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By extending previous results, it is shown that a variational principle similar to that of Lippmann and
Schwinger also exists in the N/D formalism of multichannel S-matrix theory.

N dynamical theories of particles and fields, varia-
tional principles have played very important roles
in formulating theories and in solving problems approxi-
mately. In the recently developed theory of the .S
matrix, especially in its N/D formalism, the dynamical
problem is replaced by the determination of singularities
of the .S matrix instead of pursuing the time develop-
ment of the system. In spite of this difference in the
basic idea, we have shown that there also exists a kind
of variational principle in S-matrix theory, which is
similar to that of Lippmann and Schwinger! in quantum-
mechanical scattering theory. The purpose of the pres-
ent note is to extend the previous result? to multichannel
scattering.
The S-matrix elements of a specified partial wave are
written as

Sav==0as12i(pa) * far(ps) '/, n

where fq is the scattering amplitude, and p, is the
density function in channel ¢ multiplied by a suitable
step function 6. In the N/D formalism, f,s is written
as

fab= Z\Tow(D_l)cb (2)

and the N and D matrix functions are subjected to the
following dispersion relations:

D(s)=D(so)—s_so/ ds’g(s NG R
m Jr  (5'—s0)(s'—9) 3
1 I(s"D(s’
N(s)=—/ dslw’
mJr S—S
where
I.5(s)=TImfup(s) 4)

and L and R denote integrals along the left and right
halves of the real axis.

Now we shall show that the integral equation for the
D function can be derived from the following variational
principle:

6DJab(SO>=0 , (5)
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dp denotes the variation due to a small change of the
D function, and D7 means the transposed matrix of D.
It is easily verified that

J(s0)7=J(s0), (7

ENT(SQ)_IA(SO)N(SO)_I )

if I(s)7=1I(s).3
Differentiating (6") functionally, and using the
identity* §(N—1)= — N-16NN-1, one finds
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—N7(s0)J(50)6pN(s0)=0, (8)

where,
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3 This assumption comes from the time-reversal invariance of
the .S matrix.
4 This follows from 8 (N1N)=86N"1-N+N-1.6N=0.
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Inserting (92)—(9c¢) into (8), we have
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From (10), we can derive®
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and by putting s=s0 in (11a) and (11b), we see that

J(s0)N(so)=D(so) and NZ(so)J(s0)=D%(so). (12)
Thus, we get
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5 The left-hand side of (10) can be written as
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from which we can get (11a). In a similar way, we can also derive
(11b).

1ITO

These are nothing but the integral equations for the D
functions, which are obtained from Eq. (3) or its trans-
pose by eliminating the N functions.

In order to see the meaning of our “action function”
J(s0), let us insert (13) into

1 r D7(s)I —50
J(su) = N¥(sy) - / Mds[D(s)_f_s S
TJL S8 s
o(s"I(s")D(s")
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Then, (14) reduces to
J(s0) = D(s0)N(so)1=1£"1(s0). (15)

This shows that our J(so) will reduce to £1(so), if the
‘“correct” D function is inserted. As is well known,
f~1(so) can be expressed by a K matrix defined by

1+iK(s0)
S(s0) =————=14+2i(v/0)i(+/0), (16)
—1iK(so)
ie.,
o l2f1g—2=k—1—41., a7

On the other hand, (6) can be written as

T
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L
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o

X N(so)t1/2—4l.

(18)

Therefore, the second term of (18) is of no importance
in our variational principle, and we see from (15), (17),
and (18) that the first term of (18) reduces to K—1(sy),
if the “correct” D function is inserted. Thus our “action
function” can be written as

o1 PJg 12 ="K1—il (19)

and our variational principle states essentially that

'K 1'=0 or é&p'cotd'=0, (20)

just as in the case of Lippmann and Schwinger.!
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