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The rates of capture of 7~ mesons by He?3 leading to the final states d-+# and p-+n-+# are calculated using
a phenomenological two-nucleon Hamiltonian for the capture interaction ¥ NN — NN, obtained previously
by Eckstein from an analysis of the experimental data on the inverse process of one-pion production in
nucleon-nucleon collisions. Both S- and P-orbit captures are considered and it is shown that P-orbit capture
does not compete with the P — S radiative transition. The radiative capture rate W, (for final state H3+~)
is computed in terms of the photoproduction amplitude of Chew, Goldberger, Low, and Nambu and is used
to deduce the nucleonic absorption rate Waps=W 4+W, from the ratio Ways/W ., measured experimentally.
The agreement between calculation and experiment for Wy, is satisfactory. Our conclusion is that the form
of close pair correlations in nuclei is essentially the same as that for the “free’’ nucleon-nucleon interaction
and is comparatively insensitive to the presence of other nucleons.

1. INTRODUCTION

HERE has recently been a renewed interest, both
experimental’™® and theoretical,”2 in the re-
actions resulting from the capture of stopped 7~ mesons
by nuclei, motivated partly by the hope that from the
study of such quantities as branching ratios, momentum
spectra and angular correlations of ejected particles, one
may get reliable information on properties like nucleon
momentum distributions and short-range pair correla-
tions within the nucleus. However, a clear understand-
ing of the m—-capture mechanism is a prerequisite to any
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attempt to interpret data on capture reactions in terms
of nuclear properties. We do know that the basic TN N
interaction w+N & N has the form Gyyse- ¢ and,
in principle, it is possible to calculate the matrix element
for the nuclear capture process from this interaction just
as it is possible to calculate the nucleon-nucleon force.
But such a program has not yet been carried through
successfully even for the N-N problem. In the case of
the capture process, momentum and energy conserva-
tion alone requires that at least two nucleons should be
involved; the mutual interactions of the nucleons inside
the nucleus are therefore of great importance. Obviously,
the pion physics involved in any attempt to calculate
the capture matrix element from first principles is very
complicated. Further, because the entire rest mass of
the pion is converted into the kinetic energy of the two
nucleons, even if we were to describe the nucleon-
nucleon interaction by a phenomenological wave func-
tion, it is the wave function for very small separations
which is most important. We do not at present have an
accurate idea of the wave function for a pair of nucleons
very close together in a nucleus.

An alternative way of approaching the pion-capture
problem was indicated sometime ago by Brueckner,
Serber, and Watson.!? On the basis of the fact that the
capture intimately involves two nucleons (at least),
they assume that these two nucleons are to be treated
on an equal footing and that the nuclear capture
proceeds through the basic reactions

T +n+p—ntn,
T +p+p— ptn.

Capture by clusters of three or more particles is
neglected on the grounds that the probability of finding
more than two particles very close together is much
smaller than the corresponding probability for two
particles. Thus, the capture process is considered to be

(1.1)

13K. A. Brueckner, R. Serber, and K. M. Watson, Phys. Rev.
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the exact inverse of one-pion production in N-N colli-
sions. The matrix element for capture by a complex
nucleus is then expressible in terms of the matrix ele-
ments for capture by a two-nucleon system or, equiva-
lently, in terms of the pion-production matrix elements.
The justification for this procedure is that the wave
function for a closely correlated pair of nucleons, which
is, as we have seen above, most important in the capture
problem, is expected to be largely independent of the
presence of neighboring nucleons, essentially because
the average interparticle separation in nuclei is con-
siderably larger than the separation of the two corre-
lated capturing nucleons. With this picture, the effect
of the other nucleons is felt only through the long-range
nuclear wave function.

Although this picture (generally called the “two-
nucleon capture model”) is in qualitative accord with the
experimental data on capture by complex nuclei, 514
there has been only one strictly quantitative test so far.
This depends on Eckstein’s calculation” of the rates of
the three absorption modes for 7~ capture in He* (the
final states being Hé+#, d+2n, and p-+3#). The only
available experimental information bearing on this
calculation is the ratio of the triton rate to the total
capture rate.l¥ Eckstein uses a general phenomeno-
logical Hamiltonian appropriate to the two-nucleon
model [the same as used in the present calculation,
Egs. (2.1) and (2.2)], and gets two possible values for
this quantity, depending on the relative phase (known,
independently, only to be either 0° or 180°) of the two
amplitudes occurring in the matrix elements. The choice
of 0° for this phase gives agreement with the large
triton rate found experimentally (the other choice, 180°,
leads to a negligible triton rate). It has, however, been
argued!® that branching ratios of two rates, both of
which are sensitive to the presence of correlations, are
not necessarily a good check on the validity of the model,
since the effect of correlations may, conceivably, cancel
out from the two rates compared. A comparison with
experiment of the absolute capture rates predicted by
the two-nucleon model is therefore desirable.

The aim of this calculation is to do this for the
nucleus He?, since in this case there exist experimental
data? bearing on the total capture rates. The reactions
resulting from »— capture in He? are

+He3— d+n (1.2)
— ptntn (1.3)
— H3+y (1.4)
— Hi4-70 (1.5)
— d+n+ry (1.6)
— ptutnty. (1.7)
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Of these, the pure absorption processes (1.2) and (1.3)
are what we are interested in. The other four reactions
can all proceed through basic processes which involve
only one nucleon:

T+p—nty, (1.8)
T +p — ntad, (1.9)

and can therefore be reliably calculated independently
of the validity of the two-nucleon model. In the diffu-
sion-chamber experiment of Falomkin ef al.,2 which
provides us with the data for comparison, the number
of 7~ captures resulting in the final states H3+v and
H3+4-#° are separately counted. Neglecting the contribu-
tion of the rare modes (1.6) and (1.7) to the total capture
rate, and knowing the total number of capture stars, we
may then obtain the ratio of the total pure absorption
rate to, say, the rate for the radiative capture (1.4).
From the remarks above regarding the nature of the
radiative capture process, it is clear that this ratio
Wabs/ W provides just as good a test of the two-nucleon
model as would the total absorption rate Wps.

We may note that the agreement of the measured?
value of the Panofsky ratio in He?, Pues=W o/ W, with
earlier calculations!®1® is of no relevance to the question
considered in this paper. The fact that charge exchange
and radiative capture can be adequately described by
one-nucleon Hamiltonians may indeed be interpreted to
mean that capture reactions do proceed dominantly
through basic processes which involve the minimum
number of nucleons necessary to provide energy and
momentum balance, and gives another reason for
neglecting capture by three (or more) correlated parti-
cles in the pure absorption modes.

The main sections of this paper are devoted to calcu-
lations of the nucleonic absorption rates and the radia-
tive capture rate. The method of calculating the absorp-
tion rate is a straightforward adaptation of the methods
used by Eckstein.” Since the effects of close correlations
are assumed to be the same for 7~ capture in He? as for
the processes (1.1) or their inverses, and since the rates
are expressed in terms of the measured pion-production
matrix elements, smooth wave functions are used which
do not describe correctly the short-range correlations
but which are chosen to give the long-range behavior
accurately (by fitting the radius of He?). The radiative-
capture matrix element is expressed in terms of the
matrix element for the basic photoproduction reaction

v+p— tn (1.10)

at threshold, which is obtained from the dispersion
relations of Chew, Goldberger, Low, and Nambu."
In calculating these rates it is, of course, necessary to
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know the particular Bohr orbit from which the nuclear
interaction of the meson takes place. In liquid Aydrogen,
the capture of both 7~ and K~ mesons is now known to
occur from S orbits of large principal quantum number
through a mechanism the nature of which was elucidated
by Day, Snow, and Sucher!8: The neutral 7—-p (or K—-p)
atom experiences the strong electric field of the protons
of neighboring hydrogen atoms, and the resultant Stark
mixing of the orbital angular momentum causes prefer-
ential capture from the /=0 state because of the greater
overlap of the /=0 wave function with the nuclear wave
function. Calculations'®~?! of the cascade time of pions
in liquid hydrogen made on the basis of this picture are
in agreement with experiment.??-2% In the case of capture
by helium, however, estimates of the cascade time
(=107 sec for n=16) based on analogous argu-
ments?*2 are orders of magnitude smaller than the
experimentally observed value,®?” which is about
3X1071% sec. The experimental number is in fact what
one would expect?” if the de-excitation proceeded
through external Auger and radiative transitions. It is
therefore reasonable to conclude that the meson reaches
the lowest atomic orbits before nuclear capture takes
place.?® The proportion of captures which occurs from
the 1S orbit is then determined by the competition be-
tween 2P — 1S radiative transitions and direct nuclear
capture from the 2P level. In the case of =~ capture in
He3, we have estimated (Sec. 4) the capture rate from
the 2P orbit and find that it is about 49, of
Wiaa(2P — 15). Accordingly, effects of capture from
the 2P orbit are neglected in our discussion.
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An earlier calculation of the various capture modes
in He®* was performed by Messiah!® quite some
time ago using an s-wave Hamiltonian of the form
Yo (pi+ps)=- oy (where p; and p; are the initial and
final nucleon momenta) which arises from the require-
ment of Galilean invariance on the usual p-wave NN
coupling having the form yt(e-pr)(z:¢)y. The wave
functions used by Messiah do not attempt to describe
close correlations of pairs of nucleons. The large
deuteron rate (279, of absorption) found by Messiah
using the single-nucleon s-wave w/VNV interaction given
above and smooth wave functions means that the triton
wave function used corresponds to an average kinetic
energy much higher than that given by a wave function
fitted to the observed rms radius of He®. The extreme
sensitivity of the absorption rate to the short-range
behavior of the wave function can already be seen in the
case of =~ capture by deuterons; the matrix element is
essentially the Fourier transform of the deuteron wave
function for a momentum equal to that of the fast out-
going nucleons, which is about 1 F~1.

So far as the present calculation is concerned, we find
that the experimental value of Wans/W, is in accord
with the value calculated here. We obtain Waps/W,
=8.143.8, to be compared with the number 13.041.8
obtained from the experiment of Falomkin e al.2

2. THE TWO-NUCLEON HAMILTONIAN

In contrast to field-theoretic approaches in which one
attempts the (exceedingly difficult) task of describing the
complex capture process in terms of a basic #/VV inter-
action vertex, the two-nucleon model simply assumes
that the capture involves the simultaneous creation and
annihilation of a pair of nucleons.? The appropriate
effective Hamiltonian is therefore of the form

H= / Y)Y (Xo) Mo (X)) ¥ (Xo)dx1dX2,  (2.1)

where ¥'(x) and y(x) create and annihilate a nucleon at
the point x and 9y, is a transition operator which in-
volves the coordinates (momenta, spins, and isospins)
of both particles (labeled 1 and 2). One important re-
quirement on Mys is that it should not be a sum of terms
each of which involves only one of the labels, since in
that case the Hamiltonian (2.1) will reduce effectively
to a one-particle operator. Also, for capture from the
S orbit (P-orbit capture is discussed in Sec. 4) the
nucleon pair must change parity; conservation of angu-
lar momentum, along with charge independence, then
leads to the following expression as the most general

29 In addition to the remarks of Brueckner, Serber, and Watson
for pion capture, essentially similar remarks were made, at about
the same time, by J. S. Levinger, Phys. Rev. 84, 43 (1951), in
discussing a similar problem, the nuclear absorption of high-energy
photons. Apart from the atomic physics involved in the capture of
stopped pions, the two problems differ basically only in the matrix
elements which enter in them.
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form of 9 when the pion is in a relative s wave with
respect to the two nucleons:

Miz*=[5(r1—72)* $(x0)3(01+02) k(g P T12+ 0P S127)
+i(ert) g(x)(01—02) k
X(g19T 127+ g1S12) Jo(x1—x2) . (2.2)

Here ¢ is the pion field operator, =, =2 and o3, o3 aie
respectively the isospin and spin operators of the two
nucleons, k is the relative momentum of the final
nucleons, 7T'12%, 712" are the spin and isospin triplet
projection operators, respectively, and S127, S127 are the
corresponding singlet projection operators. Strictly
speaking, 9M;.* should be a nonlocal expression, i.e., the
8 function in Eq. (2.2) should be replaced by a form
factor corresponding to a nonzero radius of influence.
As a rough estimate, we may take the radius to be given
by the interaction distance corresponding to the mo-
mentum transfer involved. This is about 0.4 F, to be
compared with the average internucleon distance in He?
of about 2 F. Thus, the use of the § function is quite a
reasonable approximation.

In expression (2.2), four independent amplitudes
20, 6149, go®, and g,® are needed to describe the
s-wave capture process. These are not known a priori,
nor can they be calculated reliably from first principles;
they are to be determined empirically. In this calculation
we use the values obtained by Eckstein? by studying
one-pion production in nucleon-nucleon collisions and
comparing the results with available experimental data.
The important point is that such an approach ensures
that the short-range correlations between two nucleons
are not neglected; their effect is included in the empiri-
cally determined g’s, on the basis of the assumptions
that these short-range correlations have the same form
as for the free NV interaction and that, for the capturing
nucleon pair, these short-range correlations are little
affected by the presence of neighboring nucleons in the
nucleus. With this situation we may then use simple
wave functions in our calculations which do not
specifically describe the short-range correlations, but
give an accurate picture of long-range nuclear prop-
erties. It is on this basis that, in this calculation, we use
a simple Gaussian wave function for the He? nucleus,
the falloff parameter of the Gaussian being adjusted to
give a nuclear rms radius in agreement with the elec-
tron-scattering measurements.

When the initial nuclear state is such that every pair
of nucleons is in a spatially symmetric state (which is
essentially the case for He?), the transition operator
(2.2) simplifies considerably. In particular, the ampli-
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tudes go® and g1 are zero, and 9M1s° can be rewritten
in the form

Mio*=T127T12° ok (01} 02) ki (z1—%2) -
+g13(01—02) -k (v1t72) - 6 ]0(x1—x2) ,  (2.3)

where we have dropped the superscripts from go¢® and
£1®). The amplitudes go and gy are, in general, functions
of the magnitude of k; this momentum dependence will
be assumed to be negligible in this calculation. It is
clear from Eq. (2.3) that the amplitude go describes the
transition from the 3S; (I=0) state of the two nucleons
to the 3Py (I=1) state, while the amplitude g; describes
the transition (1So, I=1) — (3P, I=1).

It is clear from our discussion that the criticism of the
Hamiltonian (2.1) and (2.2) on the grounds that it “is
not a simple sum of one-body operators'®” is not rele-
vant. On the other hand, calculations which employ
both a single-particle #/VN Hamiltonian and simple
(e.g., shell-model) wave functions do ignore the most
important feature of the problem, for it is well known
that the shell-model wave function makes no claim to
describe the short-range NV correlations correctly.

Perhaps it is appropriate to emphasize here that the
two-nucleon model does not predict that pion capture
will necessarily lead to the ejection of two fast nucleons
or that “the two ejected nucleons” will have equal and
opposite momenta. Such details as the distribution in
momentum and angle of the emitted particles are deter-
mined mainly by the center-of-mass motion of the
capturing pair. They are, in general, strongly affected
by the over-all nuclear wave function; in particular, the
momentum and angular distribution can be quite
different from what they would be for two isolated
nucleons. As an example, we quote that the result of the
present calculation for the deuteron production (“one-
nucleon ejection”) rate is about % of the total absorption
rate; small, but not negligible. In the case of capture by
He?, one-nucleon ejection is even more prominent.
Eckstein? finds that a triton production rate of about
229, is possible, and this in fact is the result of the
experiment of Schiff, Hildebrand, and Giese! and that
of Block et al.?

3. S-ORBIT ABSORPTION IN He?

We now specialize to the case of negative pion capture
and write the Hamiltonian, Eqgs. (2.1) and (2.3), as the
sum of two terms describing capture by a p-# pair and
a p-p pair, respectively:

Hs___Hle_,_st’

Hy=—v2 / a<xl~x2>¢—<xl>[—§<v1— v2>¢nf<xl>¢nT<X2>]w-Ego%<ol+oz)+g1%<ol— 09) WX (xa)dade,

Hy——\2 / a<x1—x2>¢~<xl>[—;<v1— vaw(xl)wn(x»}nf-gl%(or o (X2 ) o(x) e

(3.1)
(3.2)
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We need to calculate the matrix elements of H,* and H»® between an initial state consisting of two protons and

one neutron bound in a He? nucleus and a 7~ meson, and a final state consisting of one proton and two neutrons.
This can be done conveniently by using the Fock representation:

1
lHe3>=E /%(&,Ez;€3)¢pT(§1)¢pT(§2)¢n*(Es)lo>d'fldfzdf3,
where ¢; is the initial (He?®) nuclear wave function. Similarly, for the final state,
1
[1p; 2n>=\/—§ /«’f(fl'; & &8N (8 W (&)W (&) |0)dE/dE/dEs .
The matrix elements of Hy* and H,* are then found to be
Gali=—— [sxeaste
1Pfli)=—— | 6(X2—X3) 0.5(X2
Vi

7
X l:_‘z‘(vz— V3) or*(x1; X2,X3)] Ta5°[ god (02t 05)+ 613 (02— 03) Jos(X1,X2; Xs)dX1dXedxs  (3.3)

and

<lezsli>=‘"5—# /5(X1—X2)%S(X1)|:—§(V1— Vz)(pf*(Xl;Xz,Xg)]'le"[:gl%(o‘y—0‘2)]g0¢(X1,X2;X3)dX1dX2dX3, (3.4)

u being the pion mass and ¢,5(x) the S-orbit pion wave function. ¢; and ¢, may be written in terms of the space
and spin wave functions as

0= Fi(x1,%2,%0)x P (12)x(3) , 0= (1/V2)LF 1(X1,%2,%5)x (123) — F 1(%1,%,%2)x (132) ].

The spatial function F;(x1,Xe,X3) is symmetric with respect to interchange of any pair of coordinates; x® denotes
the singlet spin function and x an arbitrary spin function. Substituting (3.5) in (3.3) and (3.4) we obtain

(3.5)

<f|Hl’|i>=(8 )llsz(123)(115—P23"Izs)'Tzs”[80(02+03)+g1(02—Us)jx(S)(12)x(3) (3.6)
and g .
<f[H28Ii>:(8 " x(123) (I55— P2s7LsS) - T12%g1(01— 02)x S (12)x(3), (3.7
u)l/

where Po3®=2%(1+02-03) is the spin-exchange operator
for nucleons 2 and 3 and the integrals 1,5, I,5, I5, and
L5 are given by

I5= /5(1(2— X3) 0= (X2) [i( V2= V) F /*(X1,X2,X3) ]
X Fi(X1,X2,X3)dX1dX2dX3
ILS= /6(xz— X3) @S (X2) [1( Va— V3) F ;¥ (X1,X3,X2) |
X Fi(X1,X2,X3)dX1dX2dX3 ,
I;s= /6(x1—X2) 05X [1(V1— Vo) F *(X1,X2,X3) |

3.8)

(3.9)

XF{(Xl,Xg,Xg)dxldXﬂiXa y (310)
L5= /B(Xl* X2) o (1) [4(V1— Vo) F ¥ (x1,X2,X3) ]
X Fi(Xl,X2,X3)dX1dX2dX3 . (3 1 1)

In accordance with the ideas explained in Sec. 2, we
may evaluate these integrals using for ¥, and F simple

wave functions which do not specifically reflect the close
correlations of the nucleons. For the initial He? nuclear
wave function, we therefore choose a Gaussian form,
since this gives He® and H? form factors which are in
agreement with the electron-scattering data over a wide
range of momentum transfers,

Fi(x1,X0,X3) = N; exp{ — 3N\ (x1—x2)?

+(xa—x3)*+(xs—x1)%]} . (3.12)
The normalization constant NV; is given by
N2=(1/V)(\/7)33%/2, (3.13)

where V is the normalization volume. The parameter A
is directly related to the rms radius R of the nucleon
distribution for He? and H?; thus,

A=1/3R2. (3.14)

In terms of the rms charge radii of He® and H?® and the
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proton rms radius Ry, this rms radius R is given by
R?=2Ru2+3iRu?—R,2.

Ru. and Rm have recently been measured experi-
mentally®®; their values are Rp,=1.974+0.1 F and
Ru=1.68 F (experimental uncertainty less than 109),
leading to R=1.60 F. Then, from Eq. (3.14), A\=0.13 F-2,

So far as the pion wave function is concerned, the
correct S-orbit atomic wave function may be replaced
by its value at the center of the nucleus in view of the
extremely small variation of this wave function over
the nuclear dimensions.

The Deuteron Mode

The final deuteron and neutron have a relative mo-
mentum of about 400 MeV/c. This large relative mo-
mentum means that we may safely ignore final-state n-d
interactions and use plane waves for the two particles.
If p and q are the neutron and deuteron momenta and
¢a the deuteron wave function, the final-state wave
function is

Fa(X1,X,X3) = V$a(x1—Xs)
Xexpliq- (x1+x3)/2+ip-x;]. (3.15)
Substitution of (3.12) and (3.15) in (3.8) then leads to

1
(B[ da= ey (123) Te?

4(2u)
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the following expression for Iy, 48 (the details are given
in the Appendix):

I, 48=—64n*N;V"10,5(0)6(p+q)
an an )
x[(; +1)f<p>—;f'<p)]p, (3.16)

where we use $ to denote the unit vector along p. The
integrals J(p) and J'(p) are defined by

J(p):/oo exp(—Mu?) sin(3pu)pa(u)udu (3.17)
and ’

dJ(p)
P el
i

1 0
=—2-/ exp(—Au?) cos(3pu)dpa(u)udu. (3.18)
0

It is also easily found (see Appendix) that I, 5= —1I; 45,
I;,45=0, and I 45=1I, 45. The final spin function is
X4(123)=XM(12)X(3)=T1x(123).  (3.19)

The matrix element for the deuteron mode is therefore

I,o8 - {g101+ (Bgot+4g)o2+3(go— g1) o5+ 02 0sL — g101+ (g0t 2g1) o2+ (g0—g1) 031}

After the necessary trace calculations, we get for the
deuteron rate for S-orbit capture,

W45=0.0294(3| go| 2+7| g1| *+6 Rego*g1)

2\
X | ¢:5(0)| 2(2MQa)“2[( o

+1)J((2MQd)”2)
d

2

—zx( Msz)mJ’(@MQd)”z)] ,

(3.21)

where the mass M is M=MqM,/(Ma+M,)=3.174 F1
and Q4=0.674 F-1is the energy released in the reaction.
The functions J and J’ depend on the choice of ¢4 and
are defined by Egs. (3.17) and (3.18). We use simple
square-well wave functions for ¢4, in accordance with
our remarks in Sec. 2. Triplet #-p scattering data’!
determine the depth and range of the potential to be
V=36.5 MeV and a=2 F. The corresponding deuteron

®H. Collard, R. Hofstadter, A. Johansson, R. Parks, M.
Ryneveld, A. Walker, M. R. Yearian, R. B. Day, and R. T.
Wagner, Phys. Rev. Letters 11, 132 (1963).

31 M. R. Moravcsik, Ann. Rev. Nucl. Sci. 10, 324 (1960).

XS127x(123). (3.20)

wave function is
pa(u)=A(sinau/u) , u<2F
= Blexp(—pu)/u], u=2F
where =0.910 F~1, 3=0.232 F, and the normalization
constants are 42=0.0243 F-1, B2=0.0575 F-L. For this
choice of ¢4, the integrals (3.18) and (3.19) have to be
evaluated numerically, leading to
W4%=0.00258(3| go|*+7] g1]| 46 Rego*g1) | 0+5(0) |
X3X10% sect.  (3.23)
In this equation, | ¢,5(0)|? is measured in F—3 and the
conversion factor 3)<10% has its origin in the system of
units we use: With ¢=7%=1 and with the Fermi as the
unit of length, the unit of time is (3)X10%)~! sec. For
1S-orbit capture
WaS=2.89(3] go|2+ 7] g1|2+6 Rego*g1)
X104 sec™!.

(3.22)

(3.24)

The Proton Mode

We begin by calculating the proton momentum spec-
trum for the 3-body mode (1.4) assuming, again, that
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final-state interactions can be disregarded. This assump-
tion needs justification since it is now possible for a pair
of nucleons to have a small relative momentum. We
discuss this point at the end of this subsection, where
we reach the conclusion that as far as the total rates (in
which we are primarily interested) are concerned the
error introduced by neglecting the final-state inter-
actions is quite small.

If p, is the proton momentum and p., ps the momenta
of the two neutrons, the final wave function with the
outgoing nucleons represented by plane waves is

Fp (Xl,Xz,Xa) = J/-3/2 exp[z (p1 . X1+p2 . X2+p3 . Xs)] . (325)

With this choice of F;, the integrals I; to I can all be
evaluated analytically. The results are (see Appendix)

I, 55 (p1,p2,05) = 2 27)* V12N ;0,5(0) (m/N)* (p2—ps)

Xexp[— (p1—p2—ps)*/16M ] (p1+p2tps),  (3.26)
L. 55 (P1,02,05) = — 11,55 (p1,P2,05) , (3.27)
L5, 55 (p1,02,05) = 11,55 (P3,01,02) , (3.28)
and
L 55 (p1,02,05) = 11,55 (P2, P1,P5) - (3.29)

There are no spin correlations among the final nucleons,
and the matrix element has the form

1
(flH#|i)p=———x"(123)

4(2u) 2
3 3

X { z g;* Ar{—ﬂ'z'ﬂg z o;* B;}Su"x(123) , (330)

7=1 =1

where

A1=g1 (213,ps_14,1)s) ’

A,=3gol; ,5+41 (311,55 213 5+ 14 ,5), (3.31)
Bi=—glL,5, Bo=gi,5+a,5+1L,5),

A3=3B3=3(g0“g1)11,ps-

If W,5(p1,ps2,ps) 1s the transition rate into a final state
with the proton having momentum p; and the neutrons
having momenta p, and p;, then

W »5(p1,D2,p3)dP1dp2dps
2w dp1dp.dps
=— > [{f|H?|i)p|20(E;—Ef) Vi——"".
S S s BV =

The sum is over the spin directions of all particles (all
particles unpolarized). Integration of (3.32) over p; and
p; and the directions of p; gives the proton momentum
spectrum :

WpS(p1)= / W 55 (D1,02,05)dP2dpsd Q1. (3.33)

(3.32)

W ,5(p1) is most conveniently written as a sum of direct
and cross terms in I ,%, I5,%, and I, ,® coming from
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[{fIH|3)p|%:
WS (p1)= (2] g0l >+ | g1| )W 11 (p1)+ | 81| *Was(p1)
+ 1 g1 W as(p1)+ (| g1|2+2 Rego*g) W3 (p1)
+ (1811242 Rego*g) Wia(po)+ | g1[*Waa(p1) . (3.34)

As is clear from the notation, Wii(p1), Wis(p1), and
W aa(p1) are the direct terms; Wis(p1) and Wis(py) are
cross terms arising from interference of the amplitudes
for capture by the p-p pair and a p-n pair; and Ws4(p1)
represents antisymmetrization in the capture by the
p-p pair.

The integrations required in the evaluation of
W,3(p1), Eq. (3.33), can be performed analytically. One
obtains

W11(ﬁ1) = 8KP3P12 exp(~p12/2)\)0(P2) )
W ss(p1) =W as(p1) = K Pps® exp[ — (p12+P?)/8)\]

(3.35)

4N p1P
X {—-—- Sinh(-———)(18p12+ 2P2—48))
pP 4N

448\ cosh(%\}—))}ﬂ(PZ) , (3.36)

Wis(p1) =Wi(p1)=2KPp:* exp[ — (Spr°+P?)/16\]
8\ piP
X [— sinh(——)(ZP2—48)\)
P1P 8\
piP
+48\ cosh(———-) 6(P2), (3.37)
8\
and
Wias(pr)=2KPps* (P*—9pr%)
Xexp[— (p24P2)/8\]0(P). (3.38)
In these equations, 6 is the usual step function [8(x)=0
for £<0, 8(x)=1 for x>0], P*=4M.Q,—3p:® (Q»
=0.664 F! being the energy released) and
K=2-9320=3 (M /1) | 0+5(0) |2=0.0022] ¢,5(0) |2.
(3.39)

The various W functions are shown graphically in Fig. 1
and the complete proton momentum spectrum in Fig. 2.

Proton Momentum in F'

F1G. 1. The functions W; (1), Egs. (3.35)-(3.38), which

contribute to the proton momentum spectrum.
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F16. 2. The proton momentum spectrum for |go|2=0.32 F8,
|81[2=0.29 F?, arg(go/g1) =O0.

(For the values of go and g; used in drawing Fig. 2, see
the next subsection.) As would be expected, the spec-
trum has two fairly broad peaks—the lower momentum
peak corresponds to spectator protons, and the higher
momentum peak corresponds to participant protons.

Actually, the shape of the spectrum as shown in Fig. 2
will be distorted because of #-p and #-# final-state inter-
actions, owing to the existence of the deuteron and the
low-energy 1Sy #-% virtual resonance. The latter will
arise for configurations in which the relative #-» momen-
tum is small, i.e., it will affect the shape of the spectrum
at the maximum-proton-momentum end. The effect of
the #-p interactions will be strongest around a proton
momentum of about 200 MeV/¢~1 F~, when the p-»n
pair has zero relative momentum. However, configura-
tions with small relative momenta between any pair of
particles form only a small fraction of the total phase
space available. This fact and, even more strongly, the
existence of a completeness relation for the absorption
rate Waps=Wa+W,, ensure that W, will not be
affected to any appreciable extent by these final-state
interactions.

To see this, let us first consider the effect of the low-
energy #-p interaction. This is important in configura-
tions of the type | /)= (np),n) where the notation (np)
indicates that the pair has a small relative momentum.
The effects of any interactions between (#p) and the
(fast) #» may be disregarded. If ¥ (,,) (E,r) is the wave
function of the interacting (zp) pair having a center-of-
mass energy E, the matrix element for the final-state

| (np),m) is
M(E)= / Yy *(E,r) exp[—it, p.(E) JO¥.dR, (3.40)

where we have suppressed the spin dependence of M (E)
and have used O to denote the spatial part of the
Hamiltonian operator and R to denote the set of coordi-
nates of all three particles. The total absorption rate is

DIVAKARAN

then proportional to

Pabs=ZE[M(E) I an(E)

B / dRAR’ 3 5 {(¥#*O™ () (Ex) exp[its-pa(E)])

X (¥ ) *(E,x') exp[ — ity pu(E) JO¥:)pu(E)} .
(3.41)

Here p.(E) denotes the final density of states of the fast
neutron,and the sum over E includes the deuteron state.
For small (np) energy, only for which ¥, (E,r) differs
from the corresponding free-particle wave function, p,
and p, are practically constant; so we may write

Pabs= /‘I/i*o.r eXP[ifn'pn]
X[z ¥ aun(E)Y p*(Erx)]

Xexp[—it,/ *pa]JO¥ip.dRIR’. (3.42)
We now use the completeness relation in the form that,
with the sum over E extended to all #-p states including
energetically inaccessible ones,

28 Y ) (E) ¥ (o ¥(Et') =8(x—1')

independent of the n-p forces, to conclude that no
error is made in Paps if W(ap)(E,r) is replaced by
the corresponding free-particle wave function. The
essential point is that the deuteron state is implicitly
included in the sum over all plane-wave states on
account of their completeness property. Similar re-
marks, of course, hold true for the effects of the #-n
forces.

Integration of the proton momentum spectrum over
1 therefore leads directly to the absorption rate W usS:

Wabssz/WpS(Pl)dplv (3'43)

and the rate of transitions to three free particles, the
proton rate, is given by

WpS=W apsS—WaS, (3.44)

where W45 is the deuteron rate which we have already
calculated.

Determination of g, and ¢,

The values of |g|? and |g;|® may most conveniently
be determined by using the two-nucleon Hamiltonian to
study single-pion production in N-N collisions. In
particular, |go|? can be obtained by calculating the
cross section for the reaction

prp—rd

as a function of the center-of-mass momentum in the
final state and comparing with available experimental

(3.45)
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data.?’? Similarly, a study of the process®
prp— oty (3.46)

yields a value for |g;|2 This has already been carried
out by Eckstein (Appendix B of Ref. 7), using plane
waves for the fast initial nucleons and square-well
potential wave functions (the appropriate potential
parameters being determined from the triplet and singlet
scattering lengths and effective ranges) for the final
nucleons. Eckstein obtains the values

lgo|2=0.32-£0.04 F8, |g|2=0.2940.15F5, (3.47)

where the errors quoted come from uncertainties in the
experimental cross sections. Assuming time-reversal
invariance, the phases of go and g, are identical with the
nucleon-nucleon scattering phase-shifts at an initial
center-of-mass energy of 140 MeV and in the ap-
propriate angular-momentum states

go==|go|exp[i8(P1)],
g1==£|g:|exp[i8(Po)].

Using the results of V-V phase-shift analyses® around
140 MeV, Eckstein concludes that the phase of go/g1 is
either 0° or 180° to within about 20°. A choice between
these two possibilities can only be made on the basis of
other, independent, data; Eckstein,* for example, finds
that the two-nucleon model prediction for the triton
rate for capture by He! is in agreement with experiment
only for arg(ge/g:)=0. In comparing our results with
experiment we adopt the values given by Eqgs. (3.47)
and also take arg(go/g1)=0.

(3.48)

4. ESTIMATE OF THE P-ORBIT
ABSORPTION RATE

In discussing the magnitude of the P-orbit absorption
rate, we distinguish between the following two modes
of capture:

(a) The pion is in a P orbit with respect to the He?
nucleus but in an s state with respect to the capturing
pair of nucleons.

(b) The pion is in a P orbit, and is in a p state with
respect to the capturing nucleon pair.

The amplitudes for these two cases will not interfere
with the S-orbit capture amplitude because of the ortho-
gonality between the atomic 15 and 2P wave functions.

A. s Wave

The calculation of the absorption rate in this case is
analogous to what we have already done for capture
from the S orbit—the only difference is that in evaluat-

( 32 F) S. Crawford and M. L. Stevenson, Phys. Rev. 97, 1305
1955).

8 R. A. Stallwood, R. B. Sutton, T. H. Fields, J. G. Fox, and
J. A. Kane, Phys. Rev. 109, 1716 (1958).

3 Tt may also be mentioned here that Eckstein (Ref. 7) has
shown theoretically that, to the extent the N-V correlations arise
from p-wave emission and absorption of pions, go=g: as is actually
found to be the case.
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ing the integrals I, I, I, I, we now have to use the 2P
orbital wave function instead of the 1S orbital wave
function. The transition matrix is the same as before,
Eq. (2.2), and the process is described as before in
terms of the amplitudes go and g;. Using free-particle
wave functions for the final nucleons, we write again
the expression for I ,:

I,,= V_3’2N¢(p2—p3)/dx1dx2dx3

X 8(x2—X3) @r(Xe— 3 (X1 X2+X3))

X exp[—i(p1° X1+ P2+ Xe+ps*Xs) ]

X exp{— AL (X1—X2) *+ (X2 —X3) >+ (x3—x1)2]} ,
4.1)

where we measure the pion coordinate from the center
of the nucleus. The pion wave function to be used now
is the 2P orbital wave function:

‘PWP(X) = R21(x) Ylm(lyyx)

1
= Ry1(x) Pym(cosd) exp(imyx) ,

o (4.2)

where Ry; is a normalized radial wave function. If we
denote the first Bohr radius of the pion around protons
by @, R is given by

Roi(x)= (2x/3'2a5/%) exp(—x/a). (4.3)

Since ¢>>R, the radius of the nucleus, we may replace
the exponential in (4.3) by unity. This permits the
integrations in (4.1) to be done analytically, and the
result (see Appendix) is

I P— (27r)37rNi 5( n + )( )
" _2i33/2V3/2a5/2)\5/2 P11+ P2 P3)(P2—P3)p1
Xexp[— (p1—p2—ps)¥/16)X]. (4.4)

Also, Egs. (3.27), (3.28), and (3.29) hold for the
P-orbit case as well. Comparing these integrals with the
corresponding S-orbit integrals, we get
L,,*= (p1/6*%iaM)], %,
L ,P= (p1/6*%iaN)]y,,5,
L, 7= (p3/6*iaN)L5 %,
14,1,1)"—" (?2/63/%0)\)14'1;3.
These equations are exact. We now make the ap-
proximation of replacing pi, ps, and p; by their average
value (p1)={(p2)={(ps)=(p). The rate for absorption
from the 2P orbit when the pion is a relative s wave with

respect to the nucleons is then expressible in terms of the
corresponding 1S-orbit rate

W ans (s-wave 7) =~ ((p)*/216aA) W 4ps5.

(4.5)

(4.6)
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TasLE I. Transition amplitudes for p-wave pion.

Initial state Final state

Angular Isotopic Angular Isotopic
momentum spin momentum spin Transition matrix 917,27

1S, 1 EAY 0 Y11 1255127 (01— 62)* p (F1—%2)* @

1S, 1 3Dy 0 v2T12°S127(@1—02)* { (k* p) k— 3%, } (T1—72)* 6

351 0 1So 1 ¥3S12°T157 (01— 02) * P (T1—%2)* &

35, 0 1D, 1 YaS12°T127 (01— 02) { (k* pr) k—3%°p .} (T1—72)* &

With (p)=1F-1 we get If we denote the rate for (4.10) by WyP(deut), for
small pion momenta we have the relation?

W ansE (s-wave 7) = 7.5 X 1070 41,5 . 4.7 P r

B. p» Wave

When the pion is in a p wave with respect to the
capturing pair of nucleons, the nucleon pair undergoes
no change of parity. The final pair of nucleons are there-
fore either in a relative .S state or a D state. Conserva-
tion of angular momentum and isospin then restricts the
total number of amplitudes contributing to p-wave
capture to four. The initial and final states correspond-
ing to these four amplitudes and the appropriate tran-
sition matiices are shown in Table I. The dominant
amplitudes are those with an N* intermediate state:

7+N+N— N+N*— N+N.

We assume that all other amplitudes are negligible and
so need consider only final states of the type (2,2), (1,2),
(2,1), and (1,1), where (Z,J) stands for a final state with
isospin 7 and angular momentum J. Of the four ampli-
tudes given in the table, we therefore confine attention
to the fourth one, namely the amplitude 4 describing
the transition (3Sy, 7=0) — (1D, I=1). It is clear that
this amplitude contributes also to the P-orbit pion
capture by deuterons and, by time-reversal invariance,
to the p-wave pion-production reaction

p+p— rrd. (4.8)

It is therefore possible to express W.n"(p-wave =),
the rate for p-wave absorption in He’ in terms of
o(pp— wtd, p-wave w) and use the experimentally
measured value of this cross section to estimate
W apsT (p-wave ).

First, the relation between W¥(deut), the rate for
P-orbit absorption in deuterium, and o(pp— wtd,
p-wave w) is established through the sequence of
reactions

7~ +d — n+n (from P orbit) (4.9)
!
m+d — n+n (p-wave 7, in flight)  (4.10)
! (detailed balance)
n+n— 7m+d (p-wave m) (4.11)
! (charge symmetry)
p+p— wt4d (p-wave 7). (4.12)

Wrdeut)  V|(@/dr)o.F()] s

= = . (4.13)
W ;1F(deut) Pl 96watp 2
Further,
o(m=d — nn, p-waver) 2 p,2
? i (4.14)
o(nn— w=d, p-waverw) 3 p.?
and
o(pp — mtd, p-wave )
=o(nn— md, p-wave 7). (4.15)
Combining Eqs. (4.13)-(4.15), and the relation
o(7=d — nn, p-wave m)= (uV/p) WP (deut), (4.16)
we get
n2
WE(deut)= —a(pp — wtd, p-wave )
144mwaSu p,®
=pp.2/144ra’ut, 4.17)

where we have written the cross section for p-wave
pion production (4.12) as 8p.%/u. The corresponding
rate in He® may be written as

W ans (p-wave m)=32£W P (deut). (4.18)

The factor 32 takes account of the fact that the Bohr
radius in He? is half that in deuterium and £ is a correc-
tion factor for the different probabilities of finding a pair
of correlated nucleons in He® and the deuteron. We may
eliminate this factor by using the relation corresponding
to Eq. (4.18) for S-orbit capture. Rembering that only
the amplitude go (for the transition 3S;—3P;) con-
tributes to the S-orbit capture in deuterons and noting
that in He?, WS (351 — 3P1) = 2W .p5°, we obtain

2IW s S=8EW S (deut) . (4.19)

In exactly the same way as the P-orbit deuteron capture
rate [Eq. (4.17)] was obtained, we have

W ans® (deut) =2 (ap.2/a*u?) , (4.20)
where

a= (u/pr)o(pp — mtd, s-wave 7).

35 J. M. Cassels, Nuovo Cimento Suppl. 14, 259 (1959).
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Equations (4.17)-(4.20) lead to
Wabsp(p'wa've T)/Wabssz (1/600’2‘1‘2) (B/(Y) M

Using the experimental values® a=0.14 mb, =1.0 mb,
we finally obtain

W absE (p-wave m)=6.9X 1076 4p,s5.

(4.21)

(4.22)

In general, the amplitudes for p-wave and s-wave
absorption from the P orbit can interfere even though
the initial and final angular-momentum states of the
two capturing nucleons are different for the two cases.
The reason for this is that there are more than two
nucleons in the capturing nucleus; thus, for example,
interference is possible between the amplitude for the
pair (1,3) undergoing a 3S;— 3P; transition with the
nucleon 3 as a spectator with the amplitude for the pair
(2,3) undergoing a %S — 1D, transition with the nucleon
1 as a spectator.?® For a first estimate, we neglect such
interference effects and take the complete P-orbit
absorption rate to be given by the sum of Eqgs. (4.7) and
(4.22):

W abs? = WansT (s-wave 7))+ W absT (p-wave )

=1.1X 10" sec?, (4.23)

taking the value of WapsS given in Sec. 6. This is to be
compared with W;,a(2P — 1S) for a He’-n— atom,
which is7 3)X 102 sec~. So

Wﬂ.bsP/Wrad (2P - 1S) =~ 3-7% . (4.24)

We therefore conclude that capture from the 2P orbit
may be ignored.

5. RADIATIVE CAPTURE

In accordance with our earlier remarks on the nature
of the radiative capture, we take the general form of the
effective Hamiltonian to be

Hy=g_ / Pl @ AR F@dx,  (5.0)

where ¥,!(x) creates a neutron at the point x, ¥, (x)
annihilates a proton at the same point, A(x) and ¢—(x)
are the photon and =~ meson field operators, ¢ is the
nucleon spin operator, and g is the effective coupling
constant. It may be recalled that H, is identical with
the so-called gauge invariance term which contributes
to the s-wave photoproduction of charged pions.

The matrix element of H, between an initial state
consisting of a He® nucleus and a #~ meson and a final
state consisting of a triton and a photon is calculated in
exactly the same way as before by using the Fock

36 It is for the same reason that terms in Rego*g; appear in the
S-orbit absorption rates also, even though go and g; are amplitudes
for different angular-momentum channels.

(1“975% R. Burbidge and A. H. de Borde, Phys. Rev. 89, 189
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representation for the nucleon states. The result is
-
(uw)'/?

X ¢1(X1,X2; X3) ‘p‘lrS(XZ) eXP(— ik. X2)dX1dX2dX3 ,

(flH,|i)= /(pf*(X1;X2,X3)s-a2

(5.2)

where ¢ is the polarization vector of the photon, k is its
momentum, and w= | k|, its energy. Also, if F; and F; are
the initial and final spatial nuclear wave functions, then

@i(X1,X2; X5) = F4(X1,%2,%3) x ) (12)x (3)
and
@5 (X1; Xe,X3) = F 7 (X1,X2,X5)x (1)x ) (23)

so that

(f1Hoy| )= [~/ (ueo)"*Ix1(123)

><S2368'0‘2312”X(123)K, (53)
where K is the integral
K= / F £*(%1,X2,X3) F (X1, X2,X3)
X exp(—ik-Xs) o+ 5(Xz) dX1dXedXs. (5.4)

If we use the same nuclear wave function for H? as for
He? then F; is given by

F 1 (x1,X2,X3) = V12 exp[ip- (x1+Xo+x3)/3]
X Fi(x1,X2,X3) (5.5)

and F; is given by (3.12), p being the triton momentum.
The integral (5.4) is then easily evaluated:

K=V=%(2m)| 0.5(0)|* exp(—#*/18N)d(p+k), (5.6)

where again ¢.5(x;) has been replaced by ¢.5(0). The
rate for unpolarized initial and final particles is then

lg-[*1e-*(0)* ko
Wa= exp(—ko?/9N)
8mu (A+-ko/ M)
ko=M [ (1+2u/M)?—17] being the center-of-mass
momentum of the final-state particles and M, the triton
mass. Numerically

Wy=0.0247]g_[*[ o5 (0) |*.

(5.7

(5.8)

The coupling constant |g_|2 may be determined using
the available experimental data on charged pion photo-
production. In order to isolate the s-wave contribution
to the total photoproduction cross section it is necessary
to extrapolate the data to threshold. Since #+ photo-
production experiments are more complete and more
accurate than the limited experiments on =— photo-
production, we use the former, along with the =—/«+
ratio, for which the threshold value is rather unam-
biguously predicted by theory.

Thus we calculate the cross section for the reaction

Y+p— ntat (5.9)
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using the Hamiltonian

Hi=g: f V(e AR, (X)dx,  (5.10)

where g, is the =+ amplitude corresponding to g in
Eq. (5.1). One obtains easily

or=(|ge|%/4m) (p/ ko) A+-ko/ M) (5.11)

Here ko and p are, respectively, the initial and final
center-of-mass momenta. To facilitate the comparison
of Eq. (5.11) with experiment, it is convenient to write
the total s-wave =+-photoproduction cross section in the
form

(7+=47I'Cd+, (5.12)
C being the dimensionless kinematical factor
pu+pHi2
C= (5.13)

w(ho/ M)

Comparing Egs. (5.11) and (5.12) we see that the
Hamiltonian (5.10) leads to the following expression

for a,:
! g4 ]2 u2(1-Hho/M,)

ay= .
+ 1672 ko(ﬂ2+P2)l/2
At threshold,

a,°= (| g+ °u/167°%k0) (1+ko/ M »)

with %, taking the value ko=0.67 F.

The values of ¢,° and ¢_° (defined similarly for o~
photoproduction) have both been determined by Hamil-
ton and Woolcock?® using the experimental data avail-
able (rather limited in the case of a; further, experi-
ments to measure a— have to be done in deuterium and
there are difficulties associated with the corrections to
be made in extracting information on photoproduction
on free neutrons). They use the dispersion relations of
Chew, Goldberger, Low, and Nambu'” (CGLN) to
obtain ¢; and ¢_ as functions of incident photon energy,
these functions being normalized by fitting the experi-
mental points available in the neighborhood of the pion
threshold. For our purposes it is sufficient to know that
for a certain choice of the parameters involved in the
CGLN amplitude, and for energies close to the threshold
the agreement is satisfactory for a;. In the case of a_
there are fewer points available and it is difficult to
judge how good the agreement is. The value of @,° ob-
tained in this way is ¢,.°=20.2X10~* F? with an un-
certainty of about 87, leading to | g;|2=0.26410.02 F2.

To obtain |g_|?% we note that

(5.14)

(5.15)

| g—l 2/ [g'l' l 2= (‘7—/‘7+)thresh .

A simple theoretical argument® based on the fact that
s-wave photoproduction is entirely an electric-dipole
38 J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291 (1960).

( 395M . Gell-Mann and K. M. Watson, Ann. Rev. Nucl. Sci. 4, 219
1954).
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transition leads to (o_/oy)thresn= (1+u/M)?=1.32, so
that we finally obtain

|g|2=0.3540.03 F2. (5.16)
6. RESULTS AND COMPARISON
WITH EXPERIMENT

With |go|? and |gi|? taking the values given by
Eq. (3.47) and assuming that go and g; have the same
phase, the 1S-orbit capture rates are

W4=1.4040.51X 10" sec™?, 6.1)
W aps=7.8542.80X 10 sec™!, (6.2)
so that the rate for the final state p-42# is
Wp=6.4543.31X 10" sec™*. 6.3)
The value of W, with |g_|2=0.3540.03 F?, is
W,=0.9720.08 X 105 sec™!. 6.4)

The branching rates of interest to us are predicted to be

Wa/W\=144-0.68, (6.5)
W ape/ Wo=8.1£3.8, (6.6)
W/ Wa=4.6£4.1. 6.7)

Of these, the only quantity for which an experimental
number is available is Waps/W,. This comes from the
experiment of Falomkin ef al.? Pions were stopped in a
He? diffusion chamber and the two-body radiative-
capture events (1.5) and the charge-exchange events
(1.6) were identified through the unique ranges of the
recoil tritons. The deuteron and proton absorption
modes could not be distinguished and counted sepa-
rately, as all of the deuterons and some of the protons
escaped from the chamber. The three and four body
radiative modes are expected to be very small (Messiah!®
estimates them to be ~29, of total captures). If we
neglect their contribution to the total number of capture
stars, we obtain, from the data of Falomkin ef al.,2 the
number

(W abs/ W y)exp=13.01.8. (6.8)

Thus, within their respective errors, the theoretical and
experimental values of Wahs/W, are in agreement. It
would be very desirable to have a more precise knowl-
edge of | g1|?, since the uncertainty quoted in Eq. (6.7)
is determined mainly by the error in |g;]% It would be
especially desirable to have an experimental value of
(W4/W,) since it is independent of the completeness
approximation used in the calculation of Was. The
ratios (6.5) and (6.6) may be considered independent
predictions of the two-nucleon model, to be compared
with experimental data when they become available.
An examination of Eq. (3.34) and Fig. 1 shows that
the two terms in the proton-momentum spectrum which
depend on go*g; namely, Wis and W4, are both very
small. Thus the calculated value of Wa/W,, Eq.
(6.8), is almost completely independent of whether



=~ CAPTURE BY He?

arg(go/g1)=0 or 180°. The deuteron rate W, is, on the
other hand, less by a factor of 4 for arg(go/g:)=180° as
compared to its value for arg(go/g1)=0. The ratio
Waps/Wa therefore provides an independent way of
determining the relative sign of go and g;. We would,
of course, expect to find that arg(ge/g1)=0 as it is in
the capture by He?, in accordance with the idea that go
and g; are essentially independent of the particular
nucleus in which the capture takes place. Once the phase
of go/g11s fixed at either 0 or 180°, the ratio W /W4 is
very insensitive to the value of go/g:(=x), for x having
a value near unity. In fact, if we take /Wy (p1)dp:
= S Ws(p1)dp: and neglect the contribution of the
other terms (they are all small, and cancel each other
out), then (d/dx)[W aps/ Wa(x) ]=0 for x=1. It is there-
fore not possible to determine with any accuracy the
value of go/g; from a measurement of W s/ Wa.

In the comparison above, we have ignored the effects
of P-orbit capture on the basis of the result of Sec. 4 that
W absT/Weaa (2P — 18)~49),. However, the fact that
this ratio is as large as 4%, in He?® means that already in
He!, a considerable fraction of the capture processes
may go from the P orbit, since the nuclear capture rate
in He*is greater than that in He? by more than an order
of magnitude, while the 2P — 1S radiative rate is essen-
tially unchanged. Of course, if the mechanism suggested
by Condo is indeed the correct one for = capture in
helium, there is no need to consider P-orbit capture
at all.
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We finally conclude that the process of pion absorp-
tion can indeed be satisfactorily described by using
nuclear wave functions which are known to be correct
for large internucleon separations, provided that we use
a two-nucleon Hamiltonian which incorporates the
effects of close correlations. It is therefore difficult to
learn much more from the study of pion absorption in a
complex nucleus than one can already from studying
the inverse process for the two-nucleon system. The idea
that the form of the close correlations is to a large
extent insensitive to the presence of other nucleons, and
is determined essentially by the nucleon-nucleon force
has been used in nuclear physics calculations before.
Two typical examples are its use in the construction of
variational wave functions by Austern and Iano* and
in the study of nuclear matter by Moszkowski and
Scott.®* The results of this calculation tend to support
this idea.
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APPENDIX: EVALUATION OF I, I, I;, AND I,
(1) Deuteron Mode: S Orbit
With the wave functions given by Egs. (3.12) and (3.15), I,45 is

L.s8=V"'N:.5(0) f dxX1d%30%30(Xo—X3){i(V2— V3)da(| X1—X2|) exp[ —i{5q- (x1+xX2)+p-x5} ]}

X exp[ — FA{ (X1—Xo) >+ (X2—X3) 24 (x3—x1) 2} ]

=TV"IN;0.5(0) / dx1dxs exp[ —1{3q- (X1 X2)+p- X2} ] exp[— A (x1—X2)?]

X{Ga—p)¢a(|x1—x2|)+i(E1—22)pd (| x1—X2| )},

(A1)

where the prime on ¢4 denotes differentiation with respect to |x;—x»| and £ is the unit vector along x. In terms

of the new variables
u=Xx;—Xas,
(A1) may be rewritten as

L1,a5=V=1N;0.5(0) / dudv exp[ —iv-(q+p)] exp(Giu-p—Mi?){(3a—p)da(u) +itipa ()} .

v=5(X1+xo),

(A2)

(A3)

Integration over v now gives the momentum-conservation § function. Integration over the directions of u and a
further integration by parts over # then lead to the form given in Egs. (3.16), (3.17), and (3.18).

By interchanging x, and x; in the integrand of Eq. (3.8) and noting that Fi(x1,Xs,X5) is symmetric under this
interchange, it is immediately seen that I ¢S= —1I;,45. I 45 is zero as a consequence of the symmetry of the final-
state wave function in x; and x; because of this symmetry, the integrand changes sign under the change of variables
X1 <> X. The substitutions x; — Xa, Xs — X3, X3 — X3 show that I,45=1; 45.

4 N. Austern and P. Tano, Nucl. Phys. 18, 672 (1960).

4 8. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 65 (1960).
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(2) Proton Mode: S Orbit
With the wave functions given by (3.12) and (3.25), we have

3
I1_,,S= V_3/2J\71§01r‘s(0)/dX1dX2dX35(X2—'X3){i(V2'— V3) CXp[—t Z p,;'Xi]}
1

X exp[ — 3N (x1—X2) 24 (X2 —X3) 2+ (X3—X1) %} ]
= V52N 4 5(0) (pa— ) / dxsds exp[ —\(x1—x2)?] exp[ —i{p1-xe-+(pu-t-Bo)-xa} . (A4)

The change of variables (A2) and integration over v again give the momentum-conservation 6 function:
I, 5= V—3/2(21r)3N,-<p,,S(O)6(p1+p2+p3)fdu exp[7u- (patps—p1) —Mu?]. (AS)

The integration over u can now be done analytically, leading to Eq. (3.26) for I1,,5(p1,ps,ps)-
As in the case of Iy,45, I, »5(p1,p2,p5) =11,,5(P1,p2,p3). Similar interchanges of xi, Xo, and X3 also lead to Eqgs.
(3.28) and (3.29).

(3) Proton Mode: P Orbit

After integration over x; using the § function, Eq. (4.1) is
I ,P= V_3/2Ni(p2—p3)/¢wp(%(x2—X1)) exp[— i{p1- X1+ (Pa+p3) - X2} ] exp[ —A(X1—X2) 2 dx1dX>. (A6)
The change of variables (A2) and integration over v lead to
L, ,P=V=32N(27)*3(p1+p2+ps) (P—Ps) / du ¢-"(—u/3) exp[—Fiu-p'—Mu*], (p'=p1—p2—Pps)

=V-32N;(2m)35(p1+p2+ps) (2:—pa)4, say. (A7)

Substituting for ¢, from Eq. (4.2), the integral 4 is given by

A= i / dud(cosd)dy u? exp[ —3iu+p’—A\u?]Ro1(u/3) P1™(cos?) exp(imx)
T

1 +1
:-/ du/ dy exp(—3iup’y)yu® exp(—\u?)Ro1(u/3)
Vo -1

cos(3up’) sin(Gup’)
= i(4n)il2 / du u? exp(—)\u2)R21(u/3){ 2 2 } . (A8)
Gup')  Gup')?
Approximating R by
Roi(u/3)=2u/3%2a52,
we get
A= (8r11%/33124512)(4,— A5) , (A9)
where
1 = /2 P —p
A1=— exp(—Mu?)u? cos(Gup’)du= (1————) ex ( ),
- / Pl costhup = (1= Yl
2 0 71.1/2 _P/2
Ao=— exp(—Mu)u sin(Gup’)du= ex ( )
2 P'Z/(.) p( (Gup N p 16
So
A= (—irp'/38/24a52\5/%) exp(—p2/16)) (A10)

leading to Eq. (4.4) of the text.



