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In a previous publication the writer presented a rigorous solution of the Einstein-Maxwell equations
which corresponds to a configuration of parallel magnetic lines of force in equilibrium under their mutual
gravitational attraction. This "magnetic geon" —which it is appropriate to rename a "magnetic universe"
because the magnetic-field energy falls ofII so slowly with distance —is unstable according to an elementary
Newtonian analysis but is stable according to the analysis reported here. In this connection the general
time-dependent equations for electromagnetic-gravitational fields in the case of cylindrical symmetry are
discussed in detail and certain conclusions drawn. 'Ihen the solutions as functions of radius and time are
found for the two gravitational potential fields and the electromagnetic field which appear when a magnetic
universe is subjected to a radial perturbation. It is shown that the magnetic universe is stable (oscillatory)
under such perturbations, i.e., all admissible frequencies are real. The converse is also true: All real fre-
quencies are admissible, Every solution is a superposition of proper modes of which there are two types, a
"g-type" and an "h-type" for each and every real frequency, and for each of the physically interesting fields,
i.e., for the electromagnetic field and for the two gravitational fields ("Newtonian potential" and "Cenergy, "
respectively). The g-type modes may be identified roughly as "dominantly gravitational" since in them
gravitational perturbations dominate electromagnetic both at small and large distances; the h-type may be
identified as "locally electromagnetic" since in these modes, near the axis, the electric and magnetic per-
turbations dominate the gravitational perturbations. The radial dependence of each of the mode types for
the various fields is expressed linearly, with radius-dependent coefficients, in terms of Bessel coefficients of
order zero and one, respectively. The manner in which an initial perturbation is shaken off is analyzed, and

causality is verified, The relevance of the analysis to the understanding of gravitational collapse is dis-

cussed. Pure magnetic (or electric) fields are the only presently known systems which resist gravitational
collapse. It is suggested that extended magnetic fields may play a role in retarding and finally halting gravi-
tational collapse of material systems.

(or electric) field, specifically a collection of parallel
magnetic lines of force held together by mutual gravi-
tation. In addition to its greater simplicity, this con-

figuration has the merit over previously studied geons,
that it is a rigorous equilibrium solution of the Einstein-
Maxwell equations and not merely a statistical equi-
librium. Is this equilibrium unstable. If so, then a small

perturbation away from equilibrium in the sense of a
more concentrated configuration would provide a par-
ticularly simple starting point for the analysis of
gravitational collapse. The present report analyzes the
character of the equilibrium. It turns out that this
particular type of magnetic field configuration is stable,

contrary to the first expectation, and contrary to the
behavior of simple spherical geons, which Wheeler has
reasoned"' —and Brill and Hartle have proved~to be
unstable against collapse.

The results of the somewhat dificult perturbation
analysis can themselves be summarized rather simply
(Tables I and II, and Figs. I and 2) and interpreted
rather generally: Any system which is described by a
set of linear differential equations with coe%cients
which, though variable in position, do not contain the
time may be called "a system of constant structure. "
One can expect quite generally that such a system on
account of its time-translation symmetry exhibits nor-

mal modes. Our magnetic universe when perturbed to
the first order away from equilibrium is of this type. The

1. INTRODUCTION AND SUMMARY

A. Motivation and Outcome

~f RAVITATIONAL collapse is a physical phenome-
&+ non of the very greatest interest at the present

time. ' The dynamics of collapse in the case of a star
presents so many issues that one asks for a simpler
model on which to begin the physical analysis. Such a
model is supplied by a geon, ' a configuration which con-
tains nothing but electromagnetic field energy (no
particles) and which is held together by its own gravi-
tational attraction. Recently' it occurred to the present
writer to try the simpler case of a static pure magnetic

*Dedicated to Oskar Klein on his seventieth birthday. This
work was performed at Oak Ridge National Laboratory and in
part at Los Alamos Scientific Laboratory and Argonne National
Laboratory.' For a summary see: (a) Proceedings of the December 1963Dallas
International. Conference on Gravitational Collapse and Relativistic
Astrophysics, edited by I. Robinson and E. Schucking (University
of Chicago Press, Chicago, 1964), Vol. I; (b) Gravitation Th ory
und Gravitational Collapse, B. K. Harrison, K. S. Thorne, M.
Wakano, and J.A. Wheeler (University of Chicago Press, Chicago,
1965), Vol. II; (c) J.A. Wheeler, Relativity, Grolps and Topology,
edited by C. and B. DeWitt (Gordon and Breach, Publishers,
New York, 1964).' J. A. Wheeler, Phys. Rev. 97, 511 (1955); see also F. J. Ernst,
ibid 105, 1665 (195.7).' M. A. Melvin, Phys. Letters 8, 65 (1964). I am indebted to
B. K. Harrison for discovering, subsequent to this publication,
that the solution had been obtained earlier though not explicitly.

.It is contained implicitly as a special case among the solutions
given by. M. Misra and L. Radhakrishna, Proc. Natl. Inst. Sci.
India 28A, 632, (1962). [1Vote added in proof In the meantime, .
Professor W. B. Bonnor has kindly informed me that the stat
solution is contained in his earlier work. It is indicated on p, 2
of his paper Proc. Phys. Soc. 67A, 225 (1953).g

ic
30 4 D. R. Brill and J. B. Hartle, Phys. Rev. 135, B271 (1964);

Bull. Am. Phys. Soc. 9, 425 (1964).
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TABLE I. Normal modes of electromagnetic waves appearing when a static magnetic universe is perturbed away from equilibrium
(first-order theory). The electric vector ephysical is in the P direction, azimuthal to the axis. The magnetic iiux vector bphysical is in the
g direction, parallel to the axis. The electric vector is a quarter period out of phase in time with respect to the magnetic vector. The
amplitudes are expressed in units of —,8& where 80 is the Aux on the axis in the static magnetic universe. The h-type modes may be
identified as "locally electromagnetic" since in these, at small values of P, the electric and magnetic perturbations ephysical and bphysicgl
dominate the gravitational potential perturbations bp and by,

ephysical ~physical

C-type
normal mode

~l/2 4P2

J»(cop)+a&pJi(»&p) cost»r
(1+p')' 1+p'

h-type
normal mode

1—P'
«i'~'——Ji(cop) sinfd1'

(1+p')' (1+p')'

2p(3 —p')
cu (1—p') Jo (»'p) —— —Ji (&vp) cos»ir

1+P'

dependent variables which describe the spa, ce-time
structure are two in number: the "Newtonian gravi-
tational potential" lf, and the "Weyi-Einstein-Rosen
gravitational potential" y, which has recently received
an added interpretation by Thorne' as an energy-like
quantity ("C energy") characteristic of cylindrically

symmetric systems. The remaining two dependent
variables are the longitudinal magnetic field Bphy„„l and
the azimuthal electric field Ephysiczl, though these two
are derivable from a, single-component vector potential,
it is physically much more instructive to study their
development individually.
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FIG. 1. Normal modes of h type in a cylindrical electromagnetic universe slightly perturbed away from the equilibrium configuration
of a purely magnetic universe. The elementary standing wave of h type has a radial dependence given by a Bessel coe%cient of order one.
Represented here and in Fig. 2 are the proper modes of the electromagnetic field perturbations bphy and ephy and the gravitational
potential perturbations hp and Sif all expressed in terms of linear combinations (with coefficients depending on the radial variable) of the
elementary g and h waves (see Tables I and II).At very low frequencies, as one would expect, the electric 6eld ha, s a very low amplitude
relative to the magnetic 6eld, whereas at high frequencies, as Table I also shows, they approach exact equality. It will be noted that the
range radius p = 1 is a universal node for e«s„, in Ii-type modes (and for P in g-type modes). This "clamped membrane" type of behavior
at p= 1, in the two cases, has not as yet received any intuitive explanation.

' K. S. Thorne, Phys. Rev. D8, 8251 (1965).
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FIG. 2. Normal modes of g type in a cylindrical electromagnetic universe slightly perturbed away from the equilibrium configuration
of a purely magnetic universe. The elementary standing wave of g type has a radial dependence given by a Bessel coefficient of order
zero. Represented here and in Fig. 1 are the proper modes of the electromagnetic-field perturbations diphy and ep),y and of the gravi-
tational potential perturbations By and Bg all expressed in terms of linear combinations (with coefficients depending on the radial variable)
of the elementary g and k waves (see Tables I and II). At very low frequencies, as one would expect, the electric field has a very low
amplitude relative to the magnetic field, whereas at high frequencies, as Table I also shows, they approach exact equality. It will be noted
that the range radius p=1 is a universal node for g in g-type modes and ephy in h-type modes. This "clamped membrane" type of
behavior at p= 1, in the two cases, has not as yet received any intuitive explanation.

The general expectation that there exist normal
modes of all these fields is verified. The small perturba-
tion analysis shows: (1) that every first-order cylin-
drically symmetric departure from the equilibrium
configuration is representable as a superposition of
proper modes; (2) that every mode is associated with
its own characteristic real circular frequency oi (sta-
bility) rather than with a complex frequency with real
part representing an exponential growth or decay con-
stant (instability). All real values of the frequency are
admissible and for every value of the frequency there
are two types of modes, "g type" and "h type. "These

are named after the two new gravitational potentials to
which it was necessary to transform from the canonical
potentials y and f in order to obtain the solutions; g and
h are linear combinations (with radius-dependent coefFi-

cients) of the gravitational potential perturbations hy

and g. The elementary g and h waves have a radial
dependence given by Bessel coeKcients of order zero and
one, respectively. The proper modes of the electro-
magnetiC field PerturbatiOnS b~hysical anB 8&hysical an8 Of

hp and i)It are expressed linearly, with coefFicients de-
pending on the radial variable p in terms of the
elementary g and h waves (Tables I and II). The
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TABLE II. Normal modes for gravitational waves appearing
when a static magnetic universe is perturbed away from equi-
librium (first-order theory). The Newtonian potential "waves" Sit
and the "C-energy" waves By are in phase in time. In. the h-type
modes By everywhere bears the same ratio to BItt that y bears to p
in the static magnetic universe (2 to 1). In the g-type modes,
though it starts with zero magnitude at p =0, By soon approaches
a steady ratio of 4 to 1 to BP. The g-type modes or standing waves
may be identi6ed as "dominantly gravitational" since in these
modes, both at small and large values of the radial coordinate p,
the "Newtonian gravitational potential" perturbation BP domi-
nates the electric and magnetic field perturbations epiIyslc3i and
b physical.

(2/B p) b physical (2/Bp) ephysical

TABLE III.Asymptotic expressions for the magnetic and electric
perturbation fields bphysicai and ephysicai. It is assumed that the
time v is very great compared with: (1) the radial distance p to the
field point; (2) a bounding radial distance p bouupl which may be
estimated as follows: Let G, G, be the first moments of the initial
distributions g (p', 0), g, (p', 0), and let H, H, be the second moments
of the initial distributions h(p', 0), h, (p', 0). Then p'bouud is the
greatest lower bound for distances beyond which the contributions
of the initial distributions to G, G„H, H, are negligible.

Bp or VAR—PSI
(Newtonian potential)

By or VAR—GAMMA

(C energy)

g-type
running
waves

4p' G G,

(1+ps)s

P —G——G r
(1+ps)s
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normal mode .
—.spoils Jp(cpp) cosppr ppii Jp(alp) cosppr
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1 3P 3 1—H——H r
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normal mode co't' Ji(ppp) cosppr 2pp is Ji(ppp) cosppr

1+p 1+p

graphical representation of these proper modes (Figs. 1
and 2) shows a number of interesting features: At very
low frequencies, as one would expect, the electric Geld
has a very low amplitude relative to the magnetic field
whereas at high frequencies, as Table I also shows, they
approach exact equality.

As it became clear that the static magnetic universe
was stable against radial perturbations the following
discussion was contributed by Professor John A.
Wheeler:

"It made sense to analyze the stability of the system
when it appeared to be a geon. Amongst geons, it would
have been hard to think of a simpler case where one
might have tested in all mathematical detail that
general instability of all geons against collective gravi-
tational collapse which is argued by Wheeler on physical
grounds. '&' But the present system turns out not to be
a magnetic geon; it is a magnetic universe. Moreover, it
is a universe of a most implausible geometry. Then what
can one possibly learn about live physical issues by
analyzing —as here —the small perturbations of this
system?

"Thorne has pointed out'&"' that the magnetic uni-
verse is directly relevant to geon physics and to the
theory of gravitational collapse. Envisage in asymp-
totically flat (Schwarzschildean) space a toroidal region
of minor radius a very small in comparison with its
major radius b. Let magnetic lines of force go around in
the direction of the major circumference so that one
really does have a magnetic geon. Moreover, let the
bundle of magnetic lines of force be so dense that this
toroidal region curves itself up (geometry of the cross
section pra') into almost complete closure; that is, into
almost complete isolation from the surrounding asymp-
totically Qat space. In approaching this limit and the
limit of very large b/a it is reasonable —Thorne points
out—to compare the active region of the magnetic geon with

ce almost closed Neiverse. Thus the present analysis,
which refers to the limiting case itself, with complete
closure (at least in the sense that b/a —y ~), can be ex-
pected to serve as one natural starting point for analyzing
gratiitational collapse of a toroidal magnetic geon

Aside from these considerations which refer to the
value of the cylindrical-toroidal model as an idealized
system whereby one might come to a better under-
standing of the theory of gravitational collapse, there are
also the following considerations to give the present
investigation considerable physical interest for the
phenomenon of gravitational collapse as it occurs in the
quasistellar sources.

Many strong radio sources take the form of two
emitting regions situated on opposite sides of a galaxy.
The most popular theory to account for this is that the
magnetic fields and high-energy particles responsible for
the synchrotron radiation were blown out of the galactic
nucleus in a giant explosion. Such an explosion would
have to be highly directional in order to explain the
observations. After the present investigation had been
carried out Dicke remarked that the explosions in actual
quasistellar sources could result from the gravitational
collapse of a very prolate spheroid or a cylinder whose
axis of symmetry is defined by a strong magnetic field.
Collapse perpendicular to the axis of symmetry would
occur catastrophically, with a consequent ejection of
material out of the ends. An important question to
ask is: What effects would general relativity have on
such a model? This question is most easily answered by
studying "cylindrical model universes, " which are
idealizations of finite cylinders and which form the sub-
ject of the present paper and that of Thorne. ' The re-
sults suggest that: (1) A strong magnetic field along the
axis of symmetry may halt the cylindrical collapse of a
finite cylinder before a singularity is reached. (2)
Electromagnetic and gravitational waves will be pro-
fusely emitted by such a collapsing cylinder. So far as
we know, these papers represent the first detailed study
of a system which shows absolute stability against
collapse to a singularity, and the first detailed treatment
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TALK IV. Asymptotic approximations for times of occurrence and magnitudes of extreme concentrations of the magnetic and electric
perturbation fields bphysical and ephy»cal in a magnetic universe with superposed initial perturbations of pure g or h type. G, G, are the
erst moments of the initial per turbations g (p', 0), g, (p', 0), and II,II, are the second moments of the initial perturbations b (p', 0), h, (p', 0),
respectively.

C-type
running waves

h-type
running waves

Time 7 for
maximum of

~physical

Magnitude of
maximum

bphysical X (2/Bo)

QT

{1+p')' 2G

—:— H
(1+p')' 4H

Magnitude
of ephysical

at maximum
bphysical

Time v for
maximum of

ephysical
Magnitude of maximum

ephysical X (2/&0)

G
(1+p')' 3G

3p 1—p' H„
H

2 (1+p')' 5H

Magnitude of
bphyslcal X {2/&o)

at maximum ephysical

sp2 G 2

G
(1+p')' 3G

of coupled electromagnetic and gravitational radiation
in a situation relevant to quasistellar sources.

Specifically, consider the magnetic and electric per-
turbations bphysicai and ephysjca] of a static magnetic uni-
verse as analyzed in this paper (Table III). Asymptoti-
cally, at a given point, for times large compared with the
time required by light to travel to the given point from
regions where the initial perturbation was appreciable,
bphy„„l varies with time like fr/&" —fs/i and ephysical

like fs/t"+' f4/t", wh—ere n= 2 for g-type perturbations
and ted=4 for h-type perturbations. fi, fs, f,, and f4 are
functions only of the radial coordinate p and the first
and second moments of the distribution of the initial
perturbation and its time derivative.

From these asymptotic expressions one can calculate
the times of maximum concentration or "maximum
collapse" (Table IV). This is in every case of the order
of the ratio of the (first or second) moment of the initial
perturbation to the corresponding moment of its time
derivative. These times of maximum gravitational
collapse are given in time units of the static magnetic
universe Lsee Sec. 1.C)

a/c= 2.32X 10'4(G/Bs) sec.

For an axis magnetic Aux 80 10' 6, equal to the polar
values observed in the most magnetic stars, a//c is about
75 years.

B. Einstein's Equations and Self-Coupling

Einstein's theory of the gravitational field associated
with the presence of matter may be described as the
theory of a 2-index tensor Geld g;j with a remarkable
geometric interpretation and with peculiar self-coupling
properties. Formally, the theory comprises two laws, or
sets of equations, which correspond respectively to the
two laws characteristic of any field theory: (1) the field-
generated-by-source law; (2) the force-generated-by-
field-acting-on-source law. The physical content of these
fundamental laws in the case of gravitation can be
stated alternatively in Newtonian dynamical (Ein-
steinian geometrical) language as follows:

(1) There is a gravitational potential (space-time

metric) g;; whose space-time variation, as represented
by the generalized d'Alembertian (Einstein tensor
density) g,; of g,;, has as its source the energy-stress
density V,j associated with the presence of matter:

ti .'= —s V", (s=—Sm G/c') .

(2) The quantity' V'; " [which measures the excess:
j-directed net stress force, generalized buoyancy, acting
on a unit volume minus rate of increase of jmomentum)
is balanced by the gravitational pull (varying metric)
g„„;acting on the energy-stress density V"':

a". 2g —& .Cr'uV & uttl .a" e
C j, 2b= 2guV, jv 2g gati, j& 2' ~

The remarkable geometric interpretation, indicated
everywhere in statements (1) and (2) by the expressions
in parentheses, has the beautiful merit that Eq. (2)
is an automatic consequence (geometric identity) fol-
lowing from Eq. (1).

In cases where the symmetry is high enough to permit
an everywhere diagonal g tensor we set

g„„—=exp(2f„), 1"„"—= 0 " (no summation) (3)

and Eq. (2) simplifies to

in which the resemblance to the Lorentz force equation
in the case of the electromagnetic (vector) field is
striking. It will be noted that, in the diagonal g case, the
diagonal components alone of the energy-stress tensor
play the role of gravitational charge-currents acted on
ponderomotively by the force field.

The peculiar self-coupling property of the g field is
apparent in that the energy-stress tensor of the material
medium is the source of the gravitational Geld and is
acted on by it. LV';" appears not only, as in other field
theories, on the left side of Eq. (2) but also on the right
sides of Eqs. (1) and (2).) It is the self-coupling property

'Differentiation with respect to a variable is labeled by a
subscript comma followed by the appropriate letter or number
index. Occasionally in the following, where economy and no
confusion result, the comma will be omitted.
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which is ultimately responsible for graoitatiorsal collapse—i.e., growth of 1"," towards singular values under
certain conditions —and, under other conditions, for the
existence of self sus-tawing field structures

Wheeler' has proposed the investigation of such
possible self-sustaining structures of sourceless electro-
magnetic fields contained by the curvature of space-
time associated with their own energy density —in
classical language we would say: "held together by their
gravitational pull on themselves. " With extraordinary
intuitive power, Wheeler and his associates have made
many interesting approximate calculations on such
"geons" of various possible symmetries. By now there
can hardly be any doubt of their potential existence-
not as equilibrium but as near-equilibrium solutions of
the combined Einstein-1VVaxwell system of equations.

C. Structure of the Static Magnetic Universe

The geon investigations refer only to dynamic (wave)
structures; at any instant these do not correspond to
rigorous solutions of the time-independent Einstein-
Maxwell equations, but certain averages over the struc-
tures do. One might call this description on the average
the "photon cloud picture" and say that I/t'heeler's geoes
are irs equilibrium irs the photog cloud picture

Recently' it occurred to the present writer to analyze
the simpler case of a static magnetic (or electric) field.
There was found a rigorous equilibrium solution of the
combined Einstein-Maxwell system without charges
and currents. Actually, the solution is a specialization of
a slightly more general solution obtained in Ref. 3,
the general solution representing a parallel cylirsdrically
symmetric bundle of Faraday faux' held together by its otorr

gravitational pull The gra.vitational description of the
magnetic flux system depends on Eqs. (1) and (2a,)
which now reduce to [-', lng44—=P7:

The physical content of Eqs. (1') and (2') can be
stated simply in Newtonian dynamical language:

(1) The Newtonian gravitational potential c'P is
generated by the quantity 2V jrc' associated with the
presence of the flux; 21'/r, which is essentially the
energy density plus the azimuthal pressure, is thus
equivalent to gravitational mass density. [Because of
the Faraday-Maxwell balance of stresses in a pure static
field [Eq. (3')7 the contributions of the radial pressure
1'&'/r a,nd of the longitudinal tension V'

/or to the mass
just cancel each other. ]

(2) The flux is held together by the balance between
its outwardly directed pressure and its inwardly directed
gravitational pull; again in the latter 2V /rc' represents
the gravitating mass density. The essentially unique
solution of Eqs. (1') and (2'), subject only to the con-
dition that f be regular at r= 0, was found to be

First gravitational potential—= (Newtonian poten-

tial)/c'—=P= ln(1+ p'),

Second gravitational potential=—y—=2P,

Energy density= V/r= &Bose '&=Bo'/2(1+p')'.

Here the radial variable p equals r/a where the con-
stant a is a length, the "range radius" of the Aux

structure. The constant Bp is c times the square root of
the gravitating mass density on the axis. When the
structure is interpreted as a magnetic Aux structure we
have in rationalized units

energy density=—&(r= sHBpi, ysicai&

contravariant magnetic field—:H = &p = constant,

everywhere,

physical magnetic Geld=—Ape '&—8p in the vicinity

of the axis —Bo/p' far away from the axis.

(nP,)„/r = «V'/r (Poisson equation),

—(V'/r) „=f„(2 1/r) (Hydrostatic equilibrium

equation) .

("Vicinity" here means a modest fraction of the "range
radius" a.)

The length a is related to Bo (in gauss) inversely

(2') through the connection

Here subscripts represent differentiation and we have: a= (1/Bo)2c/G'&o=6 96X1()'4 (G. /Bo) cm

—7 i'= 7'so = —V's'= V'4' =T44+
~ g ~

=—T, —(3') and the associated time is

I
radius

S' translation parallel to
sQmmetly axis

, ~=—coordinate forx' ) angle about symmetry
axlS

x'. i c time

' A Faraday Aux may be de6ned as one satisfying the simple
condition that the radial stress density (e.g., the pressure) is equal
and opposite in sign to the longitudinal stress density (e.g.,
tension). Such a condition is essential to Weyl's method oi
simplifying cylindrically symmetric problems so that they involve
two rather than three gravitational potentials, A static magnetic
or electric 6eld automatically satisfies this condition, a fact which
does not seem to have been referred to or applied in general
relativity prior to the work in Ref. 3.

a/c= 2.32X10" (G/Bo) sec.

For a magnetic Aux Bp 10' G, equal to the polar
values observed in the most magnetic stars, u is about
one million times the diameter of the earth's orbit about
the sun.

The static but curved geometry associated with the
Aux structure is

—(element of physical distance in units of a)'
=+ (element of physical time in units of a/c)
=do' = (1+p ) (d7' —dp —dP) —p'(1+p') 'dP' (4)

where ap—=x', af =x', g=—x',—ar=x'—
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The total Aux C is defined by

Total Qux

(physical component of 8)

Xd(physical distance in direction of increasing p)

Xd(physical distance in direction of increasing P) .

C comes out to be simply the product of 80 by the
coordinate area out to a: ma'80.

We de6ne the "effective electromagnetic energy"
E, per unit physical length in the 2 direction by the
integral of the physical magnetic energy density,

over the volume spanned by the entire physical area
perpendicular to the s axis and by the physical distance
corresponding to the s interval 0 to 1.We find

Ee =c'/4G, m„„=c'/4G=3.37X10' g/cm.

This value, which is that given in Ref. 3, is the ap-
propriate energy quantity if we are interested in the
result of adding up the measurements of a complete set
of observers distributed throughout the space time, and
each observing in a local Lorentz frame. The physical
energy density and energy fluxes (in a time-dependent
case) so defined are not however conserved (because of
"interaction with the gravitational field" ). If we are
interested in a description using conserved quantities it
is more appropriate to define the "physical" energy Aux
and energy densities not by T4' but rather by the
quantities (gg44)T4'. These obey al ordinary couserea
tiog law if the gravitational field is stationary (g;i 4=0),
aud the system of coordinates time orthogonal (g -4=0,
a&4). For, setting S'=——(gg44) T4', Eq. (2) yields

divS+ BS'/Bt =0, divS= (1/(g'~g) )( (g&'&g)S'), ;.
The quantities S' and S are naturally interpreted as the
energy density and energy Aux, respectively. The extra
factor gg44 ——1+p' in the integration to get the total
electromagnetic energy or mass per unit length yields

(diem)conserved (~em/C )conserved

=c'/2G=6. 738X10"g/cm,

where 2 occurs in the denominator instead of 4 as in
Ref. 3. The results is equivalent to about one earth
mass per cm.

A brief remark about the "stem-of-a-wineglass"
nature of the equatorial plane spatial geometry in a
static magnetic universe was made in Ref. 3. A fuller
picture is given in the paper by Thorne' where the
equatorial plane geometry is represented by an em-
bedding diagram in a. Rat. 3-dimensional 'Euclidean

8 K. S. Thorne, following paper, Phys. Rev. 139, 3244 {1965).

space. ln order to understand the space-time geometry
of the static magnetic universe somewhat better, we
have also studied' its time-like and light-like geodesics;
these are the orbits of electromagnetically neutral test
particles with unit or zero rest mass. Since the density
of magnetic Aux—and energy and stress —is approxi-
mately uniform in the vicinity of the axis, the motion of
test particles there is like that in a Newtonian simple
harmonic oscillator 6eld. As is to be expected from the
universality of angular frequency coo in the harmonic
oscillator 6eld, and the relation: orbital velocity —a&op,

no motion can get away too far from the axis. The
strength of the attractive field is such that there is a,

"critical straddling radius" p= 1/v3. The fundamental
reason for the critical radius is of course the limitation
on orbital velocities by the velocity of light. Circular or
circular helical light tracks occur only at the critical
radius, and with Bo——10' 6, the time required for light
to circumnavigate the critical circle is about 200 years.
The cylinder marked out by this radius plays a unique
limiting role: All particles, whether of zero or non-
zero mass, and no matter what their initial positions
and velocities (except in the one singular subcase of
light tracks parallel to the cylindrical axis), must have
their orbits lying wholly or partially within the cy-
lindrical region p(1/V3; hence the use of the adjective
"straddling. " Constants of motion which correspond
closely to i -component linear momentum, angular mo-
mentum, and energy in Newtonian mechanics are
defined. Bounds are placed on these dynamical constants
and on the apsidal radii by the requirement that the
range of motion be real. Finally the magnetic universe is
complete in the sense that "no news can enter or leave"—all orbits are of in6nite duration.

D. Stability of the Magnetic Universe

A Newtonian energy argument similar to that for
spherical geons'&" was given by Wheeler"' to show
that the magnetogravitational equilibrium structure
was unstable against collapse or explosion, but this time
the result of an exact general relativity analysis (see
Sec. 4 of this paper and the work of Thorne') shows a
radical difference from the Newtonian analysis: H/'bile

the equilibrium distribution follows equally mell from a
1Vewtogiari model (with the ore added idea that stress
energy acts as gravitating mass) aid the exact general
relativity analysis, the equilibrium is unstable according to
the Estonian model and stable according to the general-
relativity analysis.

There are two ways of analyzing stability of equi-
librium of a system:

(1) The exact dynamical equations of motion, start-
ing with a perturbation from the equilibrium con-
figuration, are solved and it is determined explicitly
whether or not the equilibrium configuration is departed

M. A. Melvin and J. S. Wallingford, J. Math. Phys. (to be
published).



8 232 M. A. M ELV I N

from with time. In the case of the magnetic universe
this is done analytically for small radial perturbations
in Sec. 4 of this paper, and is done by computer methods
for some large radial perturbations by Thorne' in his
paper.

(2) The energy, or a similar constant of motion in
the equilibrium configuration, is compared with the
same quantity in nonequilibrium configurations to see
if the nonequilibrium configurations are attainable
starting from slight disturbed equilibrium. In the case
of the magnetic universe this approach using the
Newtonian energy concept'(' failed to give the correct
result, and the reason can be made clear as follows: The
fact that the rigorous Einstein-Maxwell analysis leads
to stability of the static system means that one can
describe the system by saying that in it the magneticgefd
spreads out to tire maximum extent compatible with the

geometry. ' If the geometry were asymptotically Eu-
clidean this would lead to a total dissipation of the Aux
and the structure would be unstable as predicted by the
Newtonian model. But in the actual geometry for large
p values the circumferences of circles decrease' —dis-
tances measured in the p direction "pinch in"—in a way
completely contrasting with the widening circumferences
of Euclidean geometry.

The strange geometry and the concentration of 8 Qux
codetermiee each other, and one cannot reason ade-
quately with the Newtonian energy concept which is
not well defined for nonasymptotically Rat space-
times. "A different concept, indigenous to the theory and
equations of cylindrically-symmetric systems, with
properties paralleling in many of the most important
respects the properties of Newtonian energy, has now
been developed by Thorne' under the name of "C
energy. "The total C energy within a cylindrical region
is closely related to the value of the second gravitational
potential p on the boundary of the region. A charac-
teristic difference of C energy from its Newtonian
antecedent is that whereas the contribution of the
gravitational field to the Newtonian energy of a system
is negative, its contribution to C energy is positive.
Thorne shows that the behavior of C energy governs the
absolute stability of cylindrically symmetric systems.
Explosion of the magnetic-field distribution to infinite
dilution, or collapse to a singularity, would bring about
an infinit increase in the C energy of the system over its
value in the static equilibrium distribution. From this
result, and the uniqueness of the equilibrium solution,
one can infer as well the relative stability of the equi-
librium distribution, as is shown directly by the small
perturbation analysis in Sec. 4 of this paper.

M It is this fact, that the distribution is stable (or spread out to
the maximum extent compatible with its self-produced geometry)
that leads us to change the name from "magnetic geon" as in
Ref. 3 to "magnetic universe. "

"For a review of hitherto unsuccessful attempts to de6ne total
energy is nonasymptotically Rat space times see C. W. Misner,
Phys. Rev. 130, 1590 (1963).

2. THE GRAVITATIONAL EQUATIONS FOR WHOLE-
CYLINDER SYMMETRY—UNSPECIFIED STRESSES

Our specific objective is to investigate the stability of
the static magnetic universe by studying the dynamics
of oscillation when the equilibrium is perturbed. For
this and more general purposes it is useful and inter-
esting to set up the general dynamical equations for the
given symmetry.

We follow a procedure analogous to that which Weyl"
and Levi-Civita" followed in studying static gravita-
tional fields with polar" symmetry. We adapt the
treatment however to nonstatic whole-cylinder sym-
rnetry, i.e., where there is a dependence of the surviving
metric tensor components on a time variable x4 and
radial variable x', instead of on an altitude variable s
and x'. Such a treatment was followed by Einstein and
Rosen in their work on cylindrical gravitational waves, "
but they limited it to the case of space empty of material
energy and stress. We treat the more general case where
the space has material energy stress in it, specifically a
distribution of electromagnetic fields, and we inquire
after equilibrium configurations of such fields.

By our symmetry assumptions the only metric tensor
components diGerent from zero are

g44) g41) g11) g22) g33)

where the indices 1, 2, 3 refer to x', z, and p, respectively.
Without loss of generality we simplify analysis by the
two coordinate conditions

g14 0 ) g11 g44 ~

Defining new potentials iP(x', x'), y(x,',x'), and r(x', x')
we write

(6)

from which are calculated the nonzero components of
the Einstein tensor density

g '= (R '—-'8'R)g~g~ (no summation)

"H. Weyl, Ann. Physik 54, 117 (1917);with R. Bach, Math. Z.
13, 134 (1922).

» Levi-Civita, Atti. Accad. Nazi. Lincei, Rend. 26, 307 (1917);
27, 3 (1918);27, 183, 220, 240, 283, 343 (1918);28, 3, 101 (1919).

"Our space symmetry terminology follows that indicated in
M. A. Melvin, Rev. Mod. Phys. 32, 477 (1960), Fig. 5; 28, 18
(1956), Fig. 1. In polar symmetry the structure is invariant under
(1) rotation through any azimuthal angle p about an axis z; (2)
reflection in meridian planes p —+ —@.

POLAR (1): Bgi„/By=0 (all X, p); (2): gp„=0 (p~y). {n)

In their papers Weyl and Bach call this kind of symmetry "axial
symmetry, "but consistency with vector and tensor nomenclature
requires that we call this type of symmetry "polar" and use
"axial" for a structure invariant both under (1) change of @ and
(2) refiection in the equatorial plane at right angles to the rotation
axis: g ~ —s.

AXIAL (1): Bgi„/B$=0 (all X, p); (2): g,„=O (pWz). (P)

The whole-cylinder symmetry includes both conditions (a) and (P)
and also independence of all surviving g's of s as well as @.

"A. Einstein and N. Rosen, J.Franklin Inst. 223, 43 {1937).
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and Eqs. (1) become

gl /r= «&i'/»= {r44—(V,r))/r+ (4,4'), (&a)

g 2/r=gV 2/r=2+2$
+{2[r,ff—D'r)/r '—y Q—,P7, (7b)

direction. [Note that E4')0 always, therefore 1'&"(Oby
Eq. (9).j The differential operator on the left-hand side
of Eq. (Sb) becomes the standard (r,t)-dependent
D'Alembertian operator C3 and Eq. (8a) then simpliGes
to

H ~=~11 ~44

g '/r= ~ F33/r = —2'y Qp—pj, (7c)

8"/—»= ~ '/r= {» h, r—)&/r+ (4 A), (7d)

g4'/r =« v4'/r ='{r~4—y4r~ —y~r4)+2$gP4, (7e)

where the differential operators (,), [,7, and Cj' are
defined by

(f,g) = fungi+— f4f4, Lf,g)= fight —f4g4—, &'f= f» —f44—

We take the difference of the first and fourth equations—likewise the second and third —and combine. Further,
we take linear combinations of the last two equations.
Ke find

With a mild added restriction it follows that r itself can
be chosen as the radial variable in place of x'.

To show this we consider the complete set of invertible
transformations which leave the coordinate conditions
Eq. (5) invariant. For convenience designate

x'—=u', x4=—~'.

The general transformation

u' ~ u(u', v'), o' ~ v (u', ~')

which leaves Eqs. (5) invariant has to satisfy
C]'r = —g (r,'+ 9"4') (8a) u„—'v ~ = —(u„—'v~ ) u„u„—'v~ v = 0 (11)

{(&Pa) i—(A/4) 4)/r = a (9V—V'3' —1'~'—K4')//&r, (Sb)
together with the Jacobian condition

3. RESTRICTION ON THE STRESSES

A. The Stress Restriction T'&'+ V'4' ——0. Reduction
of Number of Gravitational Potentials

from Three to Two (y and g)

In general however the stresses are not known, but
rather quadratic functions of the components of some
stress source geld (e.g-. , an elementary particle Geld)
subject to a governing system of equations (e.g. ,
Maxwell's equations). These Geld equations involve the
metric tensor functions r, f, and y, and likewise do the
stresses. Thus we are faced with a complicated system
of nonlinear equations. A considerable simplification
results if we impose the condition

9"g'+ 14'= 0 (9)

corresponding for instance (see Sec. 2) to an electro-
magnetic field with zero-field components along the x'

y~= {r~r~~ r4r~4+rrq(P—,P) 2rr4$gP4-
+~(r~V'4'+r4V'4')}/[r, rj, (Sc)

y4
———{r4ru r~r~4+rr4(f—,f) 2rr~fgP4-

+K (r4 T4'+ r &
1'4') ) /Pr, rj, (Sd)

(Se)

Equations (8) provide a complete system for solving
the general problem of a cylindrically symmetric time-
dependent field, provided the stresses are given. If the
stresses are given as functions of the independent vari-
ables alone, then, with suitable boundary conditions, the
system is linear, and the procedure is: Solve the first
equation for r. Substitute this solution into the second
equation. We arrive at a second-order linear difI'erential
equation which may now be solved for tP. With P and r
known the last pair of equations determine p.

Nv'= &u' )

Nv'= &u' y

Nu' 4' j

Nu' &v' ~

(12)

(12')

The transformations (12) have the Jacobian

&v' &~' =Nu' Nv' +0.
They include in their set the identity, and are all sense
preserving, whereas the transformations (12') have the
opposite sign of the Jacobian and are the sense-reversing
transformations. In the case of either Eqs. (12) or (12')
both I and v satisfy the wave equation, e.g. ,

+m'u' Nv'v'

We see that this theory of u and o (having the wave
equation as a basis) is analogous to the theory of
functions of a complex variable having the Laplace
equation as a basis. We may pick r as an arbitrary
solution of this equation subject to the monotonicity
condition r '—r, '~0 and then the "real conjugate
function" v=l is determined by Eqs. (12) or (12'). We
call the pair u= r and e= l, chosen to satisfy Eqs. (12), a
hyperbolic canonical pair.

B. Introduction of Dimensionless Independent
Variables

It is convenient to introduce dimensionless inde-
pendent variables

p= r/a, {—=s/a, —'r=l/a ) 0'=s/a

Nu'&v' &u'Nv'+ 0.

Taking sum and diGerence of the first and twice the
second of Eqs. (11) we Gnd as the only solutions com-
patible with (11')
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gP=k(v'P —v'„')/2p (k—=za),

(q 2 q" 3)—1(q 4 q 4
p
—Iq" 8)

p~=(Vp —V ) (94 4
—Ti i))

v, =p(4,'+4.')+k&4'

y, = 2pg pP,+kV'i,
&'v=4 ' 4,' k&~'—/p, —

(15)

where the first three equations serve as integrability
conditions for the next two. Thus, if the stresses are
given as functions of the independent variables alone,
with assigned boundary conditions, the potentials P and

p may be found by successive quadratures. In general,
however, as we have remarked, the stresses themselves
depend on the metric tensor through the equations
which govern the Q.eld which is the seat of the stresses,
and we have a coupled system of equations.

Combining the first and sixth and, alternatively, from
the first, fourth, and sixth of Eqs. (15) we can also write

'(y 2P) =P.' fp—'+2/ p/p
—kV 2'/p, —

& (7 20) =24'+k—(&4' &~')/p, —

which will be useful later.

C. Change of Dependent Variables (g and y ~ W
and G). Establishment of Gravitational

Boundary Conditions

The foregoing choice of gravitational potentials, f and

y, is most natural for certain purposes in that P corre-
sponds to the Newtonian potential in the static case
(Ref. 3) and p is related to the C energy or "mass" out
to the radius in question (Thorne, Ref. 8). These are not
however always the most convenient choices. It will

prove valuable for the subsequent development to re-
express Eqs. (15) in terms of two new gravitational
potentials

based on the range radius u of the static magnetic
universe solution. The line element is now

do'= e"' &'(dr' dp—') e'~—dP p'e—'&dy'. (13)

Henceforth the symbols Q and [,] represent the differ-
ential operators written in terms of the dimensionless
variables p and r.

o~-=(p~,),/p-~„,
[A B]—=AuBn A,B„LA,A]—= [A]=Au2 A,'. (14)

(It will be noted that square brackets are not used for
any other purpose throughout this paper. ) The system
of Eqs. (8), with or without: the help of the divergence
identity, Eq. (2a), yields the complete system of
gravitational equations:

derived from the definition, Eq. (16), of W, we have

E1 W/W —[W]/W'= (k/2p) (V 22 —1 ') . (19)

Equations (15') may now be rewritten

El'G = —[W]/W' —(k/p) V'P,

G = 2 (W,/W)'+ (k/p) (v'4' —v"22) .
(19')

The first of these combined with Eq. (19) and the
remaining equations of the system (15) rewritten a,re

H W/W = — 'G —(k/2p) (K +2V'38), (19a)

Wp/W= (v2' —v )
—'(v'i'4 —v', 'i —p

—'v'22) (19b)

W,/W= (12'—V'3') '(E4'4 —V'i'i),

Gp= p(W, W)/W'+kV'44

G,= 2pW pW, /W'+k V'i4.

(19c)

(19d)

(19e)

Since the right-hand side of Eq. (19d) is always positive
for any nonvanishing V"4, it follows that G is a mono-
tonic increasing function of p.

In the case of the pure electromagnetic 6eld to be
discussed in the next section, one simplification can be
made immediately. The trace of the stress tensor is
always zero:

v~&=0.

This combined with our condition Eq. (9) that the field
be entirely la, terai (zero ra, dial component), leads to the
result that

T'22+ 1'33=0. (20)

In this case Eqs. (19a) to (19e) and the second of Eqs.
(19') can be written in the form

Cl W/W = — 'G, (20a)

From the Riemannian basis of general relativity, space
time is locally Minkowskian everywhere. Thus as a
natural regularity condition, since it refers to an inhni-
tesimally small region, we require that the metric Eq.
(17) [or Eq. (13)]immediately around the axis shall at
all times remain Minkowskian:

(1) The ratio of circumference to radius of an infini-
tesimal circle around the axis equals 2m.

for p=dp~0: W'=e —~/p or y(0,r)=0 (all r). (17')

(2) The coordinate velocity of light in the f direction
is bounded. The condition requires

for p —+0: G(p, r) lnp —+ —2—$(0,r)( oo (all r). (17")

%ith these notations, and with the relation

W/W —[W]/W'= nP

G=—y —2/+ lnp, W—=e&/p. (16) W /W= (2V'g') '(V'i 4i—V'44i) —(2p) ' (20b)

In terms of G and lV the line element takes the form

2 W2ie20(dr2 dp2) p2d$2} dg2/W2 (j 7)

W,/14'= (2V'22) '(Ti 44—V"i 4i),

G,=p(W, W)/W'+k9 44

(20c)

(20d)
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G,= 2pW pW, /W'+09'i', (20e)

4. GRAVITATING ELECTROMAGNETIC FIELDS

A. Metric-Independent Form of Maxwell's
Equations and of the Stress Tensor

We consider now pure (sourceless) electromagnetic
fields in the curved space-time defined by Eqs. (17) and
(19a) to (19e). Actually we need not introduce the
metric at first. It is worthwhile to spend a little time
explaining this: We can write the general equations of
electromagnetism in a form completely independent of
any metric, i.e., in what may be called "amorphic"
space time."Formally this is possible because electro-
magnetism is expressible in terms of k-index multivectors
(antisymmetric tensors with h indices) and multivector
densities, and relations between multivectors are ex-
pressible in metric-independent form. " The develop-
ment is most elegantly and economically made by
introducing at first only the six-component magneto-
electric gux F (B,E) and the four-component charge
current J (p,j) and stating the two integral principles
of conservation of charge and conservation of (magneto
electric) jlgx:

J dS'"=0, (21)

F dS"'=0.~
~ (22)

"Sy the "general equations of electromagnetism" we mean the
two Maxwell systems and specihcally do not include the "consti-
tutive relations" between E and D and B and H which characterize
a particular medium. That the two Maxwell systems can be
derived from the two integral principles of conservation of mag-
netic flux and conservation of electric charge was realized by R.
Hargreaves (Trans. Cambridge Phil. Soc. 21, 107 (1908)]and H.
Bateman /Proc. London Math. Soc. 8, 223 (1910)]. The full
implications of this for a metric-independent (what we have called
"amorphic") expression of electromagnetism were stated by F.
Kottler LSitzber. Akad. Wiss. Wien, Math. Naturw. KL Abt. IIa
131, 119 (1922)7 and developed further by D. van Dantzig LProc.
Acad. Sci. Amsterdam 39, 126, 785 (1936), where reference to
earlier work may be found j and others. M. A. Melvin, Proceedings
of the Second Canadian Mathematical Congress (University of
Toronto Press, 1951},p. 225, showed that the amorphic invariance
of electromagnetism follows directly from a generalized symmetry
analysis of the empirical phenomena where electric and magnetic
6elds are excited in systems in which there are initially no electro-
magnetic phenomena.

"The metric-independent nature of electromagnetism, as a
formal possibility due to the expressibility of electromagnetism in
terms of multivectors and multivector densities, was remarked
before Kottler by H. Weyf in his book Space—Time —Matter,
(Springer-Verlag, Berlin, 1918), 1st ed. /English transl. (Dover
Publications, Inc. , New York, 1950), 4th ed. , p. 131.g It appears,
however, that Weyl did not follow up this remark,

CIG= 2 (W,/W)'+ (h/p) (7' 4—V' ') (20f)

We note that in the first equation of this system the
stresses have been eliminated entirely; this, together
with Eq. (20f), will prove to be a key equation in the
treatment of the dynamical problem of a perturbed
magnetic universe in Sec. 4 of this paper.

It is a conventional matter whether we choose to repre-
sent the four-component charge current by a contra-
variant vector density g or its dual, a covariant axiaiis
trivector. The former choice is almost invariably made.
Likewise it is conventional whether we represent the
magnetoelectric Aux by a covariant bivector F„4—=I',
Ii I,

—=BI, , or by a contravariant axial bivector density.
The former choice is usually made.

By a general integral theorem'~ —the Gauss-Green
theorem in both its space and space-time form —which
has no reference to metric in it, Eqs. (21) and (22)
imply respectively that g can be written as the di-
vergence of a contravariant bivector density 3C &,

re n4 — D n
7

and that F„„can be written as the curl of a covariant
vector potential (3 z, A4 —=—p), so that

=8 3C "=—3C "

F„„=A,,„—A„,,

(23)

(24)

3C &, which plays the role of a "charge-current po-
tential, " is traditionally called the electromagnetic field.
If we assume further that J and F are continuously
differentiable in a region, Eqs. (23) and (24) imply that
the divergence of J and the "cyclical divergence" or
"rotation" of F will vanish everywhere in the region:

3C~&= hF & h=—g(—g) =—(—Detg„)'t' (27)

"Axial" means that, besides undergoing tensor transforma-
tion, the geometric object is multiplied by the sign of the determi-
nant of transformation coefficients. In former publications (M. A.
Melvin, Ref. 16) the adjective "pseudo" was used for such entities,
but it is better to switch to "axial."This switch is made without
explanation in the article by C. Truesdell and R. Toupin, Hand-
buck der Pkysik (Springer-Verlag, Berlin, 1960), Vol. III/1, p. 661.
We can give the following reasons for the change: In Ref. 14 we
noted that the adjective "axial" is appropriate for any entity
directed along an axis—e.g. , the z axis—which is invariant: (1)
under reflection in the equatorial plane z -+ —z, and (2) under
rotation about the z axis. It is significant that the second of these
conditions is satis6ed automatically for a k vector. This can be seen
most easily by examining the rotated components starting from a
frame in which the k vector is directed along the z axis. ("Along"
means that for a 1-vector only the components V, and V& are
different from zero; for a bivector only V „and V, t are different
from zero; for a trivector only V „& and U,„,are diferent from
zero. ) If, in addition, it is specified that the k-vector be "axial" the
condition (1), of invariance under z —+ —z, is also ful6lled.

"See Truesdell and Toupin, Ref. 18, pp. 665, 666.

RotF- (RotF)„„„=F„„,„+F„...—+F„,„=O. (26)

These are the differential equation equivalents of the
integral conservation principles Eqs. (21) and (22).

Maxwell's equations in an Einsteinian gravitational
field, i.e., with a Riemannian space-time metric pre-
scribed so that tensor indices may be raised and
lowered, are then obtained from Eqs. (23) and (26) by
equating the bivector density K & to that obtained
from Ii:
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Postulating this identification of the two entities, F and

K/g( —g), is equivalent to postulating that the usual
form of the electromagnetic field Lagrange density

4iF—„„F&"g( g)—holds in a gravitational field M. ax-
well's equations reduce then to

F„„,„+F„„,„+F„„,„=O or F„„=A.,„—A„, , (28)

(kF~&) =hJ or (hg "ge "F ) e=g (29)

where J =g /lt is the charge-current vector corre-
sponding to the charge-current vector density g . If the
system of space-time coordinates is "time-orthogonal, ""
i.e., such that g 4

——0(n/4), and if, besides, it is possible
to diagonalize the space metric over a, region, then the
only terms which will appear in Eq. (29) will be those
for which

(32')

The nonvanishing components in the present case of
axially cylindrical symmetry are (dimensional metric)

Ki'= —BC4 Fi,= hF4—Fi,=EBe'&/pa,
= —V o' ——(-', h) (F"F 4+oF"Foi)

=
2 (B' E')—e"/pa (31')

V'4' = —V'i' ——(-,' h) ( F"F4—o+F"Foi)
=-'(B'+E')e"/pa

As Eq. (32) shows, the vector potential in this case
can be represented by a single covariant component 6,&

such that
a8= —0', 3 ~, aE= —0,3 4.

p= vwti=n For the length parameter on which we base the dimen-

ancl Eq. (29) may be rewritten (suspending the summa sionless length and time variables, we choose the range

tion convention) of the static solution. '

P sgn(nP)(h heh, hoF, e) e=g

(n, P, y, 8= 1, 2, 3, 4 et cycl. ) (30)

where we have introduced the symbols

8 Il2 I.108'&024—CI11

Bp Bp

(Bo=—flux density on axis in Heaviside units)

h-=v'la«-I lt =—v'Ig
I
=v'(1/lg-I) =1/h-,

sgn (np) =—(signg ")&& (signgee) .

2c' 6.96&10'4

Bo+G Bo
cm (Bo in gauss).

Take the product of the four h's as a single quantity.
There are then at most six terms on the left side of Eq.
(30). In the special case where the g's are constants
there are only the three derivatives of the Ii p and we
have the usual Maxwell system.

The energy-stress tensor density is given in the general
case by the equations

Correspondingly we may introduce a dimensionless
single-component vector potential

A —= n, (2/Boa') (33)
so that

For= B=—
o (Boa)—A» F4o= &= q (Boa)A ~ —(33')

V'„~= X"F„.+,'b„~—SC eF.e. - (31) The Maxwell equation (32') with current set equal to
zero then becomes

8,—E p=O, (32)

2 This can always be arranged by suitable choice; cf. Chr.
Mufller, The Theory of Relativity (Oxford University Press, New
York, 1952), p. 296.

B. Simpli6cations in the Case of Cylindrical
Symmetry. Introduction of Single-

Component Vector Potential

We consider now the special case indicated by the
symmetry requirements of Sec. 1, an electromagnetic
field with zero field components along the r direction.
Even more specifically we consider a cylindrical electro-
magnetic wave with magnetic field entirely along the
s direction:

F»(p, r)=B,
and electric 5.eld entirely in the @ direction:

Fo4(p, r) =E. —
Since, by Eq. (6), h4=h&(g44 ———g»), and h'lt& ——e'&/p,

our Eqs. (28) a,nd (30) become

(pW'A p) p
—(pW'A, ),=0.

C. Electromagnetic Regularity Conditions

(34)

The stresses and the energy density must not become
singular at the axis. It follows then from Eqs. (31') that
for some time —at least near the beginning —we have
the boundary conditions

A, &0 (1)v'p A.&o(1)V'p,

where 0(1) stands for "some finite value. "We obtain a
stronger condition by imposing the "electromagnetic
regularity conditions":

(1) On the axis the physical magnetic field shall re-
main finite, at least within a time range T;&v & Tf .

, the
physical electric field, which "does not know which wa, y
to point, " shall be zero on the axis.

(2) At p= oo, at all times, the physical electro-
magnetic field —and the covariant potential —shall be
zero.
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The relations between the physical components of the or
6elds and the covariant components for any diagonal
metric are

Archy,

=S'A. (35)

B,g„——Fp, /hphi —— Bp—(,'e G-)A p,

Epi,y =Fp4/hph4= —Bp(ipe 0)A
(34')

Upon substituting in Eq. (34) this yields the remarkably
simple relation which we may call the first carousal
electronsagrIeti c-graeitatiorIal eql ation

Conditions (1) and (2) lead to $0(1) stands for "some
finite value"$ H W/W= A pp»/A pi,». (36)

or

p ~ 0: A~&0(1)p, A,&0(1)p

p —&~: A=O

A (O, r) =constant, A (~, 7) =0. (34")

These conditions are related to one of the two funda-
mental physical principles with which we started the
analysis of electromagnetism in an arbitrary space:
conservation of flux, Eq. (22). As will now be shown, the
constant in Eq. (34") has the interpretation

A (O,r) ~ total flux=4 . (34'")

Here we have an explicit statement in our particular
case (where there is only one vanishing component A p)

of that aspect of Eq. (22) which asserts the existence of
a "constant of motion" —the total Qux. This becomes
evident when we write out the integral in Eq. (22)
explicitly for the space-time "cylinder" whose boundary
comprises the entire p, p plane at two different times ri
and rp. We have (normals along positive r and p
directions)

One can combine Eq. (36) with Eq. (20a), relating the
gravitational potentials 8' and G among themselves.
Three further equations relating 8', t", and A are ob-
tained from Eqs. (20d)—(20f), with the values of V'4' and
1&' from Eqs. (31') rewritten in terms of dimensionless
quantities.

Gp/p= (W,W)/W'+(A, A)W',

G,/p= 2{WpW, /W'+A pA, W'},
G =2{(W,/W)'+A, 'W'} .

(37)

0W/W= C1A,i,»/A, t,»= — 'G,

Gp ~ phys ~ phys—= (lnW, lnW)+Apq»' ln, ln
p 8' 5"

6,—= 2 (lnW) p(lnW),
P (38)

This basic system of equations can be rewritten in
terms of 8', 6, and AIhy, .'

P.ds(&)— FpidPdp Fpidgdp+ Fp4dgdr

tr A pay ( A pa»)
+Apb~'I ln

I
ln

W , k W i, '

=2 (Bpa') A pdpdp — A pdgdp

I' A pi y8)
G=2 L(lnW), j'+A,...' I

»—
W i,

which implies

A,dpdr =0,
E. The Static Solution and Its Total Magnetic

Energy per Unit Length

The static solution, ' which we shall designate by
superior bars, is readily verified to correspond to

total flux=ma'A (0,7 p)Bp ra'A7(O,r,)B ——p

as stated.
The constant of motion implied by the other funda-

mental physical principle —conservation of charge —is
trivial in our case since the electric current is everywhere
zero.

G= lnp, W= (1+p')/p, Bpg» ——Bp/(1+ p')',

1 1 k k 4
cr 2 a-4

1+~' n c ~ (1+~')'

with the total Aux

C =7ru~BpA(0) =7ra~Bp

(39)

D. Canonical Form of the Coupled Gravitational-
Electromagnetic Equations

It is helpful to introduce instead of the covariant
component A of the vector potential, the (dimension-
less) physics, l component A,z» which is related to the
covariant component by the equation

A.~"= (g») '"A = (e'/p)A

A (0,7') =3(0)= 1, A, (0,r) =0,
A (~, r) =0. (39")

as in Ref. 3.
In the stability analysis of the static solution we shall

be interested only in perturbations which leave the
total flux constant. It follows from Eqs. (34") and
(34'") that under these circumstances
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Because of these limitations on the variation of A it may
be conjectured that no gravitational collapse will occur
and that the static solution may be stable. That this is
actually the case for small radial perturbations is
verified analytically in the next part of this paper. "

5. DYNAMICS OF A PERTURBED
MAGNETIC UNIVERSE

A. First-Order Equations for a Purely Radial
Perturbation. Reduction of Problem to

Finding Two Functions, g and h

To get first-order perturbation equations, we expand.
with the perturbation parameter e in the neighborhood
of the static solution. Setting

G=G+eg(p, r)+.
W =W(p)+ ew(p, r)+ (40)

A „h„A,h„——(p)+ ea(p, r)+.
where . stands for "terms of order e' and higher, "we
find, from Eqs. (38) and (35), using (39), after some
calculation,

Similarly, even more easily, we find

a(part) = —g/2p (42& r)

Substituting Eqs. (42), (42'), and (42") into (41), we
find the remarkably simple result

w"& =2h+ const(p+ 1/p) . (43)

Thus we have only to determine solutions of the
equations

Qg=0

Clh —h/p'= 0,

(44a)

(44b)

subject to given side and regularity conditions, and the
complete solution to the perturbation problem is im-
mediately given by

the Laplacian of a product, we find

2g.f.+ g (~f f—/p') =g.(1+p')/p'

Setting coefFicients of g and g, separately equal to zero,
we find

f= l (p 1/p—) or w"""=l (p 1/—p)g (42')

C]g =0 or Cl'g = g,/p, —

w/p =g (1+p)/p'

&a—a/p'= g,/p',

2 2—1P
go= (2a—w) —p(2a, —w, )

P2+ 1 P2+ 1

(40a)

(40b)

w= 2h+const(p+1/p)+-', (p—1/p)g,
a= s(2h —g/p).

(44c)

B. Regularity Conditions and Solutions for g

(40c) We shall see from the regularity conditions derived in
the next section that the constant in the first of Eqs.
(44c) is zero.

g.= —[2p/(p'+1) j(2a.—w.) (40e)

/ P + j + " " ( 2P'Ww((1+gW/w) (d '—dp') —df'+ (W'p') —'dqP) . (45)

The regularity requirements are made evident if we

From Eqs. (40d) and (40e) we immediately find the expandthemetric aboutitsstaticform. The added term

integral in do', of order e, is

We will solve the first three of Eqs. (40) for g, a, and w

in terms of Laplace- or Fourier-type integrals with
cylinder-function kernels, but before doing this we
reduce the problem to one involving only homogeneous
equations. Equations (40b) and (40c) being linear, each
has as its solution the general solution to the corre-
sponding homogeneous equation (w& "& and a& "&=—h) plus
a particular solution to the inhomogeneous equation
(w(part) and a(part)) ~

w —w( h) +w( part) a —h+ a( part) (42)

As a trial form we set w(pa'"& =gf(p) =gf where g —is the
general solution to the Eq. (40a), whose p derivative
appears on the right side of the equations for zv and a.
Noting that gw=—Cl(fg)=h(fg) fg, where 6 i—s the
Laplacian in p, and making use of a familiar identity for

If we are to allow for all admissible developments,
including possible instability, we must be careful not to
impose excessively strong restrictions on the behavior of
the perturbed magnetic universe. The natural restric-
tions are the grat)itationat regularity conditions [Eqs.
(17') and (17")j extended to include behavior at
infinity; and the electromagnetic regularity corIditioms

Eq. (34") [including the constant total flux condition,
Eq. (39')j. Spelled out with respect to the perturbed
magnetic universe we have:

Gravitational Regularity CorIdi ti oils

(1) At all times r, to a first order in e, the locally flat
nature of the metric on the axis p=0 shall not be
altered. This implies

~' Since this was written, stability under large radial perturba-
tion has been proved by K. Thorne with the method of C energy
(private communication Ref. 8). Our perturbation method retains
however the value of giving the explicit dynamical solutions, in-
duding the representation in normal modes.

for p-+0:

g(P r) 2''(0 r)(
w(p r) g/2p(1+ p') 0—(0 r)/p

(46a)

(46b)
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Therefore, from Eq. (44c) we have

for p ~ 0; h(p, r) ~ —-', const/p. (46c)

Electromagnetic Regllarity Conditions

(1) At all times, b,hy, shall be finite and e,hy, shall be
zero on the axis p=o. This implies that the constant in
Eqs. (46c) and (44c) is zero:

(2) At all times to a first order in e, the static metric
at p= ~ shall not be altered; in other words the ratio of
the added ~ term to the static metric shall go to zero as
p ~~. This implies

fol p~~: m/p —+ 0. (47)

%e now consider the implications of the electro-
magnetic regularity conditions which also hold in our
case: The relations between physical and covariant
fields for any diagonal metric are $Eqs. (34')j

&phys= ( &oe /2)& p=&phys+ ebphys+ ' ' '

Ephys= ( &oe '/2)A = eephys+ ' ' ',
where we calculate, expressing everything in terms of g
and h,

(2/+ )b h ={ 4P g+P(p +1)g +(P 6P+1)h/P
-("-'1)h,}/(I+~), «g)

(2/Po) ephy { pg, + (ps —1)h, }/(1+ps)'"'.

eigenvalues. Thus me see that the comb&&ed requirements

of local flatness at the axis, and zero deviation from the

static solution at inftnity, force the g solution to be stable

(purely oscillatory). It is clear by a simple regrouping
that only the positive real cv axis need be taken into
account.

Equation (51) then takes the form of the sum of two
integral transforms which may be regarded as inverse
Fourier transforms or Hankel transforms" according to
the point of view

p't'g(p, r) = {F(cc)sinu&r+G(&u) coster}

XJo(~p) (~p)'"d~. (52)

G(tc) and ccF (cc) are, respectively, the Hankel transforms
of initial distributions g(p, 0) and g, (p,O):

G(tc) = s&"'p'g(p', 0)J' (cop')dp',

F(~)= ~ "p'g. (p', 0)Jo(~p')dp'.

The mathematical theory is of course consistent with
the idea that any initial 6rst-order perturbation is
finally shaken oft, the distribution subsiding to its static
value: For any integrable g and g„ i.e., such that

for p-+0: h(p, r) —+ 0.

(2) At all times bph» and ephy, shall go to zero as
phoo. This implies, with the help of Eq. (44c) (in
which the constant is to be set equal to zero) and the
condition Eq. (47):

pg(p, 0)dp and pg, (p,0)dp

exist, we have

for p~~: g /P~O or g/p' —&0. (50)
limG(cc) = cia&'" limF (tc) = cs/tc't'
co~0 ca—ho

(52')

We now solve Eq. (44a) on the basis of the regularity
conditions. Separating the variables with the arbitrary
real or complex separation constant —cps (or —Q') the
general admissible solution of Eq. (44a) in terms of the
modified Bessel function kernel is

g(, )=S( ( )e'"'+P( )e '"')J ( p), (51)

where the neutral symbol S indicates possible summa-
tion or integration over all eigenvalues ~, whose
admissibility will be decided on the basis of the regu-
larity conditions. Possible additional terms of the form

and by general Abel-Tauber theorems it follows that
g(p ~)=0

The regularity conditions are sufhcient to guarantee
stability (small oscillation) of the h potential as well as
of the g potential.

The solution of Eq. (44b) for h is found to be

p"'h(p, r) = {I(tc)sintcr+H(cc) cos&pr}

XJ ( p)(top)'"d~.

S(st (Q)e'"'+
& (Q) e—'"')I'o(Qp)

can be eliminated on the basis of the regularity con-
ditions requiring g (O, r) to be bounded, Eq. (46a). Since

1llrLIp (cop )
p~00

H( )= p'h(p', OP, ( p')dp',

'~ p'h, (p',0)g, ( p')dp'.

(53)

blows up exponentially for every value of co except those
~ ~

n For the theory of Hankel transforms, see Tables pf Integral
Purely real, and this would violate requirement (50), we Transforms paternan ItIanuscript prcsect (Me@raw-HiII ItooII
are limited to the real axis of the co plane for admissible Company, Inc. , ¹wYork, 1954), Vol. 2, p. 3.
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Possible additional terms involving Y, (QP) can be
eliminated on the basis of the regularity condition at the
axis, Eq. (49). The spectrum of co is restricted to the real
cv axis on the basis of the regularity condition at
infinity, Eq. (47).

C. Electromagnetic and Gravitational g-Tyye
and h-Tyye Normal Modes

It is clear from Eqs. (52) and (53) that there are
fundamentally two types of waves, those of g type
I h(P, O) and h, (p, 0) equal to zero] and those of Ir type
fg(P, O) a,nd g, (p,0) equal to zeroj. For a given circular
frequency or the amplitudes of these two mode types
can be represented by (sino&r, cos6dr}a&'"Ja(cop) and
(sinter, cosror}&0'~'Ji(top), respectively. It is of special
interest to examine the electromagnetic and gravita-
tional waves associated with these two types of modes.
Their amplitudes can be deduced simply from Eqs. (52)
and (53) from the relations

34 =tc/~'=- fe(p —I/p)a+2&}
p+ i/ p

bq =g+2b|P= (pg+2h},
p+ I/p

Ke illustrate with the case of a pure g-type perturba-
tion. Any initial distribution between 0 and 1 may be
represented by a superposition of I egendre polynomials;
i.e., by a sum over nonnegative integral values of e of
terms of the form a„P„(1 2p'—). For each such term the
integral in Eq. (52) vanishes outside the light cone of
the event (p= 1, r= 0). This is verified as follows:

For
a(p 0) =P-(1—2P'),

f, (P,O) =0,
the transform is"

G (Go) = 4e J2»+ i (M),

0(p(1,
1(p& ~,
everywhere

H(co) =0,
(52")

g(p, &)= coster J2»+i(ce) Jo(&p)d40 ~

Writing the cosine in terms of a Bessel function of
order ——', we have on the right-hand side of Eq. (52") an
integral involving besides the factor (mrre/2)'" the
product of three Bessel functions of orders p, q, r such
that for our case

p+q+r= 2rr+-', .
The integral can be evaluated by a general formula of
Bailey'-'

ilp
( a.+ (p —ilp) &.}-,

&a (p+1/p)'

2 1/p ( iy
~phys —4a+I P+- la.

~0 (P+ lip)'

1 Ir I q
+(p' —6+——p'—l6,

(
(54) Irr

6n" 'J„(au&)J,(b4n) J„(c6n)d6n
2

2" 'a&b &c"P(-a)

k 2 c"r( p+1)r( q/1)r(r —a+1)
g2 g2-

XF4 o r, o", p+1, q+1; ——
,
—

C C

which follow directly from the definitions of W and G )t+P+q+"= 6r ~ c)a+
and from Eq. (48). In this way we find the results
tabulated in Tables I and II, and plotted in Figs. 1 and 2
for three different representative values of co. ir"'I' (n+1)

D. Shaking Off of Perturbations and Causality

Suitable superpositions of standing waves (normal
modes) give running waves. After analyzing the possible
standing waves which can occur, it is interesting to
examine the manner in which an initial perturbation is
shaken off and radiated away in the form of outgoing
waves, the entire 6eld subsiding in time to the static
distribution. The general situation is well illustrated by
the case where the initial perturbation differs from zero
only in the region contained within the range radius of
the static magnetic universe (0(p(1). Here we can
verify immediately that "casuality" holds, i.e., that the
initial perturbation is propagated outward with the
velocity of light. (No disturbance outside the light cone
of the range radius!)

c'& "+"I'(p+1)I'(q+1)P (r—rr)

g2 $2—

XF4 ri+1 r, F4+1; p+1, q+1; ——
,
—

C C

Here F4 is the fourth of the original hypergeometric
series in two variables defined by Appell. "%'e have four
different regions of physical interest according to the
assignment of 1, p, and v- to satisfy the inequality
c)a+b (Fig. 3), and we must assign the values —2, 0,

"Reference 22, p. 13, Eq. (1).
"Integrals of products of three Bessel functions by a power of

the variable of integration were evaluated by W. N. Bailey, Proc.
London Math. Soc. 40, 37 (1936), Eq. (7.1), from which onr
expression may be derived.

25 See Higher Transcendenta/ I"Nnctions, Bateman JI/Ianuscript
Project (McGraw-Hill Book Company, Inc. , New York, 1953),
Vol. 1, pp. 222—245.
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SITE OF INITIAL PERTURBATION
r

Fro. 3. Case of an initial perturbation of the magnetic universe
differing from zero only in the region between the axis (p= 0) and
the range radius (p=1). Represented here are the four regions of
physical interest in the space-time diagram for the "shaken-oB
wave. "For any form of the initial perturbation between 0 and 1,
the amplitude of the wave is always zero in Region 0, i.e., outside
the light cone; hence causality is verified.

2n+1 to the different indices p, Il, r of the Bessel
functions correspondingly.

Region 0: r+1&p.—This is the region outside the
light cone of p= 1, r=0. Here the requirement a+b&c
means that we must take the index r to be that of the
Bessel function associated with the argument ~p, i.e.,
r= 0. But then the factor F (—n) in the denominator
makes the integral vanish for every non-negative inte-
gral value of n. This is precisely the causality condition
stated above.

E. Causal Green's Functions or Proyagators

We can verify the causality condition quite generally,
and at the same time reduce the problem of finding the
general running-wave solution to a single integration
over the initial distributions, by finding the Green's
functions or propagators E„E„and E~, Ej„con-
nected, respectively, with g(p, r) and h(p, r). These we
define by

E:,(p', p, )p'g(p', O)dp'

From the Eqs. (52) and (53) and those immediately
following, assuming that interchange of order of inte-
gration is permissible, we find with the help of Bailey' s
general integration formula, Eq. (55), that each of the
four propagators can be expressed as an Appell Ii4
function with gamma function coeKcients. Here too,
as in Sec. 5.D, we have to satisfy a triangle inequality
and, correspondingly, we have four diferent regions of
physical interest. A figure similar to Fig. 3, with the
location of the point p'= 1 generalized to any value p',
applies here.

Regions 0 and A: r+p'& p and r+p& p' Th.e—se are
the regions outside the light cone of the event at the
radial location p' at time v=0 and, correspondingly, a
factor F(0) in the denominators of each of the four
propagator s makes each vanish in these regions.
Causality is tIeriged.

Region 8: p+ p'& r This .—is the region between the
axis and a light-wave front, starting at (p', 0) and
propagating inward, after this wave front has reached
the axis and has started outward again. In all four cases
the F4 function reduces to the ordinary hypergeometric
function of Gauss" and we have

(p' p r) = —('1/r') (1—x)'"
X (1—y) "'F(-'„-,'; 1;xy), (56a)

Its, (p'; p,r)=r '(1—x)"'
X (1.—y)'i F (-', ,—,'; 1;*y), (56b)

I:.(p", p,r) = (3pp'/2r') (1 x)"—
X (1—y)' 'F (—,',-'; 2; xy), (56c)

&"(p'; p, r) = (pp'/2r') —(1 *)"—
X (1—y) 'i'F (-', ,-', ; 2; xy), (56d)

where

x (p )s —y (p)
(57)

(1—x) (1—y) t r ) (1—x) (1—y) Er)

Equation (5'7) can be inverted to give x and y, or better
yet the product

k'=—xy,

which is all we need, in terms of p and 7. Thus we find

ky =R+ (R —1) i R—:(r p p' )/2pp'— —
(1 x) (1 y) =kr—'/pp', —

so that we have

+ K„(p', p, r)p'g, (p',0)dp', (55a)

h(p, r) = &.(p', p, r)p'h(p', 0)dp'

+ &"(o'; p, r)p'h. (p', 0)dp' (55b)

E,= r(k/pp')"'F( '-' 1—k''), -

E„=(k/pp')'i'F( ,' —' 1 k'), -
Es kr (ks/pp') i'F (——s-'2s; k')

E = —-'k(k'pp')'"F(-' —' 2 k')

"Reference 25, p. 238, Eq. (7).

(58a)

(58b)

(58c)

(58d)
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and Eqs. (58) give approximately

Eg 1/r', ——

Ei—3pp'/2r4,

E)„= pp'/2r'. —

(59a)

(59b)

(59c)

(59d)

Fortunately the region to which we are limiting our-
selves covers the space and time domains in which we
are interested, i.e., the space around the axis, stretching
as far out as we like, for sufliciently large times. This
space-time domain is adequate for our purpose of
understanding: (1) how the initial perturbation is
shaken off and radiated out to inlnity; and (2) the
effect of a (very) strong magnetic field upon a, "col-
lapsing, " i.e., incoming, field of radiation.

F. Asymptotic Time Dependence of a Radial
Perturbation and State of Maximum

Concentration

From Eqs. (59) inserted in Eqs. (55a) and (554) we
find

(, )=—(1/')C+ 'G„(60)
h(p, r) = ,'p((3/r')8 (-1/r') H}, — (60b)

where G, G, and II; H, are constants representing, re-
spectively, the first moments of g(p', 0), g, (p', 0) and the
second moments of h(p', 0) and h, (p', 0), respectively.
We see that after a long time g is iridependent of p and
subsides with time like v ', whereas h is proportional to
p and subsides like p/r' (For the behav. ior of b,q, , and
e„hr„see Table III.)

Item (2) in the last paragraph of Sec. 5.E pertains to
the possibility of investigating a collapsirig radiation
held, superposed on a magnetic universe, with these
simplified formulas. The most interesting question here
is that of the time of occurrence of extrema ("last
crests") of the amplitudes of the fields e,hr, and bohr„
and of the magnitudes of these extreme amplitudes. For

Since R&1 (as we see from the condition r) p+p'),
and since the hypergeometric series diverges for k'& 1,
only k is acceptable.

It is possible further to express the Gauss function
with these parameters in terms of the associated toroidal
harmonics of the second kind Q it2, it2' '(R); but there
is no particular advantage for our present purposes in
doing this. Except for preparing one general case, of
value in understanding the effect of magnetic fields upon
gravitational collapse, we shall leave all further mathe-
matical discussion for another communication where the
wave amplitude for particular forms of the initial
perturbation will, be studied in detail.

Ke will limit ourselves to values of g not merely
larger, but much larger, than p+p'. We then have

h=k =(2E) '= pp'/r'«1,

either the pure g-type or the pure fz-type case, with
given initial conditions (i.e. , given G, 0, or H, H, ), this
extremum is unique —but different for e»y, and b»y, .
The conditions at the extrema are immediately obtained
with the help of the time derivatives of Eqs. (54) and
(60) and are tabulated in Table IV. The cases of mixed

g and h waves would lead to more complicated conditions.
We note two remarkable physical facts about the

behavior of the last crests in the region of asymptotic
subsidence (r))p+p'). First: The electric field is sero
whee the mugrletio field is ot u maximum Beca.use g„as
given by Eq. (60a), is zero, and h, =h/p, the time
derivative of b»y, is a linear combination of time
derivatives of g(p, r) and h(p, r) and for —the pure g or h

case b»y reaches its maximum value at a time when

g, (p, r) =0 or h, (p, r) =0, i.e., when e,hr, =0. Thus this
condition, which holds in each normal mode, holds also
for the general superposition of g modes alone or,
alternatively, h modes alone (but not for a general
mixture of g and h modes). The reciprocal relation does
not hold: The magnetic field is not zero when the
electric field is at a maximum for a general g- or h-type
wave.

The second noteworthy fact is the interpretation
provided by our system of the constants in the general
Abel-Tauber-type theorem relating the behavior of a
function after long times to that of its Fourier transform
at very low frequencies Lsee Eq. (52')]. We see, from
the expansions of Jo(~p) and j~ (a&p) in the neighborhood
of the origin, that

limG(~)/cP'= G, lima&'"F (~)=G, ,
co~0 eo—+0

liniH(cu)/oP" =H/2, limI(co)/aFt'=II, /2,
id~0

and we have interpreted the Abel-Tauber constants as
first and second moments.

6. CONCLUSION

The main outcome of the foregoing investigation may
be expressed in the following simple physical terms:

At one time it was thought that one could have a
distribution of magnetic lines of force only if electric
currents are present. It was shown in a preceding publi-
cation, ' on the basis of Maxwell's theory of electro-
magnetism combined with Einstein s theory of gravita-
tion, that a self-sustaining collection of magnetic lines
of force can exist. The present investigation shows that
not only is this self-sustaining distribution an equi-
librium distribution but it is a stable equilibrium dzs-

tributioe, with respect to cylindrically symmetric per-
turb ations.

An important theoretical reason for emphasizing the
perturbed cylindrical case is that one can study in this
case the very important physical problem of coupled
gravitational and electromagnetic radiation whereas
there is rigorously no radiation in problems with
spherical symmetry.
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The relevance of the magnetic universe to the problem
of understanding actual gravitational collapse has
already been indicated at the end of the Introduction,
Sec. 1. It may be summarized as follows: It is shown by
Thorne' and by the writer, in diGerent and physically
illuminating ways, that the magnetic universe is stable
against disturbance. If it is altered by squeezing the
magnetic field together or by expanding it away from
the equilibrium distribution, it will oscillate, shaking o6
the modification in the field by radiating it away in the
form of electromagnetic and gravitational waves. Thus
the only presently known physical system, which would
not gravitationally collapse, if subjected to very large
pressures, is a sufficiently extended pure magnetic (or
electric) field. It is of considerable interest that the
observed quasistellar sources last much longer (1000 to
1000000 years) than they ought to according to the
present theories of spherically symmetric gravitational
collapse of material systems not including magnetic
fields. On the one hand, from the observational evidence
of double structure, one would infer that there is a
tendency to cylindrical rather than spherical symmetry
in the quasistellar systems undergoing gravitational
collapse. On the other hand, it is well known that
extended magnetic fields do exist in the universe. '
Thus, while of course it cannot be claimed that anything
of the extent of the magnetogravitational structure we
have discussed has been observed, it is possible that
extended magnetic fields play a role in retarding and
finally halting the process of gravitational collapse.

The foregoing suggestion may be spelled out more
explicitly: Cylindrical geometry appears more relevant

"Fields extending over ten thousand light years seem to have
been observed in the explosion at the center of M82; C. R. Lynds
and A. R. Sandage, Astrophys. J. 137, 1005 (1963).We note that
if this range were that of a magnetic universe the corresponding
axis field —or effective field within the range radius —would be
Bp 700 6 in contrast with (2)&10 ' G for M82 estimated by
Lynds and Sandage. The factor of the order of 100 million points
up the difference between actual astrophysical fields and the
hypothetical ones needed to make up a magnetic universe. It is
only in the extreme conditions of gravitational collapse that we
might expect our considerations to be of possible relevance.

than syherical geometry to an important feature of
quasistellar sources: Such objects eject matter and
magnetic fields in two opposite directions. '&'& Exterior to
the supposed region of collapse the observed fields are of
course fantastically small compared to any field whose
self-gravitating action would be appreciable. "Even in
the interior of a quasistellar source the gravitational pull
of magnetic lines of force may be small compared to the
gravitational action of matter. Therefore the present
analysis of a cylindrical magnetogravitational structure
may not apply directly to quasistellar objects. In con-
trast, however, magnetic fields of roughly cylindrical
symmetry accompanied by matter provide a model for
gravitational collapse of the very greatest interest and
importance. "As the matter falls inward and carries the
magnetic field with it, does this magnetic field inhibit
the collapse —as it does in the case of the present pure
magnetogravitational structure? Does the magnetic field
give rise to a counterpressure of decisive importance to
the dynamics of collapseP These questions about gravi-
tational collapse are not answered by the present in-
vestigation. However, one has arrived here at a new
point, of which it would seem desirable to take cogni-
zance in all future investigations of collapse: A pure
nsagneiic field has a remarkable and previously Nnsls
Pected ability 1o stabilize itself against gravitational
collapse.
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