaction, and nothing is known so far about
the behavior of higher order contributions. We there-
fore set up a model which can be solved exactly and
derive mass relations from it.. In order to do this, we
have to decide what kind of symmetry-breaking inter-
action we will choose. There are, of course, several ways
to introduce symmetry-breaking eBects. For reasons,
specified below, we will choose co-p mixing' r for our
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model: (1) Since we do not know the exact type of the
basic symmetry-breaking interaction, co-p mixing will
serve as a good phenomenological description. Even if
the fundamental interaction is of a completely di&erent
nature, co-p mixing has to emerge as an "effective inter-
action. " (2) A more technical reason for choosing co-g

mixing is that it is bilinear in the field operators and
can thus be solved exactly.

The model we propose is an SU3-invariant version of
the Zachariasen-Thirring' " model with &o-p mixing.
In its Lagrangian version, the Zachariasen-Thirring
model is nothing but a restriction on the type of Feyn-
man graphs which have to be summed up. Our results
can therefore be viewed either as the exact solution of a
Zachariasen-Thirring model or as the chain approxima-
tion to a full-fledged theory. In any case they are valid
to every order in the symmetry-breaking interaction.

We will study the interactions of (pseudoscalar)
mesons and vector mesons ("vectons"). Their propaga-

' F. Zachariasen, Phys. Rev. 121, 1851 (1961).
W. T'hirring, Phys. Rev. 126, 1209 (1962).

"W. Thirring, Nuovo Cimento 23, 1064 (1962).
rr W. Thirring, in Theoretica/ Physics (International Atomic

Energy Agency, Vienna, 1963), p. 451.
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tors will be derived and their physical masses will be
obtained as the poles in these propagators. Unless
otherwise stated, notation and definitions follow those
of Ref. 12.)

2. THE MODEL

The model under consideration is defined through the
interaction-Hamiltonian density together with the pre-
scription that only chains of bubble diagrams have to be
considered. " The SU3-invariant interaction between
mesons and vectons is given by' (M =bare vecton mass
and A„.,B=„—A)

Hr = e&"'"
~

—(c)„(L),(')) Tr(ux;.(P)
(M

1
+—Tr(z„;„V)„.(P) ~+ig Tr(u„[O'.,„,(Pj), (1)

M

where 'U and 6' are the familiar 3 by 3 matrices of vec-
tons and mesons with their appropriate Clebsch-Gordan
coefficients. ' Using 8-dimensional vectors I" and V',
(1) can be cast into the form

+ + +~%. %+\ rr %r

FIG. 1. The meson propagator. Dashed lines denote
mesons and wiggly lines vectons (including co).

(H~' being the integrated Hamiltonian):

H&' d——'x—d4y m@ '(x—y)
2

&&[ ."'( )4"'"(y)+4."'(y) "'"(*)j, (7)

thus leading to a momentum dependence in momentum

space. We will return to this point later.
Obviously, Eq. (6) leads to highly divergent integrals

in the renormalized propagators. In order to get a con-
sistent model, we will therefore complement it by a set
of rules for obtaining meaningful results:

(1) A cutoff A will be introduced but will eventually
be taken to be infinite; thus,

(2) only those results shall be considered which are
independent of A.

(3) At least one of the bare masses has to tend to
infinity together with A; it will be chosen to be the bare
pseudoscalar mass m. Thus also m must be eliminated in

all the results.

0

Hr e)'"'"~ e), „(')——U—), ,'P&iV
M

(2)

where the coefficient matrices 3f, D', and F' display the
following symmetry properties

M;, =M,;, D;g'=DI„',
and

P,(D'D') ~),=Tr(D'Ds) = ss5tq,

Q (F'F')(),=Tr(F'F') = —68),(.

3. DIAGONALIZATION OF THE MASS MATRIX

As stated in the introduction, the interaction (5)
[or (7)j can be dealt with exactly by diagonalizing the
mass matrix. This has been carried out in detail by
Harte and Sachs" and we therefore only restate some of
their important results for further reference.

The vecton propagator can be written as

where, in the notation of Harte and Sachs, "
P = ~n), z =M' if nNe), p

aIld
P~= sink

~
&a)+cosh ~$),

P„=cosl).
~ Q)—sink

~
e)) .

(5)
s~ and z„are defined through

(10)

H~ —t~~ &(e) (0)y(())y+y (())(d(())y) ~

the total Hamiltonian density will thus be (11)

(12)

ze = ,' [M'+)I,'+—r(s~)7,
s„=,' [M'+ p'—r(s„)f,—

r(s) = [6'+4m4, „'(s)j'('

(6)H= Hp)+Hr+Hg,
where

where Ho is the free Hamiltonian density of the eight
mesons and vectons. The bare mass p of the singlet co&"

need not be the same as the bare vecton-mass 3I and
thus will be taken as an extra parameter in the model.

In Eq. (5), m~„' has been taken as a constant. How-
ever, if e)-p mixing is looked upon as the effective result
of some other basic symmetry-breaking interaction, it
can depend on the coordinates in the following way

(13)
and

X is the a)-p mixing angle. Note that we have here taken
into account a possible momentum dependence of m~
according to Eq. (7). We will however take it to be
very small; thus

nzp„'(s) =g'+ es e((1. (15)
~ W. Thirring, Principles of Quantum Electrodynamics ('aca-

demic Press Inc., New York, j.958). "J.Harte and R. G. Sachs, Phys. Rev. 135, 8459 (1964).

As discussed in the Introduction, the symmetry-
breaking interaction we assume is &u-p mixing':
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( k"k" cos'X f k~k" sin9,
~~""=—

I

g""— —
I

g""—,(16)
s, k2

k"k" sin9. ( k"k"q cos9
& ""=—

I
g""— -I g""—

s, k' —z, & s„jk —z„
(17)

In addition, there will be a "mixed" propagator, con-
necting a Q vertex to an ~ vertex.

k "k"
d,„z&"=——,'sin2'A

~

g""—
s, k' —s,

The unrenormalized propagators for ~ and p vectons
will thus be

4. THE MESON PROPAGATOR

Contributions to the renormalized meson propagator
are shown in Fig. 1. Neglecting, for the moment, the
interaction Hg, the renormalized meson propagator
P(x y) i—s the solution of the following integral equation:

P(x y) =—A~(x —y) —z d4x&d'x26~(x —x&)

X&(x1 x2)P(*2—y), (19)

where Z(x) is the sum of the vecton-meson bubble, the
vecton-vecton bubble, and the vecton-~ bubble, i.e.,

(
k&k ) 1

g""—
s„jk'—s

g(x) gv Y(x)+g (x)+g (x) (20)
(»)

Standard Feynman rules together with Eq. (2) yield

2

Qvv(x) 4{QP (x M2)QF (x M2) gE (x M2)gF (x M2))
6 3f'

(21)

Zv"(x)= 4{6~,.py(x, M')Le, „„(x,y') —Le., p.(x,M')Le, y„(x,p')),
iV'

(21')

(x) = —6g'{46~(x M')A~. (x m )+6» (x M')LP(x m )+26F (x m')A~ (x M')

+ I
46»', „.(x,M')As' .,„,(x,m')+h. s', „„„„(x,M')A~(x, m')+26'', „„„(x,M')As', .„(x,m') j) . (22)

3f'

The product of two A~'s at the same space-time point has to be handled with great care. We can, however, derive
spectral representations for two 6+'s (or 6 's) and then de6ne the As' product with the same spectral function. In
this way we obtain (see Appendix II of Ref. 12)

—im2 ds6"(x M') As' (x m') = —w(M, m, s)A~(x,s);
16m' (~+ ) 2 s

(23a)

'L ds
Ds',.„(x,M') A~.

, „(x,m') = (M'+m' s)w—(M,m, s)A~—(x,s),
327l (~+m) ' S

(23b)

ds
A~. .(x M')LY. „(xm') = —(M'+m' —s)'w(M, m, s)h~(x, s),

64m' (~+ ) ~ s
(23c)

iM4 ds
6~.

, „„„(x,M')A~( , xm)= —w(M, m, s)h~(x, s),
(~+m)

(23d)

a~, „„(x,M2) a~,.„(x,m') =
iM' " ds—(s—M' —m') w(M', m, s)A~(x, s),
32~2 (~+m) 2 S

(23e)

im'M'
a+, „„(xM2)s~...(x,m') =

16x'

ds—
w( M, ms)h" ( ,x)s,

~+m) ~ s
(23f)

where

w(M, m, s) = $~ +.m +s' 2(M'm'+M's+m s)]'I'— (24)
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Inserting (23) in (21) and (22) gives

5' i "ds
z (x)=-- —Pw(M, s)]'A~(x, s),

6M'16m' 4~~ s
(25)

with

and

p2 i ds
&v"(x) = —— — fw(—M,p,s)]'D~(x,s),

M 16m' (~+ )2 s

w(M, s) —=w(M, M,s)

g2 i ds
Zv~(x) =6 — —Lw(M, m, s)]'A~(x, s) .

2 16g 2
(M+m )

(25')

(26)

(27)

In momentum space, the solution of (19) is simply the sum of a geometrical series given by

g' 5f' f'
P(k) = —k' —m' —6 I(k' M' m') —— I(k' M') — I(k' M' p')

M' 6 M' M'
where

(2g)

1 ds
I(k' M' m') = —Lw (M,m, s)j'

(M+m) ' s—k' —ie
(29)

I(k' M') —=I(k' M' M') . (30)

Clearly, all mesons have the same renormalized mass in the absence of H&.
Taking into account the symmetry-breaking interaction II& now, we have to change all g and &o propagators to

their forms (16) and (17) and also properly include contributions from the mixed propagator (18). Since the
coupling of g will differ for the three types of mesons, E, 7r, and q, by a Clebsch-Gordan coeKcient ot SUB, we now

have different propagators and thus diferent mass renormalization. The physical masses are defined through the
zeros of the denominator of the renormalized propagators; thus,

9 g2 3 f 2

mx' —m '—— I(m ' M' m') —— I(mrs' M')
2 M' 4M'

I(mzq', s~m') $2g' cos9+ ~ ~fP cos'X+ fo2 sin9, —(1/g6) fof~ sin2X$
M2

I(mrs', s„,m') I 32g' sin9+ —,', fP sin9+ fo2 cos9+(1/g6) f0f~ sin2X) =0; (31a)
M'

g' 1A'
m '—m' —6 I(m ' M' m') I(m '—M— ')

M' 2 M'
1

I(m ', sg, m') Ls fP cos'X+ f02 sin'X+ (2/Q6) fofg sin2X)
M'

1
I(m '; s„)m')PfP sin9+ f ' cos'X —(2/Q6) fofg sin2X] =0; (31b)

M'
g2 2 f12

m '—m' —6 I(m ' M' m') —— I(m ' M')
M' 3 M'

1
I(m„'; s&) cos9L3f02 sin9+6~f~' cos'X —( /+2)f60f~ sin2X)

M'

1
I(m„'; s„) sin'Xt 6' fP sin'X+3fo' cos'X+(2/Q6) f0fq sin2X]

M'
1

I(m, '; s@,s„)[fo (1—
2 sin'2X)+~~~ fP sin'2X+(1/Q6) fofq sin4X]=0. (31c)

M'
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From (29) it is seen that I(k',M', m') is divergent with the 4th power of energy s'~'. In fact,

1 A4 A. ~I(k' M' m') = lim —+A'(k' —3(M'+m')] +0~ ln—
~
.

k Mi
(32)

According to the rules set up at the end of Sec. 2, we have to insert (32) in (31) and eliminate A' and m'. It turns out
that one more parameter can be eliminated; we choose it to be foft sin2X which is the term containing all lowest
order contributions from H~. The result is

where

mQ =
3~ 2+I 2 3 f 2+3f 2 6g2

4 'fts+ f-o'+6g'
(33)

$ =so cos'X+s„sin 9 —M'. (34)

Note tha, t )=0 if neo„ is a constant. We thus get the very important result that within our model, the GMO rela-
tion for rnesons is true to every order in the symmetry breaking interaction. If mo„ is given by (15), $ will be pro-

r
+ ~~ + ', '. +~& ~ ' ' + ... FIG. 2. The vecton propagator.

portional to ~ and thus be a small parameter in our theory. This is, in fact, the only place where we will not neglect
the momentum dependence of neo„'. With g taken to be zero, the result (33) has already been discussed in a
communication. '

5. THE VECTON PROPAGATOR

Starting again with the SU3-invariant interaction Hy only, we obtain the following integral equation for the
vecton propagator (Fig. 2)

&„(x—y) = &„, (x—y)+s d'»d'x2+ (x xt)+ (xt xs)IA (xs y) (33)

~ '(*—3)=(g +~ ~/M')~'(* —y).

Z„.(x) is again a sum of three contributions:

(36)

Z (x) = s(fts/M')2{$2—~ (x m')A~. zz(x M') —A~. z(x m')A~ g(x M.')]g
+A~ q(x m')d~ q(x M')+d~ q(x m')6 . q(x M')

(x m, ')A~. (x M') A~ (x m')rV—(x. M') }' (37a)

a similar term, Z„„"~(x)with the following replacements

and
s(f 2/M2)2 ~(f 2/Ms) +P(x M2) ~ QE(x ~2)

Z (x) =6g'LLe (x m')le(x m') —h~ (x 18')ZL~ (x m')]

(37b)

(37c)

In addition to (23) we need the following spectral representations:

».,„(x,~s)~&.(x,~') =
48~' 4 2

s) f s)88,
ds m' ——

g „m' — s—4m' s '~'A~ x s
4i s

(38a)

z ds
h~,.„„(x,m') A~(x, Ms) = —tt (M,nz, s)

48m' (M+ )~ s'

X{L4(s+nz' —M')' —sm']g p+$s
—'(s+m' —M')' —nz']ci By}h~(x,s); (38b)

z ds
&;-(x,~')& (x M') = —tt (M,m, s)Ls—(M'+~g')]

48~' (~+m) s'

X {-'st te(M, m, s)]'g —(1/4s) fs'+s(M'+m') —2(M' —m')']8 8 }A~(x,s), (38c)

"H. Pietschmaan, Phys. Letters 11, 352 (1964).
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where w(M, m, s) is given by (24). Inserting Eqs. (23) and (38) in Eq. (37), one can derive the following solution of
Eq. (35) in momentum space:

E„„(k)=G(k) I'„,'(k)+ G(0)I'„,'(k),

where P„„'and I'„,' are projection operators for transverse and longitudinal polarization, given by

P„„'(k)=g„„(k„—k„/k'),

P„,'(k) =k„k,/k'.
G(k) has the following form:

5 fi'1 fp'1
G(k) =—k' M' —g'J(k—' m') ———I(k' M' m') — —I(k' p' m')

6M'3 M'6

(39)

(40)

(41)

where I(k'3P, m') was delined in (29) and

J(k' m') = ds Ls—4m']'~'
16m' 4 ~ 6s'~' s k 26

The renormalized co~'~ propagator can be derived in an entirely similar way with the only change in (41) being

G (k) = —Lk' —p,
'—(fpP/3P) p4I(k'; 3P,m') $

—'. (43)

It is clear from Eqs. (41) and (43) that even without symmetry-breaking mixing effects, the renormalized mass of
~ and p will be different. The assumption of the same bare mass for &o and p (and hence for all vectons) thus appears
to be an artificial constraint. Switching on the interaction H~, we obtain the physical masses of M(=E ) and p
as the zeros in the denominator of their propagators.

m~' M' g'J(mph' —m') ——(19/24)(fi'/M')-'I(m3r', M' m')
—(1/3M')I(m~', sq, m') L(1/24) fi' cos9,+-',fp' sin9. —(1/4+6) fpfi sin2X j

—(1/3M')IL(mis' s„,m') t (1/24) fi' sin'X+-'fpP cos'X+ (1/4+6) fpfi sin2X] =0; (44a)

m '—M' —g'J(m ' m') —-'(fi'/3P)-'I(m ' M' m')
—(1/3M')I(m ' sp m')L."fi' cos9~+-'fp' sin9~+(1/2+6) fpfi sin2Xj

—(1/3M') I(m ' s„,m') /pi fi' sin'X+-'fp' cos'X—(1/2+6) fpfi sin2Xj =0. (44b)

p& —g mixing will introduce off-diagonal elements also in the renormalized propagator matrix. To obtain m and
mq we have yet to diagonalize this matrix. But first, we use (32) together with

J(k m ) = (1/16m P) lim A /6+O(ink/M) (45)

to eliminate A and m in Eqs. (31a), (31b), and (44a), (44b). In this way we obtain )recall Eq. (34)j
1 pPfiP+ fpP+6gP fi'+6g'

SS~ tÃ p (mx' —m.')—
2 (5/3) fi'+ fp' g (5/3) fi'+ fp

(46)

This is a quantitative extension of the qualitative result (m~' —m, ')(m&' —m '))0 obtained by Sakurai. ' In order
to check Eq. (46) we have to extract relations between the coupling constants from our model. Since they appear in
fractions only, the dependence on them is not very critical and approximate information on the coupling constants
will be sufficient, see Sec. 6.

Turning to P and co, we first note that D„=$—G„j ' and Dq= (—G—~$
' are give—n by

D„(k')=k' y' (fp'/M') P—(7/6—)I(k' M' m')+ —',I(k' zp m') cos'X+ —'I(k' s„m') sin9). (47a)

D (k') =O' —M' —g'J(k' m') '(f '/M')-'I(k'—3-P m')
—(1/3M')I(k' s m')Lpifi' cos'&+—' fp' sin'& —(]/2/6) fpfi sin2gj

—(1/3M')I(k's„, m') $,' fP sin9+ ip fp' co-s9+ (1/2+6) fpf sin2X). (47b)

A typical graph contributing to the off-diagonal element (to lowest order in mp, „)is shown in Fig. 3. The full con-
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tribution is given by
E(k') = —m ' (f—p'/M') [I(k' s m') —I(k' s m')]—' sin2X

m~2 and m„2 are the two solutions of the quadratic equation

De(k') D„(k')—[E(k')]'=0.

Computing these solutions and eliminating A and m in them and Eq. (44) yields the following two equations

(48)

(49)

meo+m 2 2mpro
3f 2 6g' 3fo'+fi'

6+ HIP+
(5/3)ft'+fo' (5/3)ft'+fo' g (5/3)ft'+fo'

(50)

meom~o= f p(2moro+m P)+ p(m +m~ —2mor )—(3ft +—10fp /(5/3)ft +fo )$)

fo'3 fr' (5/3)fr'+ fo' 3 -2
4rg~2 —m 2 — m~2 —m ' —,51

(5/3) f2+ fo' 4 (5/3)ft'+fo'—

where 6 and $ are given by Eqs. (34) and (14).
Equation (50) is not really of the type of a mass relation. Rather it gives some information on the bare masses.

Equation (51) is the true mass relation for vectons. It should be noted that the GMO relation for vectons has no
meaning in a pure oo —p mixing model, because without mixing, all vecton masses degenerate. It is thus incon-
sistent to try to compute the "unmixed" p mass from the physical p and M masses.

Note, that for constant me„', i.e., )=0, Eq. (51) goes into

m 'm '=(4mjr' m'—)( '(2p~-m'+ m)+-', (m '+m '—2m~')) ([(5/3—)fto+fp'$/12fto)(m~' m')' —(52)

which depends on the coupling constants only through the last term; this, however, is very small because of the
small M-p mass difference.

6. ON THE COUPLING CONSTANTS

Up to now, we have derived our results completely within the framework of the model. We note, however, that
all propagators are real in this model. In order to obtain additional information on decay widths and thus coupling
constants, we simply add the imaginary part of the propagators we could obtain if the intermediate particles carried
their physical masses. We will show presently that this is exactly equivalent to correcting for phase space. By
definition

Im[ —G~(k') ) '= 3g' ImJ(k' mrs' m ') =-'(g'/k4) [rc(mrc, m. ,g(k') )]'~'

G (k2)$
—1 4g2 Im J(k2. m 2) 2 (g2/Q(ko) )[k2 4m 2]3/2

(53a)

(53b)

Since we shall face an infinite coupling constant re-
normalization, only ratios of decay width shall have any
meaning according to the rules set up at the end of
Sec. 2.

Following our standard procedure, we obtain

r, 4 m, ImJ(m, ;m. ) 4 p, /m,

I'~+ 3 mar Im J(m~', mrr', m ') 3p~'/m~'

where p, and p~ are the c.m. momenta of their decay

FxG. 3. IOB-diagonal contribution to lowest order in Hg.

fP 3fo' Iml(me', —m, ',m ')

I p-~KK 6 Im J(me',.mrc')6g2

The fact that a difference of coupling constants appears

"J. J. Sakurai, in Theoretical Physics (International Atomic
Energy Agency, Vienna, 1963), p. 227.

'6 A. M. Rosenfeld, A. Barbaro-Galtieri, W. M. Barkas, P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 36, 977 (1964).

products. Equation (54) is exactly the result one derives
from a phase space correction. "

Kith the masses taken from Ref. 16, we obtain
I',/I'pr=3. 5 which is to be compared with the experi-
mental value" 2.1~0.9. This gives an estimate of the
accuracy of coupling-constant relations.

Because of (49), decay widths of the P will diverge
more badly than those of p and 3f and we can hence only
compare p —+ X+X with P —& p+sr. Carrying out the
algebra yields
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formula for mesons Eq. (33). This encouraging result is
good support for our model. Equation (46) with )=0
can be used to compute g' with the result

g2 1 3f 2 (58)
I.O

0.5 cs-$ Mlxal

which is very reasonable. We cannot directly derive the
bare mass difference from Eq. (50) since M' enters as
extra parameter. But with the assumption that 6
should be smaller than M', Eq. (50) ca,n be satisfied
with the following numbers:

V M=200 MeV, @=150MeV. (59)

Fro. 4. The energy-level diagram for vectons.

in the numerator of (55) allows us to understand the
exceptionally small experimental branching ratio. "
Though the value seems to increase, '~ the errors are still
large and within our approximations it will be good
enough to take

f2 3f2

7. DISCUSSION OF RESULTS

Our results are compiled in Eqs. (33), (46), (50), (51),
(52), and (56). Let us 6rst discuss them under the
assumption of constant ms„', i.e., )=0. We then obtain
the GMO formula for mesons, the validity of which is
no longer a mystery. Inserting (56) and the experimental
masses" of the (uncharged) vectons in Eq. (52) gives
(in BeV')

left-hand side: 0.637, right-hand side: 0.673, (57)

which shows about the same deviation as the GMO

' S. Lichtman, M. Goldberg, T. Kikuchi, J. Leitner, M.
Primer, E. L. Hart, V. W. Lai, G. W. London, ¹ P. Samios, and
S. S. Yamamoto, Bull. Am. Phys. Soc. 10, 66 (1965).

P=0.021 SeVs (60)

Inserting Eqs. (58) and (60) in (33) allows us to com-

pute the correction to the GMO meson formula. It has
the right sign but is about six times too small to account
for the full difference between GMO prediction and ex-
periment. We thus conclude, that graphs neglected in
our model make a contribution of the order of a few
percent to mass renormalization.

"K.Johnson, Nucl. Phys. 25, 435 (1961).

cs-g mixing will decrease the bare mass of the co and it
turns out that the angle ), for which the bare co mass
vanishes, is just 37'. If this angle has anything to do
with the one derived in first-order perturbation theory, '
we can explain the latter within our model through
"maximal a&-Q mixing. "Note, however, that within our
model, ) is undetermined and only its maximum is set
at 37'. The energy level diagram for vectons (assuming
maximal mixing) is shown in Fig. 4. Notice that the fact
that the physical vecton masses are larger than the bare
masses does not contradict general inequalities derived
from the I.ehmann representation. "

Taking $WO, which means including a small momen-
tum dependence of m~„', we can compute its value from
Eq. (51) and, selecting the smaller root, we find


