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Absolute Stability of Melvin's Magnetic Universe*
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The physical structure of Melvin's magnetic universe is brieRy examined and its dynamical behavior
under arbitrarily large radial perturbations is discussed. It is shown that no radial perturbation can cause
the magnetic field to undergo gravitational collapse to a singularity or electromagnetic explosion to infinite
dispersion. Rather, when arbitrarily perturbed inside a finite region, the magnetic and gravitational fields
undergo damped, turbulent oscillation until they have radiated away from the perturbed region all the
energy associated with the perturbation. Then they settle down into Melvin's unperturbed, static
configuration.

l. INTRODUCTION AND SUMMARY

A C YLINDRICAI electromagnetic universe
(C.E.U.) is a system composed entirely of

electromagnetic and gravitational fields, which exhibits
whole-cylinder symmetry. (This means it is invariant
under rotation about and translation along an axis of
symmetry, and under reQection in planes containing
that axis or perpendicular to it.) There has been much
interest in cylindrical electromagnetic universes re-
cently, ' ' partly because of a belief that certain C.E.U. 's
might undergo gravitational collapse, 4 and partly
because a C.E.U. is the limiting case of a toroidal
electromagnetic configuration (geon)' when the major
radius of the active region becomes much larger than
its minor radius. ' '

The most general cylindrical electromagnetic universe
has electric- and magnetic-field lines which lie in the
cylindrical surfaces perpendicular to the radial direc-
tion; radial components would lead to singularities on
the symmetry axis. Those C.K.U. 's with purely longi-
tudinal magnetic field and purely azimuthal electric
field have been the subject of particularly intensive
investigation by Melvin. ' ' He has shown that all static
configurations of this type are related by a simple scale
transformation which shortens radial distances, while
increasing electromagnetic-field strengths. There is no
electric field in these static configurations, and the
magnetic field is concentrated near the axis of sym-
metry, dying out quite rapidly beyond a certain proper
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radius a. We will call a representative one of these static
C.E.U, 's Melvin's magnetic NrIieerse; and we will call
that value of a which singles it out the runge radius of
the umiverse.

Shortly after Melvin discovered his universe, as a
solution to the Einstein-Maxwell equations of general
relativity, Wheeler4 showed that it could also be ob-
tained from Newton's theory of gravitation, and that
its magnetic field configuration gives a maximum of the
Newtonian energy per unit length, subject to the con-
straint of fixed magnetic Qux. For this reason, he
tentatively described Melvin's universe as a highly
concentrated bundle of magnetic-field lines, so distri-
buted that the gravitational attraction between field
lines delicately balances their Maxwell-Faraday repul-
sion. If the configuration were squeezed slightly,
gravitational forces would overwhelm electromagnetic
forces, and the field lines would implode. Converseh',
distending the configuration would cause explosion.

Subsequent analyses have contradicted this picture:
Melvin II has found his universe to be stable against
small radial perturbations; and, independently, the
author has proved stability against arbitrarily large
perturbations, which are confined to a finite region
about the symmetry axis. (Cf. Sec. III.)

How can this extreme stability be understood in
physical terms; and why did the Newtonian analysis,
on which the belief of instability was based, give the
wrong results To answer these questions, we need a
familiarity with the concept of "cylindrical energy"
or "C energy. "

In a separate communication' the author introduces
the concept of C energy for whole-cylinder-symmetric
systems and shows that for these systems it plays a role
in Einstein's theory analogous to that played in
Newton's theory by the mass-energy (rest mass, plus
internal energy, plus negative gravitational energy).
In particular, C energy has the following properties:
(1) C energy takes the form of a contravariant vector
P', which obeys the conservation law I",=0. (2) C
energy is localizable and locally measurable: The corn-
ponent of P' along the world line of an observer is the
C-energy density he measures in a local Lorentz frame;

' K. S. Thorne, Phys. Rev. 138, 8251 (1965).
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and the component of P' along a direction I' orthogonal
to his world line is the C-energy Aux he sees Qowing in
that direction. (3) The C energy per unit of (group-
theoretically-defined) coordinate length, integrated
over the interior of a solid cylinder, is equal to the
cylinder's proper mass per unit length, in the limit of
small mass; but just as the Newtonian potential of a
cylinder diverges at infinity, so there is an infinite total
C energy per unit coordinate length —out to infinity —in
the gravitational field of a cylinder. (4) The total C
energy of a thin-ring torus of small proper mass (New-
tonian limit) is the same as its Schwarzschild mass. (5)
C energy is propagated by Einstein-Rosen gravitational
waves and by cylindrical electromagnetic waves. (6) In
vacuo, and in cylindrical electromagnetic universes, the
C energy per unit coordinate length, E, can be split into
a kinetic term E plus a potential term P such that:
8Ji, '(P—E)dt=0 is an action principle for the Einstein-
Maxwell field equations; E=O for static systems; and
both P and P= P+E are absolutely minimized (subject
to certain constraints) by static systems. In particular,
denote by l the group-theoretically-defined longitudinal
coordinate for a cylindrical electromagnetic universe,
and by grr(p)bi the proper displacement at radius p
associated with the invariant translation i ~ i+8( of
the universe. Then, of all cylindrical electromagnetic
universes, 3feleie's nsugeetic msi~erse gives the absolute
minimum of the C energy per unit coordinate length
inside any cylinder about the symmetry axis, subject
to the constraints of fixed magnetic Aux through the
cylinder and fixed ratio grr (surface of cylinder)/grr
(at axis of symmetry).

The minimum C-energy property of Melvin's
magnetic universe is in sharp contrast with its maximum
Newtonian-energy property. Which one is truly
relevant to the stability problem) Because space-time
is far from asymptotically Rat around Melvin's universe,
Newtonian theory is not a good approximation to
Einstein's theory; we must abandon it and its associated
energy in favor of the full Einstein theory and the C-
energy concept. Nevertheless, it is remarkable that
Newton's theory predicts Melvin's universe to be an
equilibrium configuration (though an unstable one),
despite the nonapplicability of that theory to whole-
cylinder-symmetric systems.

Because of its minimum C-energy property, Me&irI, 's

magnetic utiiverse is the most disuse coefignratiots of
electromagnetic and gravitational fields Possible, subject
to the constraints of fixed magnetic Aux, and fixed
ratio grr(~)/grr(0). This diffuseness need not come as
a complete surprise, for in his original paper' Melvin
remarked that in his universe "(the charge-current
potential) II'&=(—g)'I'f" is everywh'ere a con-
stant . . It is oddly because of the isorigeiformity of the

metric that (the physical magnetic field) 8, artsd also the

stress-energy derlsity, shoe a concentrated dhstributioe. "
(Italics are Melvin's. ) Melvin's remark provides an
intuitive way of looking at his configuration: One can

think of the magnetic field as "actually" spread out
uniformly over all space, while its own stress-energy
"warps space up around it" and makes it "appear" to
be concentrated in a small region about the symmetry
axis. The difference between the "actual" situation and
the "apparent" situation is like the difference between
the bare mass and renormalized mass of the electron.
It is the "apparent" situation which an observer
would see.

The minimum C-energy property of Melvin's mag-
netic universe is in complete agreement with its stability
against perturbations, large and small. It also agrees
with and provides the basis for the results discussed in
Sec. III of this paper: If Melvin's configuration of
magnetic and gravitational fields is arbitrarily perturbed
inside some region about the symmetry axis and then
released, the lines of force in the perturbed region will

lash about turbulently, and radiation will Qow away
toward radial infinity carrying with it the excess C
energy associated with the initial perturbation. As the
excess C energy is radiated away, the field lines will

gradually settle back down to the configuration of
minimum C energy, Melvin s static magnetic universe.
No matter how extreme the initial perturbation, the
magnetic-field lines of Melvin's universe cannot be
forced to implode or explode, because both a completely
collapsed and a completely dispersed configuration con-
tain infinitely more C energy than the unperturbed
configuration. s

"Of what value is such a detailed analysis of a system
which certainly does not exist anywhere in our uni-
verse?" it might be asked. The reply is fourfold:

(I) There is now reason to believe' that very strong
gravitational fields may play an important role in
astrophysical processes —e.g., in supernovae, in neu-
trons stars, in quasistellar radio sources, and in the
nuclei of some galaxies. Einstein's general theory of
relativity is, at present, the most widely accepted
theory of strong gravitational fields. However, amaz-

ingly little is known about the dynamical interaction
between strong gravitational fields and their sources
("geometrodynamics") within the framework of
Einstein's theory. Any geometrodynamical analysis,
such as the one discussed here, is of great value in
building up our knowledge of the types of processes
allowed by Einstein's theory.

(2) Melvin's magnetic universe may be of particu-
larly great value in understanding the nature of extra-

'This corrects a statement made by the author at the Dallas
Symposium on Gravitational Collapse, Dallas, 1963 (unpublished),
to the effect that preliminary results of numerical calculations
indicated that Melvin's universe was probably unstable against
gravitational collapse. The 6nal results of those calculations,
which support the present view of Melvin's universe, are reported
in Sec. III of this paper.

9Quasistellar Sources and Gravitational Collapse, edited by I.
Robinson, A. Schild, and E. Schucking (University of Chicago
Press, Chicago, 1965); F. Hoyle, W. A. Fowler, G. R. and E. M.
Burbidge, Astrophys. J. 139, 909 (1964); H. Y. Chiu and E. E.
Salpeter, Phys. Rev. Letters 12, 413 (1964).
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galactic sources of radio waves: Many strong radio
sources t'ake the form of two synchrotron-radiation-
emitting regions situated on opposite sides of a galaxy.
The most popular theory to account for this is that the
magnetic fields and high-energy particles responsible
for the synchrotron radiation were blown out of the
galactic nucleus in a giant explosion. Such an explosion
would have to be highly directional in order to explain
the observations. R. H. Dicke (private communication)
has suggested that it could result from the gravitational
collapse of a very prolate spheroid or of a cylinder whose
axis of symmetry is defined by a strong magnetic field.
Collapse perpendicular to the axis of symmetry would
occur catastrophically, with a consequent ejection of
material out of the ends. An important question to ask
is: What eRects would general relativity have on such
a model) This question is most easily answered by
studying "cylindrical model universes" such as Melvin's
magnetic universe, which are idealizations of finite
cylinders. The results described in this paper suggest
that: (a) A strong magnetic field along the axis of
symmetry may halt the cylindrical collapse of a finite
cylinder before a singularity is reached. (b) Electro-
magnetic and gravitational waves will be profusely
emitted by such a collapsing cylinder.

(3) Essentially nothing is known about the gravita-
tional collapse of nonspherical bodies within the frame-
work of Einstein's theory. A particular nonspherical
body whose collapse could be studied is a toroidal
magnetic geon' ' consisting of a bundle of magnetic-
field lines in a toroidal configuration. Now that we
understand the dynamics of Melvin's universe, we can
investigate that toroidal geon, of which it is the idealiza-
tion in the limit of infinitely large major radius. Will
such a toroidal configuration be completely stable, like
Melvin's universe? Probably not. It may be stable
against collapse of its minor radius, but there are
powerful arguments'' suggesting instability against
collapse of its major radius.

(4) Just as magnetic fields play a major role in
normal astrophysical processes (e.g. , in radio galaxies,
in galactic spiral arms, in the Crab nebula), so they
may be important in strong-gravitational-field phe-
nomena. A first step toward understanding the roles
they might play there is the analysis of whole-cylinder-
symmetric configurations such as Melvin's universe.
On the basis of the stability of Melvin's universe against
gravitational collapse (proved in Sec. III), together with
other examples of the resistance of magnetic and electric
flux against compression into very small regions, the
author has suggested elsewhere' 's the PrieciPle of gux
resistance fo gravitational collapse: In any con6guration
of electromagnetic fields gravitationally collapsing to a
singularity, the total electric and magnetic cruxes across
every 2-surface through the collapsing region must

' K. S. Thorne, in Proceedings of the Second Texas Symposium
on Relativistic Astrophysics (University of Chicago Press, Chicago,
1965).

II. PHYSICAL STRUCTURE OF MELVIN'S UNIVERSE

Magnetic Field and C-Energy Distributions

The simplest metric, which fully exhibits the whole-
cylinder, static symmetry of Melvin s magnetic uni-
verse, is (Melvin I, II)

dss= a'((1+ps)s(drs —dp' —dt s) —p'(1+p') ed''}
= a'do'. (1)

Here a is the "range-radius of the universe"; r, p, and i
are dimensionless time, radial, and longitudinal co-
ordinates; and q is the azimuthal angle. "The magnetic-
field strength B, and the C-energy density e„,measured
in a local Lorentz reference frame by an observer with
world line (p, f, q) =constant, "are

2 Qg

aG1/2 (1+ps)2

&ce=
1 1

2vGas 1+p'

1 '1cm
X7X10'4 G er, (2)

(1+p' a

1 ) 1 Cill
X2 X 10'" g/cms. (3)

1+p'I a

They are plotted against proper radial distance in
Fig. 1. On the axis of symmetry e„ is the same as the
magnetic energy density B'/8v, but far from the axis it
is composed almost entirely of gravitational C energy.
The total C energy per unit standard length" contained

"This coordinate system is the one of Melvin I, II. It diBers
from that of Thorne (Ref. 7) by the use of dimensionless variables:
pt ~ v, pr ~ p, pz ~ f, p = 1/a."Such an observer needs the support of a rocket ship to prevent
himself from falling down to the symmetry axis; alternatively, he
could be momentarily stationary in free-fall at the apogee of a
radial {vertical) orbit.

"By "standard length" we mean that g-coordinate interval hg,
such that, when a system is in static equilibrium in the neighbor--
hood of the symmetry axis, Pgrr(p=0)]'"hr=one unit of proper
length. For Melvin s magnetic universe —in the coordinates of
Eq. (1)—hr = 1, and (standard length) = (coordinate length).
(See Ref. 7.)

vanish as the singularity is reached —a nonzero flux.
will stop the collapse.

The purpose of the remainder of this paper is two-
fold: (1) to present a brief discussion of the physical
structure of Melvin s magnetic universe —including its
magnetic field distribution, its C-energy distribution,
its intrinsic geometry, and its geodesics —(Sec. II);
and (2) to discuss in detail the dynamical behavior of
Melvin's magnetic universe when it is subjected to
arbitrarily large radial perturbations (Sec. III).
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Radial geodesics (t', oo constant) are described by

dp/dr =+ [1 (—1+p')'/e')'",
e' a constant & 1, or &0. (7)

e'& 1 corresponds to time-like, t.'=0 to light-like, and
e'(0 to space-like geodesics. (See Fig. 3.) It is evident
that the gravitational attraction toward the center of
the universe is great enough to prevent any object of
nonzero rest mass from escaping to radial infinity,
("Escape velocity" is inflnite. ) However, any radially
moving photon "eventually" reaches radial infinity.

This completes our discussion of the physical struc-
ture of Melvin's magnetic universe.

2 4 IO

Fxo. 3. Radial geodesics in Melvin s magnetic universe
(Eq. (7l]. All time-like geodesics oscillate about the symmetry
axis; all other geodesics extend to radial infinity. The vertical
time-like geodesic, p=0, is mislabeled; it should be labeled e'= i.

'9 The same thing happens to photons moving in the gravita-
tional field of a pencil of light —see R. C. Tolman, Relativity,
Thermodynamics, and Cosmology (Clarendon Press, Oxford, 1934),
p. 274.

( ~g«dq'~, and they are space like. Consequently, a
particle can move in a circular orbit about the axis of
symmetry only at radii p(1/V3. At p= 1/K3, the
gravitational deflection of light by the mass inside p is
sufhcient to keep a photon in a circular orbit. For
p) 1/K3 no particle or photon can move fast enough to
stay in a circular orbit; the gravitational attraction
toward the symmetry axis is too great.

The only geodesic of constant (p, &p) is the null

geodesic {=+r It is stran. ge that, although a photon
moving in the plane perpendicular to the axis of sym-
metry ({= constant) is strongly deflected by the mass
inside its orbit, a photon moving parallel to the axis of
symmetry (p, io constant) is not deflected at all."The
following consideration makes one feel more comfort-
able about this apparent paradox: Although Melvin's
universe is invariant under translations along the t
direction, g~~ is not independent of p, to invariantly
translate Melvin's universe, one must translate it by
(1+p') times as great a proper distance at p as one does
on the symmetry axis. Hence, an invariant translation
of Melvin's universe is more like a rotation of Euclidean
space than like a translation of it; and { is more like an
angular coordinate of Euclidean space than like a
rectilinear coordinate. Just as it requires mass to deflect
a photon into circular motion in Euclidean space, so
it takes mass to "deflect" one into motion along a
{-coordinate line in Melvin's universe. "Undeflected
motion" would correspond to some path other than

constant.

A s—(1/p) (pA s')'= 2 (PA s
—P'A s'),

A,—p(A s'/p)'= —2 @As—it 'A s'),

(12b)

(12c)

"Melvin II (Ref. 2), and Thorne (Ref. 7). This coordinate
system differs from that of Ref. 7 in that the constant a has been
factored out of the line element.

» For proof of the statements in this paragraph, see Melvin II,
and Thorne (Ref. 7).

III. DYNAMICAL BEHAVIOR OF MELVIN'8 MAGNETIC
UNIVERSE %HEN PERTURBED

Notation and Background Equations

In discussing the dynamical behavior of Melvin's
magnetic universe when perturbed radially, we use the
"hyperbolic canonical coordinate system"~'

ds'=a'{e'~~ &'(dr' dp') —e'~d{'—p'e s—&dip )
=a'do' . (8)

In this coordinate system, " the gauge can be chosen so
that the only nonvanishing components of the electro-
magnetic vector potential are A2 and A3, and the only
nonvanishing components of the electromagnetic field
tensor are

fos= —fso=aG ' As, frs= —fsr=aG As',„,' (9)
fos fso aG———'"A——s, fts= fsr=aG —'t'As'

Here A;= BA,/Br, A, '= ciA, /rip. The electric and
magnetic fields measured in a local Lorentz frame by
an observer with world line (p,{,&p)

= constant are"

B=—(aG'") '$(As'/p)e'& ~et As'e ~e„j, —
E= —(aG'~ ) 'P(As/p)e'& ~ey+Ase "erj,

(10)

and the total magnetic flux inside p is

p 27K

&r(gpnCr r) ' rI&dp

= (2 a)G '"PA (0)—A, (p)]. (11)

In the canonical coordinate system (8), the Einstein-
Maxwell field equations reduce to

j—(1/p) (pP')'= — '&e(A,'—A,")
+ (e'&/p') (A ss —A s") (12a)
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v'= p(0'+4"')+ pc "(As'+As")
+ (e'&/p) (A os+A s's), (12d)

j=2p~'+ 2pe '&A sA s'

+2 (e'&/p) A sA s'. (12e)

Initial conditions at" 7 =0

(1) For p&R:

it (p,0), $(p,0), A, (p,O), A;(p, O) arbitrary except
for the conditions

Note that the structure of any cylindrical electro-
magnetic universe is completely determined by the
gravitational and electromagnetic potential functions,
iP and A;. Once they are known, everything else is
determined via Eqs. (12d), (12e), (8), (9), (10), and
(11).Melvin's magnetic universe corresponds to

P= ln(1+ p'),

A2 ——0,
A o

——1/(1+p')

y = 2 ln (1+p') .

The C-energy density measured in a local Lorentz
frame by an observer with world line (p,j, ip) = constant"
1S

e„= (87-Ga'hr) '(e& /p)y'— (14)

E(p) = (1/4G)v(p) =&(p)+~(p),

and the total C energy per unit standard length" con-
tained inside the cylinder of coordinate radius p and on
the hypersurface v = constant is

(a) f po+ pop'+. p 0, ps and sa

so+ sop'+ . constants;

(b) As-aso+assp'

A3 aso+aosp' p 0, a;s and b, &

As-boo+hosp' constants;

A 3~ b22p'

(c) P'(p, O) continuous;

(d) A;(p, 0) piece-wise smooth.

(2) For p&R:

il =in(1+p'),
32=0,
A s= 1/(1+p'),

(3) For p=R:

f, it ', and A; continuous

(4) For all p:

(17)

where E, the kinetic C energy, and I', the potential C
energy per unit standard length, are

1
&(p) =

I

—
I

Cu4'+ pc '~Ass+ (c'~/p)As'jdp,
(4Gf

(16a)

1
8 (p) =

~

—
~

Lpp" +pe
—'&A o'o+ (e'&/p)A o's]dp, (16b)

&4Gi

The Form of the Perturbation

Let Melvin's universe be perturbed radially in an
arbitrary (but physically reasonable) manner on the
hypersurface r=0. But con6ne the perturbation to a
finite region p(R about the symmetry axis, so that the
potential functions f and A; are identical to Melvin's
potential functions outside p= E:

(cf. Eqs. (12) and (15)).
Melvin's magnetic universe is that configuration of

gravitational and electromagnetic potential fields, il (p,t),
A;(p, t), which absolutely minimizes the C energies E(p.)
and P(p.) inside any radius p, on the hypersurface
t=constant, subject to the constraint of fixed magnetic
flux 4(p.), and axed gravitational Potential, f(p.), at p, .
This C-energy minimum property is proved in Ref. 7,
and forms the foundation for the discussion of the
dynamical behavior of Melvin's magnetic universe,
when it is perturbed.

p(0'+4")+pc "(A '+A ")
e'&)

+ —~(A '+A, 's) dp.
pi

Constants of the Motion

Let such a perturbed universe be followed over the
period of time 0& r& r.. One Qnds that, for any
R)R+r., A s (R), A s (R), i'(R), y (R), A s (0), and
y(0)=0 are all constants of the motion; and conse-
quently, the total magnetic flux and the total C energy per
unit standard length inside R are both conserved, LA, (R),
f(R), and y(R) are constant because information of
the existence of the perturbation cannot travel faster
than the speed of light; A o(0) and y(0) are constant by
virtue of the field equations (12) and the initial condi-
tions (17). Conservation of flux and C energy follow
from their definitions, Eqs. (11) and (15).j

"P, P, A2, A2, Ag, A3 must be even in p because the C. E. lj. is
invariant under reflections through its axis of symmetry and
because the longitudinal electric and magnetic 6elds on the axis
must be lnite and the axial fields zero. Qne might think the
absence of terms linear in p would be enough; however, the 6eld
equations, (12a)—(12c), link the coefficients of odd powers of p
together in such a way that, unless they all vanish initially, terms
linear in p will soon become nonzero. A~(p =0) =0 in order to keep
the electric field 6nite on the axis. Continuity of p and p' arises
from Lichnerowicz s junction conditions LA. Lichnerowicz,
Theories relativistes de la gravitatiol et de l'electromagedtisme
(Masson et Cie, Paris, 1955)j.A; is piece-wise smooth because it
is a potential function.
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One 6nds that the total kinetic C energy per unit
standard length in the entire universe, E(oo), has an

upper bound:

E(~)(E(p=R, 7 =0)—1n(1+R')/2G
= (C energy per unit standard length

associated with the perturbation).

(See Appendix A for proof. ) Consequently, a stage of
complete dispersion of the electromagnetic and gravita-
tional fields of Melvin's universe (s —+~) can never be
reached as the result of a finite radial perturbation, for
the state of completely dispersed magnetic held lines
has infinitely more C energy per unit standard length
than does Melvin's universe.

This follows directly from the C energy minimum

property of Melvin's universe.

Collapse and Explosion Forbidden

Suppose that the initial perturbation were strong
enough and in the right direction to initiate gravita-
tional collapse of part or all of the active region of the
universe. Let C. be the magnetic Qux carried into
oblivion during the collapse, and call the cylinder
containing a Aux of exactly C. the "collapsing region"
of the universe. One can show (Appendix A) that, when

collapse has gone so far that the proper radius s of the
collapsing region is much less than (G'~'/2sr)

I
C. I, then

the dMerence between the total C energies in the
collapsing universe and in the unperturbed universe is

hmp~ao )+collapse(p) Eunpert(p)$
= (C energy per unit standard length

associated with the perturbation)

&(g v'~) '(I@' I/~) (1g)

Consequently, in order to initia, te collapse (s —+ 0), one

must supply an itifieite C energy through the perturba-
tion. But this cannot be done with a perturbation which

is confined to a finite region about the axis of sym-

metry. "Consequently, gravitational collapse cannot be
initiated by a radial perturbation of Melvin s universe.

Nor can electromagnetic explosion be initiated by a
radial perturbation. For, consider a stage of explosion
in which essentially all the electromagnetic and gravita-
tional fields are evacuated from a region of proper
radius s))c about the symmetry axis. When this stage
of explosion has been reached, the excess C energy in

the exploding universe over that in the unperturbed
universe is

hmp~oo I Eexplode(p) Eunpert(p) j
= (C energy per unit standard length

associated with the perturbation)) (1/G) ln(s/a) . (19)

"Cylindrical systems which contain an infinite amount of
C energy per unit standard length inside a finite region about the
axis of symmetry are discussed very briefly in Ref. (7) and in
great detail in (1) K. S. Thorne, Ph.D. thesis, Princeton Univer-
sity, 1965 (unpublished); and (2) K. S.Thorne, Geometrodynamics
of Cylindrical Systems (book in preparation). According to analyses
presented in these two references, eo perturbation of Melvin's
universe, which is confined to a finite region about the axis of
symmetry, can have infinite C-energy associated with it. Any
perturbation with infinite C-energy profoundly alters Melvin's
universe all the way out to radial infinity.

Actual Dynamical Behavior

If no radial perturbations of Melvin's magnetic
universe can initiate gravitational collapse or electro-
magnetic explosion of the magnetic 6eld lines, just what
are the effects of radial perturbations? For insight into
this question, we turn again to the C-energy properties
of perturbed cylindrical electromagnetic universes.

One can show'4 that the C energy per unit standard
length EI P,A;$, behaves, in all respects, as the energy
for two coupled fields normally behaves: Its mathe-
matical form LEqs. (16)j is that of a field energy; it can
be split into kinetic part K plus potential part P; K—P
is a Lagrangian for the Eqs. (12a)—(12c) governing the
dynamics of the coupled fields; these dynamical equa-
tions are coupled wave equations; and P+K=E is
minimized by static configurations. This perfectly
normal behavior of C energy under all tests we have
made of it suggests the following conjectlre: If the fields

P and A; are strongly distorted inside a radius p= R and
then released, they will do the normal thing: The fields
inside p= R will undergo damped, turbulent oscillation,
emitting the C energy associated with the perturbation
as gravitational and electromagnetic radiation. As the
C energy is gradually lost from the active region, the
motion of the fields there will become less and less
violent, until finally they will settle down into Melvin s
static, unperturbed configuration. All that will be left
of the perturbation will be a series of cylindrical gravita-
tional and electromagnetic waves traveling off toward
infinity. These waves, which carry away the excess
C energy, have 3 degrees of freedom —2 corresponding
to the 2 polarization directions of electromagnetic
waves, and 1 corresponding to the single polarization
direction allowed by whole-cylinder symmetry for gravi-
tational waves.

That this is, indeed, the dynamical behavior of
Melvin's universe when perturbed radially is supported
not only by analogy with other cases of coupled,
classical 6elds, but also by the fact that, if the gravita-
tional field around a static cylinder (A;= 0) is perturbed,
a similar behavior is observed. "The unperturbed static
background field, f.=z Inp+b, and the perturbation,
Pi(p, r), are totally oblivious of each other. Pi(p, r)
propagates according to the homogeneous wave equa-
tion; and being initially con6ned within p =E., it
eventually propagates off toward p= ~. Additional
support for our conjecture comes from the analysis of

'4 See Ref. 7, and Sec. I of this paper.
4' See Sec. IV. C. of Ref. 7.
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Consequently, the nth normal mode of radial motion
about Melvin's equilibrium configuration is given by

supported in part by National Science Foundation
Grant NSF-GP 579.

4'(p ) =»(1+p')+4' (p)e'""'

A2(p, r) =0+22(„) (p)e'""

Ao(p, r) = 1/(1+p')+Ao(-)'(p)e'""'
(24)

APPENDIX A: INFINITE C-ENERGY INPUT REQUIRED
TO INDUCE COLLAPSE OR EXPLOSION

Co11apse

where P&„)'(p) and A;&„)*(p) are those functions which

give the nth smallest extremal value of

~2= lim 6 *P*,A,*]/X*y',A,*j,
pphoo

(25)

ACKNOWLEDGMENTS

and where o) is the sctuare root of this nth smallest value

Of course we must require that )P' and A;* be physically
acceptable perturbations. "In particular, )p*(0) must be
finite (geometry of space-time regular on symmetry
axis); A2'(0) must be finite and Ao*(0) must vanish
(electric field finite on symmetry axis); f*(~) must
vanish (perturbation in geometry of spacetime must
die out at infinity); Ao*(oo) must be finite (total
magnetic fiux in universe finite); A2*'/p' —+0 and
p'A, *'-+ 0 at infinity (perturbed electric field must die
out at infinity). These boundary conditions, combined
with the, variational principle (25), determine the
normal modes for small radial perturbations of Melvin's
universe. .

The stability of Melvin's magnetic universe against
small radial perturbations is equivalent to the require-
ment that ~0', the lowest eigenfrequency squared, be
positive. But it is positive, since the denominator of
Eq. (25) is positive definite, and the minimum C-energy
property of Melvin's magnetic universe demands that
the numerator be positive for all choices of )p' and A

Hence, we see that the nonexistence of exponentially
growing normal modesis equivalent to the fact that Mel iv'n s
universe gives a local minimum of the C energy per unit
standard length subject to the physical constraints imposed
on the normal modes at the symmetry axis and at infinity.
Since Melvin s universe actually gives an absolute mini-
mum of the C energy, it is stable against large perturbati ons

as mell as against sma/l ones.
This C-energy analysis of the stability of Melvin s

magnetic. universe against small radial perturbations
is completely analogous to the author's recent energy-
based stability analysis for superdense stars."

I„„=lini I E(p,)—(1/G) inp, ), „
&(4 v'G) '(Ic' I/ ). (A1)

To see this, let p,)&)1 be 6xed at some point which,
at time ~„has not yet received word of the perturba-
tion; and let p, be the radial coordinate corresponding
to proper radial distance s. Then at time r, P and A,
must satisfy the boundary conditions

P(p,)=in(1+p.')=2 lnp. ,

A 2(0) A 2(p ) —(Gl/2/2z. a)@

According to Eqs. (15) and (16), at time r,

(A2)

po

( ) ( / ) (4"+("/p) ")4 ( )

Introducing new variables x, y, l defined by

x=A2, y=pe &, dl=e t'dp, l(p=O)=0 (A4)

converts this to

E(po)) (1/4G) (1/y)I (1 dy/dl)'+ (dx/dl)'jdl-

Let y be the maximum value of y(l) over the
interval (O,l,), and let it occur at l=l . Then

lm ( dy 2

E(p,))——
I

1——dl
4G y o k dl

Ke here show that, if Melvin's universe is perturbed
radially within a 6nite region about the symmetry axis,
and if, as a result of the perturbation, at some later
canonical coordinate time v., a longitudinal magnetic
Aux C. has become concentrated within a proper radius
s«G'~24. , about the symmetry axis, then the C energy
per unit standard length associated with the perturba-
tion must have been

' 1( dy)2
-I 1——Idl

„yE dl i

1 (l —y )' G C.'
&(p.)&— +, , +

4G l y 4g'a' l,y
p4 "dp

"For a detailed discussion of the restrictions on p* and A;*,
see Melvin II.

'8 See appendix 3 of B.K. Harrison, K. S.Thorne, M. Wakano,
and J. A. Wheeler, Gravitation Theory and Gravitational Collapse
(University of Chicago Press, Chicago, 1965).

The last integral is minimized when f=g In(p/p )
+)P(p ), where ~= Pln(p 2y /p )g/I ln(p, /p )]. (Cf.

The author is indebted to Professor J.A. Wheeler for 1 ' t'dx)2
suggesting this problem, and for many helpful discus- +—

I

—
I
dl+

sions during its execution. He also wishes to thank ym o

Professor M. A. Melvin for a helpful exchange of ideas.
Applications of Schwarz's inequality transform this to

The numerical computations were performed on the
Princeton University IBM-7094 computer, which is
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Ref. 7, Sec. IV-B.) Consequently, whatever the
quantities p, p„p„and y may be,

(AS)

y G 4'
&(p.) &——2+—+ —,

W'a' t,.y

Dn(po'y-/p-))'

ln(p. /p, „)

However, since s/a&l. &/, Eq. (A5) implies

y G 4,'
E(p.) &——2+ +

4G s/a 4''a' y„(s/a)

Dn(p'y-/p-)1'

ln(p, /p )
(A6)

Now, if p, is not greater than 1/y, select a new value
of p, which is. Then minimize expression (A6) with

respect to p and y to obtain

I 6 4,'
g(p, ))——2+ + — +4 ln(p, u)

4G s/a 4m'a' u(s/a) (A7)

u = j(G/4+a')C" +4(s/a)'j'" 2s~'"a. —

b = (o „—o,)
—'(arctanhL f/a)

—arctanh)(1+ f)/aj},
c= (o. (r,)—-'(o, arctanht (1+f)/a$

o. arct—anhLf/aj},
f=lB '—y' —lj

J~L4y 2+ (y
2

y
2 1)2)1/2

Because spacetime is Rat inside p„

y, =p, e—& =s/a.

(A13)

(A14)

Using this, and expanding Eq. (A12) to lowest order in
a/s and in 1/p„we obtain

But the integral in Eq. (A11) is absolutely minimized
with respect to the constraints (A10) by that unique
static solution of Eqs. (].2a) and (12c) with 22=0
which satisfies the constraints. (C-energy minimum
principle —cf. the Appendix of Ref. 7.) One can show,
by using the techniques of the Appendix of Ref. 7, that
this minimum value is given by

j (p,)) (1/4G)(2 1nL1+e '& "+'ig
—2 in(1+e '& "—~+'~)+ (1+0)'(o. o,),—(A12)

where

0',= lnp„0;= lnp, , y, =p, , y, =p,e
—&,

For s((G'"4 „this becomes

E(p.) (1/G) lnp, & (8—gG)—'
~
C,

~
/s,

which then yields Eq. (A1),

Explosion

(A8)

Q.E.D.

E(p,)& (1/4G) $4 lnp, +4 ln(s/a) j,
which implies Eq. (A9).

APPENDIX 8: NUMERICAL SOLUTION
OF EINSTEIN-MAXWELL EQUATIONS

(A15)

QFD

Next, consider a perturbation of Melvin's universe
which results in an explosion of the magnetic field lines
av ay from the symmetry axis to the point that, at
coordinate time r„ the region within a proper distance
s))a is completely evacuated. We shall show that the
C energy per unit standard length associated with the
perturbation must have been

Ep.,~= lim (E(p.)—(1/G) i—np.},=,.
po

& (1/G) ln(s/a) . (A9)

I et p, be the radial coordinate at proper distance s
from the symmetry axis, and let f(p„r,)=P,. I et p,))1
be fixed at a point which, at time r„has not yet received
word of the perturbation. Finally, define A3(p„r,)=0,
so that (conservation of magnetic flux) A3(p„r,) = —1.
Thus, A, and P have the boundary values

A (p.3,r,) =0, A3(p„r,) = —1,
P(p„r.)=P„P(p.,r,) = ln. (1+p.') = 2 lnp, .

According to Eqs. (15) and (16), at time r,
Po

The dynamical behavior of Melvin's magnetic
universe, when subjected to large perturbations of the
form (17), was calculated by numerical integration of
the Einstein-Maxwell field equations (12). The calcula-
tions were restricted to initial conditions for which
A2=A2 ——0 (B„=Er 0), because this gua——ranteed that
A2 ——0 at all points in space-time Lcf. Eqs. (12)j,
thereby simplifying the computations. There is no
reason to believe that qualitatively di6erent behavior
would have resulted had this restriction not been
imposed.

The integration was performed as follows: A rec-
tangular grid was set up in the (p, r) plane with spacings
Ap and hr between grid points. At a given stage in the
computation P, Aa, and y were known at all grid points
with r&kDr; and one calculated P, A3, and y at grid
points on the "future" hypersurface r= (0+1)hr from
their values on the preceding hypersurfaces r=khr,
r= (k —1)hr, and r= (k 2)hr This —calcul.ation was
performed using finite difference approximations to
Eqs. (12a), (12c), and (12e). The difference equations
were so constructed that they were linear in the un-
knowns; this was done by ensuring that only the left
sides of Eqs. (12a), (12c), and (12e) involved fields
evaluated on the "future" hypersurface. On the left
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sides of Eqs. (12a) and (12c), in a,ddition to time
derivatives which are quite naturally written so as to
involve "future" points, there are the terms (1/p)(pP')'
and p(Aq'/p)' which one would normally evaluate on
the "present" hypersurface 7-= kh7. . However, - in order
to optimize the stability of the difference equations,
these expressions were replaced by suitable averages of
their values on the present and future hypersurfaces. "

The computation was performed in the region v-&0,
0&p&R+ r. $R is the quantity appearing in Eq. (17).j
Boundary conditions of smoothness were imposed at
p =0 (i.e., ip', A 3', and p' were required to vanish there).
At the boundary p=R+r, f and A3 were required to

29 This is a form of the "implicit" method for ensuring stability
of difference equations. See, e.g., L. Lapidus, Digital Computation
for Chemical Erlgineers (McGraw-Hill Book Company, Inc. ,
New York, 1962),

join on smoothly to Melvin's unperturbed configuration
(13). Initial values of P, A, , and y were introduced on
the hypersurfaces r= d—r, r=0, and r=+hr for
0&p&E.. These initial values were obtained by specify-
ing P and A3 arbitrarily )except for conditions (17)]at
r = 0, setting /= A, =j= 0 there (time-symmetric
initial conditions), and then solving equations (12a),
(12c), and (12e) to first order in hr and Ap, for y at
x=0 and for tP, Aa, and y at r= &Dr.

Once the initial value equations had been solved, the
computer attacked the main problem of calculating the
fields on successive hypersurfaces v = 2d 7., v =3hz,
As it went along, it checked its own calculations at each
grid point by comparing p' with the right side of Eq.
(12d). If they differed by more than ten percent
(cumulative error) at any grid point, all calculations
to the future of that grid point were considered invalid.
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Semiclassical methods are used to study vacuum polarization, Using the modified Lagrangian, an equation
analogous to Fresnel's equation of wave normals is derived and applied to the study of the birefringence of
the vacuum.

' T is well known that quantum electrodynamics pre-
- ~ diets the existence of nonlinear effects between
electromagnetic fields in the vacuum. ' ' The creation of
virtual electron-positron pairs results in the interaction
of two photons and leads to additional terms in the
Lagrangian, which are quadratic in the invariants

p 1f faP —Q2 E2 ~ G —if fkaP —P, E ~

fOaP —L&uPpo jJ prr'

According to Karplus and Neuman, and Schwinger, '
the additional terms are given up to the order n' by

L;„,=—(2u'/45m') (F'+7G'),

where we adopt rationalized units and k= c= 1;n is the
fine-structure constant, and m is the mass of the
electron.

Recently, semiclassical methods have been used to

' H. Euler, Ann. Physik 26, 398 (1936).' W. Heisenberg and H. Euler, Z. Physik 98, 714 (1936).
' V. S. Weisskopf, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 16, No. 6 (1936).
4 R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950); 83,

776 (1951).' J. Schwinger, Phys. Rev. 82, 664 (1951).

study the nonlinear interaction of light in a vacuum.
However, the use of Fresnel's equation for crystal optics
in the study of the birefringence of the vacuum is not
strictly valid. It is our purpose to review this question
by deriving a Fresnel equati. on valid for polarizable
vacuum and using it to study the process suggested by
Klein and Nigam. We show that the birefringence is
very peculiar, presenting two extraordinary waves at
right angles to the applied uniform static field E„both
with phase velocities smaller than c.

FRESNEL'S EQUATION FOR VACUUM
POLARIZATION

We start from an arbitrary Lagrangian L =L(p,G) a
function of the two invariants I' and G constructed
from the electromagnetic field f p The electroma. gnetic
induction p p is defined by'

P P= BL/Bf p=2I pf~—P+Lgf*"P,

where LF BL/BF, Lo BL/BG. —— ——
6 J. McKenna and P. M. Platzman, Phys. Rev. 129, 2354

(1963).
7 J. J. Klein and B. P. Nigam, Phys. Rev. 135, B1279 (1964).
8 See, for example, M. Born and L. Infeld, Proc. Roy. Soc.

(London) A144, 425 (1934).


