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The spectrum of the closed-channel Hamiltonian X in the multichannel scattering problem is bounded
from below and by construction is discrete in the energy region below the threshold for new channels. This
property has been applied previously to derive a minimum principle which provides an upper bound on the
inverse reactance matrix. The discreteness of the spectrum of BC in the region below the threshold for new
channels is further exploited here to derive lower bounds, Forms linear as well as quadratic in 3C are obtained
and their applicability discussed. Extensive use of the Unsold approximation and the closure properties of the
states generated by the various operators is necessary in order to reduce the inequalities to manageable forms.
An iterative method to treat the energy shift operator is discussed, and the convergence of the iteration
series and its connection to the subtraction terms in the minimum principle are discussed in detail.

I. INTRODUCTION

1
~~NE of the unsatisfactory features of the usual

variational principles in scattering problems is
that they do not automatically ~ive a bound on scat-
tering parameters, contrary to the case with the Ritz
method for the bound-state problem. Thus it is not
always guaranteed that as additional parameters are
introduced into the variational calculation the result
will always improve. ' '

The minimum principle derived previously' pro-
vides one such bound, an upper bound on the inverse
reactance matrix, or on coty for the case of single-
channel scattering. The derivation was carried out by
first converting the original scattering problem with
the total Hamiltonian H into an "associated" bound-
state problem. That is, when all the open channels of
the scattering system at fixed energy E are projected
out, the resulting closed-channel Hamiltonian 3C has an
energy spectrum which is bounded from below and
discrete in the energy region below the threshold for new
channels, essentially analogous to the spectrum of the
bound states. A variational principle can then be set up
and one obtains, for a given scattering energy, a bound
on the scattering parameters. Unlike the case of the
usual variational principles of the Kohn, Hulthen, and
Schwinger types, the bound converges monotonically
to the correct value from above as more variational
parameters are added.

However, it is often difficult to estimate the accuracy
of the bound thus obtained and even a crude opposite
bound may be very useful. Unfortunately, the opera-
tors one deals with are usually bounded only from
helot, and this makes the derivation of the opposite
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~ For a review of the problem, see for example L. Spruch, in
Lectures in 'Theoretical Physics, Boulder, Colorado, 1961 (Inter-
science Publishers, Inc. , New York, 1961), Vol. 4.

2 C. Schwartz, Phys. Rev. 124, 1468 (1961).' Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 130, 381
(1963);134, B911 (1964).

bound very cumbersome; one is almost always forced
to construct4 operators such as H' or to divide the
original H into two or more terms each with specified
properties. ' Many such methods are known for bound-
state problems, and the similarity between the spec-
trum of BC and that of the operator H for the bound-
state problem allows us to apply them to obtain lower
bounds on the inverse-reactance matrix.

One feature peculiar to this problem is that, unlike
the upper bound, the lower bound requires the treat-
ment of the entire spectrum without truncation. There-
fore, an extensive use of the Unsold approximation and
of closure properties is necessary in order to preserve
the rigor of the bounds and yet put the resulting
bounds in manageable forms for application.

Our main results are the quadratic bounds given by
(3.17) and (3.21) and the linear bound (4.39), with
Q+~ given by (4.37) and the subsequent modification
by itera, tions involving (4.38).

II. FORMALISM-UPPER BOUNDS

In order to introduce the notation and also to im-

prove on the minimum principle in some points, a
brief review of the previous result' will be given. The
projection operators' P and Q are defined such that P
projects onto atl the open channels for a given Axed
total energy Ii.. The operator I' can further contain an
arbitrary number of closed-channel states, but we do
not consider this possibility here nor the possible
simplification which results when E reaches the thresh-
old for new channels. These can be incorporated into the
formalism in a simple way. The operator Q projects onto
the closed channels only, and hence

P+Q=—1,
P'=P, Q'=Q, PQ=O. (2 1)

4T. Kato, Progr, Theoret. Phys. (Kyoto) 6, 394 (1951). For
applications, see K. Kalik. stein and L. Spruch, J. Math. Phys. 5,
1261 (1964), where further references to recent works can be
found.

5 N. W. Bazley, Phys. Rev. 120, 144 (1960);N. W. Bazley and
D. W. Fox, J. Math. Phys. 4, 1147 (1963).

6 H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962).
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The Schrodinger equation,

(H E)4—=0,
can be written as a set of two coupled equations

(2.2)

where

and

P%=PC~+ PGPPHQ%',

Q% =QGoQHP+,

P(H E)P% =—0

P(H E)PG =—P-
Q(H —E)QGo= —Q

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

The functions P%, P%', and PG P satisfy the usual
standing-wave boundary conditions, while QV vanishes
asymptotically faster than the inverse of the distance
coordinates corresponding to each closed channel. Sub-
stitution of (2.6) and (2.5) into the right-hand sides of
Eqs. (2.3) and (2.4), respectively, formally uncouples
the equations. The resulting equations are

P(H+HG&H E)P%'= 0, — (2.10)

Q(H+HG~H E)Q% = QHP@—~. —(2.11)

Equation (2.10) was the basis for discussion of the
various upper bounds on the inverse reactance matrices
obtained by the close-coupling approximations, ' while
Kq. (2.11) can be solved variationally for Q+ giving
rise to the minimum principle. ' For a trial function
Q%'~, one has

u

=}~+2(Q@„QHPe')+(Qe„[X—EjQe,)
~'

~
(Qeggo, [(X—E)Qe,+QHPei'])

~

'
(2.12)

where
A=a K 'a

A~=a (K~) 'a,
X=Q(H+HG~H)Q.

(2.13)

a is an arbitrary constant vector and X~ corresponds to
the parameter obtained from P4~. QC'„P are the
"bound state" trial functions, which must satisfy

(QC.,&,SCQC„P)= S„,o ~.„&E
and which approximate the resonant states. The term
involving G~ in K produces a shift in the resonance

"Y. Hahn, T. I".O' Malley, and L. Spruch, Phys. Rev. 128, 932
(1962};134, 3397 (1964}.

P(H E)P—+= PH—Q+, (2.3)

Q(II—E)Q% = QHP—%'. (2.4)

Equations (2.3) and (2.4) can be solved formally for
P4 and Q% as

~ ~(Qe„,o,QHPe~) ~2

Xu=}i++P (2.14)

Note that )u —+ P as M ~~ and that the truncation of
the series in (2.14) is permitted since the mth term in
the sum makes a negative contribution if m&E@. Note
also that in this particular representation the sub-
traction terms are identically zero. As will be shown,
such truncation is not allowed for the lower bound; on
the contrary the entire series has to be bounded from

energies due to the coupling between P channels and

Q channels.
From the computational point of view, the minimum

principle (2.12) contains the following complications
which are not present in the usual Kohn or Hulthen
variational methods:

(i) The exact operator P must be constructed. This
in turn provides the Q operator which is used to con-
struct explicitly the trial function Q%', . This is often
very dificult to do.

(ii) The exact solution P%'~ must be calculated from
Eq. (2.7). This is not a serious complication as long as
the number of open channels in P is small.

(iii) The exact Green's function G~ deined by Eq.
(2.8) must be constructed. This is the most serious com-
plication of the minimum principle and can be avoided
by an iterative method to be described in Appendix A.

(iv) The subtraction terms in Eq. (2.12) must be
evaluated. It has been shown however that for a "good
enough" trial function Q@~, these terms are auto-
Inatically taken into account and that an explicit sub-
traction may often not be necessary. '

A possible way to eliminate the requirement (ii) is dis-
cussed in Sec. VI, but we are not able to give a proof,
while the requirement (i) is still to be satisfied and this
prevents us from applying the minimum principle to
the more complicated systems involving more than three
particles.

The linearity of (2.12) with respect to the closed-
channel operator 3C is a great advantage over some of the
other methods introduced earlier, even with the com-
plications mentioned above. Unfortunately, such a
general linear method as the Ritz principle for the
bound state problem does not seem possible for the
lower bound on ) . In the next section, the lower bounds
involving the K operator will be given, while in Sec. IV,
the bounds involving a linear form in 3C, but only
applicable to a very restricted class of problems, will be
discussed.

Before studying such bounds, it is of interest for later
comparison to cast (2.12) in a modified form, using
h„Pand QC „Pwhich are obtained by the diagonaliza-
tion of the energy matrix associated with X. For an
MXM matrix, where M is the number of the trial
functions in Q%'~, we have, with 3II~& 1Vo,
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below. This may be the principal reason why the lower Thus, if Q(E—K)Q is negative definite, we have the
bound on 'A is usually much harder to obtain. lower and the upper bounds

III. LOWER BOUND —QUADRATIC FORMS
where

(3.9)

The expressions for the lower bound to be derived in
this section involve the K' operator and resemble the
formulas given by Temple~ and by Stevenson and
Crawford for the bound state problem. There are non-
trivial diGerences in the derivation however. Firstly,
unlike the bound state problem, one has here the in-
homogeneous Eq. (2.11) with the energy E fixed. Thus
the normalization of the wave function QV is no longer
arbitrary. Secondly, the quantity being calculated is
X—)~ which involves the Green's function G@ defined by
Eq. (2.9). This means that it is necessary to make sub-
tractions when there are states of 3C with the energies
8 ~&8 in the case of the upper bound and caution is
also required in the case of the lower bound.

For the moment, we assume that the operator
Q(E—K)Q is negative definite. We write Eq. (2.11) in
the form

(K—E)Q%'= QHP%'I'=— Ro—
and we introduce

(3.1)

(K E)Q+,= —Rog. —— (3.2)

Now consider a positive semidefinite quantity I de-
fined by

(3 3)I= (Ro—Rot R—o—Roi))0.

The functions Q+ and QV, can be expanded in terms of
the set QC „&

Q+= 2- a-QC'-',

Qe, =P„a„,QC „a,
where QC„@are generated by the operator K,

(3.4)

(3.5)

with
3CQC „@= h„@QC„@,

(QC' &,QC, „&)=il

(3.6)

The sums in (3.4) and (3.5) include continuum states as
well. The quantity I can then be written as

I=g.(a.i
—a„)'(h„a—E)', (3.7)

which is the starting point for the derivation of lower
bounds.

Since we have assumed that 8„&&Eholds for all e,
we obtain

I&(hiq —E)Q„(ag
—a )'(b o—E)

= (Bio E)(2(Q%' Rio)—

+(Q'IIf, PC—EJECT )—(Q F,Ro)}. (3.8)

7 G. Temple, Proc. Roy. Soc. (London) A119, 2/6 (1928).
A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375

(1938). Also, see the recent application to the He problem by
T. Kinoshita, Phys. Rev. 115, 366 (1959).

a= a—7,P = (Q+,R,), (3.10)

Ar. AM =I/(8—,& E),—

AU )AU X~——= 2(—QC'g, Ro)+ (Q+i, LK—EjQ+g),

(3.11)

(3.12)

A trivial but interesting special case of (3.11) is ob-
tained by putting Q+&——0; we then have

Al, '"——(Ro,Ro)/(E —hia), (3.13)

which could also be expected directly from Eq. (2.10)"
by applying the Unsold approximation. That is,

(V)=(PV P (PVP) )/(E—.-), —(3.14)

where —(E—c) ' is the "average energy" of the opera-
tor (K—EQ)

—'.
For the lower bound defined by the inequality (3.9)

and Eq. (3.11) to be rigorous, it is necessary to know the
value of 8~@ exactly or to replace it by its lower bound.
However, it is often possible to replace it by an approxi-
mate value 8~~ which may be available from some other
means, and still obtain a useful bound, as long as I is
sufficiently small and b~ is not too close to E.The form
of 61. given by (3.11) is the direct analog of the formula
given by Temple for the bound state problem.

So far, the question of possible subtractions for AL, has
not been treated. %hen one or more bound states of K
lie below E, the expressions (3.11) and (3.12) require
modilcations. As already shown in (2.12), Az is to be
changed to a form

~'
I (QC'. i, I:&—E)Q+i+Ro)

I

'
AU AM+ Q (3.15)

"This observation was Grst made by Professor L. Spruch.
See for example, L. Spruch, Lectures given at the Ninth Yugo-
slavian Summer Meeting of Physicists: Few Nuclear Problems;
Hercegnovi, July 1964 (unpublished).

9 For example, see H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49
(1958).

(P@r,PHQGoQHP+r )
+ (P'0~ PHQhQHP%'+)/(E o)

= (Ro,Ro)/(E —o),

with Q(&—E)QG& = —
Q and the constant o satis6es the

inequality E(o&~bio. Explicitly we have PHQoQHP
=PV'P (PVP)', w—here V is the part of H which does
not commute with I'. Thus we can define the effective
average fluctuation potential' due to the virtual
excitation of the target to all states included in the Q
operator as
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while h~ is to be modified as

'
i (QC„,PC—E)Q+,+R,) i'

n=l

with

(bzp+P —h„o)
X (3.16)

(h~o+qo E)

h «E(b~o+P, n=1, 2, , A'o. (3.17)

We note that, in Eq. (3.16), the quantities h„&,h&o+P,
and QC are all exact, and therefore (3.16) is not very
useful as it stands. However, again these quantities
may be replaced either by their appropriate upper and
lower bounds resulting in the rigorous bound, or by
their approximate values and one obtains a useful esti-
mate of the bound. We note that the subtraction terms
are positive and thus can be neglected entirely.

As the total energy E approaches one of the eigen-
vs, lues of the operator X, (3.16) becomes impractical due
to the singularity in the energy denominator. To avoid
such singularities, an alternate expression for 61.can be
derived, which may be more adequate for the case when
E is very close to the resonance energy.

Consider the positive semide6nite quantity I. de-
fined by

I.-=(Ro- cRo~, Ro—cRo~)

=P (a„—co, )'(h &—E)')0, (3.18)

where c is a parameter to be adjusted to make I, a
minimum for a given Rp&. Multiplying both sides of (3.18)
by (QV,QV)=g„a„'/1,and rearranging the right-
hand side, we get

I,(Q@,Q% ))L
—c(Q@„Ro)+(Q+,Ro)]'. (3.19)

If the variational parameter c is chosen such that

c& (Ro,Q%'~)/(Q+, LE—3CjQ+,))0, (3.20)

then AI, becomes

61, c(Q+„R,) I,'I——'(QV, Q%')'I'—. (3.21)

This is the desired bound which does not involve the
singular denominator. Of course the factor (QV,Q+)"'
is not known and (3.21) as it stands cannot be used to
obtain a rigorous lower bound. Again replacing
(Q+,Q+)'" by (Q%'&,Q4&)'I', it is possible to obtain an
estimate on AL, .

The lower bound (3.21) is an analog of the form given
by Stevenson and Crawford for the bound state prob-
lem. Contrary to the energy eigenvalue problem, the
normalization of the wave function Q%' is not arbitrary
in the present scattering problem. This peculiarity
originated from the inhomogeneity of the Q equation
given by (2.11).Owing to the square root of I, appearing

with
I= (Q(H —E)4g, Q(H —E)0()

'4=—P+c+Q+~,

(3.24)

(3.25)

which is the desired result. The Green's function G~
does not appear explicitly in (3.24), but is only con-
tained implicitly in the scattering function P+&. A
similar expression can also be obtained for I,.

IV. LOWER BOUND —LINEAR FORMS

It has been discussed so far that, for a real symmetric
operator K whose spectrum is bounded from below and
discrete up to the threshold, we have a variational
principle which provides an upper bound on the inverse
reactance matrix, and also a method to estimate its
accuracy by obtaining a lower bound which involves the
operator 3C in a quadratic form. The method to be
studied in the present section provides a lower bound
which involves K only /inearly. It is a natural extension
of the method used by Bazley' for the case of bound
state problems.

For the present purpose, the closed-channel Hamil-
tonian 3C is written in the form

where
BC=Xp+'U+%. =K,+8, , (4.1)

W =QHPG~PHQ,

3C„=QHQ.

in the right-hand side of (3.21), it is expected in general
that (3.21) will be a poorer lower bound than the form
(3.11),except when the energy E approaches one of the
eigenvalues of BC. On the other hand one may be able to
iterate on c and QV~ and improve on dr, somewhat.

The lower bounds (3.11) and (3.21) both involve a
quadratic operator in K through the expressions for I
and I„andhence there is not much advantage over, for
example, the Kato method4 which involves H'. However,
here the upper bound is linear in K and thus hL, needs to
be evaluated once as soon as a fairly accurate QV, is ob-
tained from the AU calculation. It is not necessary to
solve the "associated potential strength eigenvali&e
problem" as in Kato's method.

In the next section, still another method of obtaining
the lower bound will be discussed which involves the
operator K only linearly. Before leaving this section, we
recast the form of I given by (3.3) in a form which does
not involve the Green's function G~. For this purpose
we use the result of Appendix A. There we have defined
the function P%™&as the exact solution of the equation

P(H E)P4'g —P—HQ%'g, —— (3.22)

for a given Q+q. Using (3.22) and (3.1), (3.2), it is
straightforward algebra to calculate Ro—Eo~, we get

Ro Rot= Q(H E)Q+t+QHP—4't (3.23)

Thus we have an alternative form for I,
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It is essential that everything about the operator 3CO is
known, its energy eigenvalues and eigenfunctions, and
that the interaction operator 'U is positive definite. For
most of the discussion in this section, we assume that
the eKect of 8, on the spectrum of X, is small; details of
the treatment of & will be given in part C. Of course it
is not unique as to which part of 3C should be in U and
which in Ko as long as the above requirements are satis-
fied. On the other hand, there are very few physically
realistic problems which can be made to satisfy the re-
quirements and this seriously limits the applicability of
the method.

The method is given in three steps. Firstly, the opera-
tor Ko is treated alone to obtain bounds on 6, assuming
that 9, is negligible and since 'U is by definition positive
definite. Secondly, the effect of 'U is introduced step by
step, by constructing the intermediate operators K'~',
which approach the operator 3C„=GCO+'U uniformly
from below as k ~~. By solving the 3C'~' problem in
such a way as to preserve the bound on 6, one 5.nally
obtains an improved rigorous bound, again neglecting
the effect of the shift potential 'll, . Finally, an iterative
method to take into account the effect of & is discussed.

Before going into the details of the procedure, it is
necessary to stress one important difference between
applying the intermediate operator method to the bound
state problem and to the scattering problem. In the case
of the bound state problem, the problem involving II&~)

is solved for some low-lying states of Ho and the rest of
the states of Ho can be ignored, without destroying the
rigor of the lower bounds thus obtained on the energy
eigenvalues of H. This is not however the case with the
scattering problem, where the Green's function cor-
responding to the operator (K(")—QE) is required with
its full spectrum. Rigorous lower bounds on the entire
spectrum of K&~& are necessary in order to preserve the
rigor of the bounds.

(Geo+'U —A') Q%' = —Ro, (4.2)

where 'U is a positive definite operator. The operator 3Cp

generates a complete set of states in Q space

with
g(& Qg) (0) —h (o)Q@ (0)

(Q@„(0)Q@ (0))—(&

g~(» Q g~(o)(.. .

(4.3)

It is assumed that the operator 3CO is so simple that the
eigenvalues 8„")and the eigenfunctions QC„('&can be
calculated exactly. The separability of BC,=KO+'U to
meet the above requirements is essential for the present
method to be applicable.

A. Base Problem

When the energy shift operator tL=QIIG~HQ is ne-
glected for the moment, Eq. (3.1) reduces to

We consider the equation

which gives

(seo —&)Q+")= —Ro, (4 4)

g(0)=(Q@(0) Ro) —Q (Ro Q@„(0))2/(R g„(0)) (4 5)
n=X

If the scattering energy E is such that b„&")Efor all
n, the Unsold approximation and the completeness of
the set {Q4„(o))lead to the bound

g (» Q g~(0)

(Ro,Ro) —2 (Ro Qc'-"')'
g—gN(» n=~

(h~(0) h„(0))-
X , (4 6)

(g h„(0))

where lV is arbitrary. The bound is improved as X is
increased. The inequality (4.6) is not valid when there
are X@&'& states of Ko which lie below E, i.e., 8 &»&8
for m=1, 2, , 3~& ~, since for these states the in-
equality sign should be reversed. The modified form is
possible but not useful as it stands since it requires in-
formation on the spectrum of X„whichwill be discussed
next )see Eq. (4.32)j.

B. Intermediate Problems

(Ro Q@„(o))(Q@„(0)'UQ@ (o))(Q@) (0) R )
(4 &)

ntn (g g (0))(jv h (0))

However, we are interested in developing a method
which takes into account the effect of 'U without de-
stroying the rigor of the bound and is applicable even
when the effect of '0 is large. We define, as Bazley does,
the projection operator (P" which projects an arbitrary
function Qy on to a subspace with )&: dimensions. The
vectors Qf, in this subspace are linearly independent but
otherwise arbitrary, with the scalar products defined by
(Q&,,'UQ), ). We stress here that, in going from (P~ to
(P~+', the old vectors which belong to 5'~ space are re-
tained. Then we have

(4 g)

and the intermediate operators K&~& are defined by

se(') =se,+u(p". (4.9)

If the eGect of the positive definite operator 'U is small,
then all the eigenvalues of Xo are shifted down by
roughly the amounts (Q4„(),'UQ4„( )) and the quantity
6 by roughly
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Obviously, the following inequalities hold:

0 & ((|'"Qx,"U(P"Qx) & (Qx,'UQx), (4.10)

with m, n(k, we have the solutions in the forms

or
(Qxg@Qx) & (Qx,~("&Qx) & (Qx,~.Qx), (4 11)

(o) —Q ()& (o&(Qg) (o) R )
n 1

m& k, (4.22)

which means that o( ("'=(R h"—') '(QC' "',Ro), m)k. (4.23)

(412) Substitution of (4.22) and (4.23) into (4.18) gives

The energies 8; are for the eigenstates of 3C,. So far the
procedure has been exactly analogous to that in the
bound state problem, but we now have to solve the in-

homogeneous equation

Q@( )= Q d (QC (o) R,)QC, (o)

m, n=l

(QC ('),Ro)QC„(o&
(4.24)

(X("'—E)Q+('& = —Ro

and to evaluate the corresponding bound

(4.13)
&"' defined by (4.14) now becomes explicitly

(QC „(»,R()) '
(4.25)From (4.8) we have

(g &a)g) (g o) (4/4)
'' —x .(o "' )(Q ."', )

'Q(z —ac( &)Q

with

~6 "Qx=Z '~Q&;,
i=1

(4.15) Application of the Unsold approximation and the closure
properties of the set {QC (o&) to the second sum in
(4.25) gives

~;= 2 4(QG, 'UQx). (4.16)
with

(4.26)

b;; are the elements of the inverse of the matrix with

(Qt;,"UQ$;). Equation (4.13) becomes, by choosing

Q~,
="~- Q~;( &,

(Xo—E)Q%'("&

ns, n=l
d (QC ('&,Ro) (QC „(»,R,)

(QC (»,R,)'
+(Ro,Ro)/(R —@&+i"&)+ P

(0)

+P Q bg(QC;(",Q+o'&)QC;('& = Ro. (4.17)—
i=i j=l

(Q@ (o) Ro)o
(4.27)

Now expand Q+("& in the form

Q@(k)—Q ~ (o)Q@ (0)

m=1
(4.18)

+ Q b„o(„("&= (QCm (o—,&R)o, m&k, (4.19)
n=l

8 (o) E) (QC 'o),Ro), m) k. (4.20)

which, when substituted into Eq. (4.17), provides the
coupled equations for o. (~), with m=1, 2, , k, and

the uncoupled equations for all m) k:

(o) (b (o) R)

where S)k+1. This is the desired result which reduces
to (4.7) for the case k=0. It does not contain the K'
operator as in the previous section and the resulting
bound is a rigorous one on the assumption that the
eGect of 'll can be neglected.

Before discussing the method to include 'll, , we in-
vestigate a little further to see if one can do better than
(4.27). 6)&(("& involves h (" in all the sums except in the
first term, and the appearence of b~+1(') is undesirable
since, if the eGect of 'U is large, it may be a very bad
bound on hN+1 and it may sometimes be possible that
hl, (~) lies above bN+1"'. In fact, it is not necessary to re-
strict the problem from the beginning as in (4.13), but
rather consider instead the quantity

D „=(E h('&)b —b„„,— (4.21)

Obviously only the first k terms in the expansion (4.18)
are affected by the presence of the terms with b;;. De-
fining the matrix elements of the inverse matrix D—'
involved in the solutions of (4.19) by d@(o), where

2„=(R„GoR,) = P (R„QC„)o((Pg„)
n~l

" (Ro QC' )' (Ro,QC.)'+Z
E—g„n=r+1 (4.29)
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Replacing the first sum in terms of the result (4.22), series
and applying the Unsold approximation and complete-
ness to the second sum, we have 6@=Q (G@'ll,)" G

n 0
(4.33)

ns, n=1
d .(QC "',Rp)(QC'. "',Ro)

(Rp,Rp) k (Rp, QC )'
(4.30)

E—by+a ~=& E—$1,+g

may not converge. If the series converges rapidly, then
a sensible estimate of the eRect of & can be obtained
either by taking one or two terms in the perturbation
series or by the modification of the Green's function
G@ by

The bound given by (4.30) is presumably superior to
(4.27), only if the last term can be evaluated. (This last
term gives a positive contribution and thus can be
neglected entirely, but one can improve the bound by
properly evaluating this term. ) For this purpose we re-
write (4.29) in the form

(Rp, Ro) k (Ro,QC'.)' (&.—hkyi)g„) +p
E 8k+k ~—=~ E—&~ (E—hk~i)

From this it follows that, using the result of (4.22),

(Rp, Rp)
+ 2 ~-(QC'-"'Rp)

E—gp+y m, n=1
E„—Ek+i (Ro,Ro)

X(QC' "',Ro)
Ek+ j. E Ek+1

(Rp,QC )' (E —Ek+y)
(4.31)

n=i E—E„(EEk+g)—
In (4.31), the energy values E and the wave functions
QC„have been obtained by diagonalizing the D matrix
defined by (4.21).

The lower bound (4.31) has been derived with the
assumption that 8 &E for all m. In case there are X,@

negative eigenvalues of the operator Q(K„—E)Q, then
the form of (4.31) should be slightly modified to the form

(Rp,Rp)»' (Ro,QC'n)' (En Ek+i)—
+Z

E E=& E E—(E—Ek+i)—
(Ro,QK) (E~ Ek+i)—

(4.32)
n N„Q+z E E„(E—Ek+~)—

where E„arethe lower bounds obtained by the di-
agonalization of D as before and B„arethe upper bounds
which can always be obtained by the variational
method of Ritz.

6= (QV,Rp),

sk=(ee„R,),
suggests that we may write

(4.35)

(4.36)

Rp»o (Rp, QC ) (E„Ek+g)—
Q+k= +2 QC.E—Ek+1 +=1 E—E~ (E—+k+1)

(Ro,QC'.) (E. Ek+r)—
+ Z QC .. (4.37)

~=+„to+&E—E„(EEk )

The function Q+k of (4.37) is a pseudofunction which
should only be used in the expression for h. Substituting
Q+k into the P equation,

P(H E)P% k PHQ4 k—,
——(4.3—g)

and solving for P%'I, exactly, we obtain the modified
Rk=QHP+k. This, in turn, can be substituted into
(4.37) in place of Rp, and the new Q+k is derived. Repeti-
tion of this iteration cycle until it converges gives

~~= (Q+k, Ro) . (4.39)

The step involved in (4.38) can also be seen in terms of
the Green's function GI, defined by

G'=-I e(E-~.)ej-'- Le(E—(~)-~,)ej-', (434)

where

(~)=-(Q+,~e~ )

The advantage of (4.34) is that by replacing E byE—=E—( tt), the entire formulation of part 3 can be jm
mediately applied without further change.

It is also possible to treat the problem by the itera-
tion method of Appendix A. From Eqs. (2.3) and (2.4), it
is reasonable to expect that, instead of modifying the
Green's function 6@ directly, we can also modify Ro by
replacing I'%~ by an appropriately defined function
P4'. Therefore, to correct the result (4.32) we need the
explicit expression for Q%'k which should be inserted
into the right hand side of Eq. (2.3). Comparison of
(4.32) with 6 and hk, given by

C. Energy Shift Operator

When the eRect of 'h on b, is small, we can treat 'll by
perturbation theory. As will be discussed in the next
section, however, the "smallness" of 'h in the operator
K does not necessarily imply that its eRect is also small
in h. Thus, although %L is small compared to 'U, the

QC' )(QC'~ En Ek+z-+p
EIc+g n 1 E E g Qg, ~

(e+-)(e~-) E.—E.
„+

n=Ãv Q+y E—E„E—E
(4 40)
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The solution P%'I, of the equation

P(H+ HG&,oH E~—)P+s 0——, (4.41)

slightly generalized form

BC.—E= (SC„—e)—(E—e), (4.50)

gives the bound

6&~Dr, ——(PVP HGsrsHP@s), (4.42)

where e is chosen as in Sec. III
E(c&~By. (4.51)

which is completely equivalent to (4.39). The lower Then we have the analog of (4 43)
bound given by (4.39) and (4.42) is rigorous only if the
iteration process described above converges. For a F~&F.=Fi()M '(giF&0,
reasonably accurate Q%'s,. and for I; not too close to one
of the eigenvalues of 3C, we expect that the convergence F= (3C„—e)/(e——E)&0,
would be rapid.

(4.52)

(4.53)

(4.54)

D. Diferent Choices Using (4.52), we have

(i) In part, 8, we have chosen the particular splitting
of the original K in the form K=BCo+'U+'ll, with
'U&0. We neglect again the interaction 'K in the fol-
lowing discussion. For 'U&0, what we have actually
done is to replace the operator 'U by a lower bound
V(» defned by

and
1 —

(Ro,F()'
(&o,Zo)—

E e—((,F()((,F'g)
(4.56)

G@=(E e) '(1+—F) '&(E e)
—'(1+F—)

—' (455)

where D is the matrix with

and we will use the vector notation throughout. The in-

equality (4.43) can be proved by minimizing the
quantity (x,'U&&) with respect to the parameters c; con-
tained in an arbitrary real function X=7&o+p;=r" c;f;
Next, particular forms for $, are chosen so that the re-
sulting coupled set of equations can be solved exactly
for Q+&"&; we choose

The advantage of the choice (4.50) is that the factor
(1+F,) ' in (4.55) cars be reads7y imerted without the
application of the Unsold approximation and without
invoking th'e closure property, due to the fact that P,
is essentially separable. Unfortunately, (4.56) involves
again the operator BC in quadratic form, and therefore
should be compared with (3.11).They are similar but
not equivalent.

(iii) There is still another choice, among probably
many more, which has to do with the choice of the vec-
tor (; instead of (4.45), we can try the form, following
Gay 11

QC &o& i=1, 2, , 0, (4.45)
g="U '(BC —EQ) if), (4.57)

where QC;"& are the eigenfunctions of Xo. '&&Ve then have

(4.46)
with

where the new vector f may not have anything to do
with the eigenfunctions QC "& of BCo. With this choice,
we have

3C&"&=3Co+'U&"&. (4 47) (4.58)
(4.46) in turn gives, with Gso=Q(E —3C&"&)Q,

Q(E—Ko)Q
—'= Go&& ~& Go&& &&G&s= Q(E—K,)e ' (4.48)

and finally we have

(4.49)

The lower bound on the potential 'U is

and the Green's function G is bounded by
Assuming that Go@ cannot be evaluated exactly, we

have expounded in part 8 a method to bound A&s& in G@&L1—if)D '(fi(&o—Ee)j—'i Q(E—~o)e]—s

manageable forms for practical application. = L1+ I f) f (fi (&o—E)&-'(~o—E)
i
f)

(ii) It is also possible to split X„—EQ in a different (fi(~ E)if)} s(fi(~ E)j~e(E )Qj (45 )
form, as Blankenbecler and Sugar do."We write in a

"R.Sugar and R. Blankenbecler, Phys. Rev. 136, 3472 (1964).
e add the remark here that their formulation of the upper bound
on 6 is equivalent to the formulation of Ref. 3, as can be seen by
the relation Q% =G@QIZ~=6'QHP%' . They emphasize on the
other hand the construction of a variational approximation for G@

and then require the exact solution of the P equation with G@

replaced by GP, while in Ref. 3 a variational approximation to b,

directly in terms of (N & is stressed.

The part of (4.59) in the square bracket can be evalu-
ated exactly as in (4.56), while the Green's function Go&&

still needs an approximation such as the one performed
in part A. Thus, the choice (4.57) is in.termediate be-
tween the choices (4.45) and (4.50).

"J G Gay Phys Rev 135 A122Q (1964)
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by

X=Xp+'U+ tt

=X„+e, (X.—=Q&Q),

(Xp—E)QGp@ = —Q&,

(X„—E)QG@= Qb, —
(X—E)QGo= —Q3,

(5.1)

(5 2)

where we take the principal value integrals for the
Green's functions. The relevant transition operators in

Q space for the present problem are

T„='U+'UGpoT„ (5.3)

V. CONVERGENCE OF ITERATION SERIES

In Sec. IV the iteration method was formulated to
take into account the effect of the shift operator %.. A
similar method is given in Appendix A which avoids
the explicit evaluation of G~ appearing in X. These
methods presuppose the rapid convergence of the itera-
tion series, and in this section we discuss the necessary
and sufFicient conditions under which the series is
guaranteed to converge. Of course, in the variation-
iteration method of Appendix A, for example, the
Green's function G@ is not known exactly but only
approximately in a variational sense. However, for
clarity of discussioa, we assume that G@ is known
exactly. The complication due to the fact that we are
using an approximate G can be easily taken into ac-
count afterward.

The convergence of the series can be treated in a
general way in terms of the problem involving two po-
tentials & and 'U. Define the Green's functions for the
various operators connected with K, where

where
%—= 'tt+ T,Gpo'tt,

b'—=kQ(E-Xo —~)Q)-',
'K+—T„.

(5.9)

(5.10)

(5.11)

From (5.8) it is reasonable to expect that if the number
of poles contained in T differs from that of T,, then go
should have zeros and poles in order to compensate for
the difference. In such cases, the expansion of g& in a
series involving either Go@ or G@ is not expected to
converge. The convergence problem of the series

g&= p (G,om) "G,o
n~o

is equivalent to the question for the series

(5.12)

Go= P (Goa) "Go (5.13)

G''ttI v-) =v-
I v-&,

or, what is the same thing,

(5.14)

Q(&+(~/v-)-E)Q lv.)=o.
The series (5.13) can be expressed for the state

~
y„)as

G''ttl~-) = & v--+'Iv-) (5.15)

because of the identity Go@UP=G@'tt. (5.13) is what is
also involved in the iteration methods of Sec. IV and
Appendix A.

To make our argument a little more precise, we now
consider the potential strength eigenvalue problem for
the kernel G@K, which was found to be very convenient
for discussion of the convergence question. "%e have

T=w+&GoT
=+++Go+. Obviously, the series (5.15) diverges if, for any I,

5.4

(5.4) can also be expressed in terms of T„as

T= T.+(1+T.Gpo)W(G, oT+ 1) . (5.5)

6= (Rp, G@Rp)

= (Rp, LGp~+GpoTGp@)Rp),

where the relation

(5.6)

Go= G,o+G,o(u+w)Go
=Goo+Goo TGoo (5.7)

is used. A more convenient form than (5.5) for T is ob-

tained by solving the integral Eq. (5.5) for T formally

and is given by

T= (T.+~)+~go(T.+~)
= v'+ vgom, (5.8)

The quantity of interest 6 as defined by (3.10) can be
written in the form

g„Q~~jv~~g„ (5.18)

"S.Weiirberg, Phys. Rev. 131, 440 (1963);133, 8232 (1964).

(5.16)

while itcanbe summed tobe (1—y ) '& I7 ) if I& ~(1
for all m. It is well known that for each y„which leaves
the unit circle the operator Q(X—E)Q associated with
T either gains or loses one negative energy state of the
operator Q(X„—E)Q associated with T„.Therefore, in
general, if the operator Q(X—E)Q has E negative
eigenvalues while the operator Q(X,—E)Q has X.o,
there will be ~1Vo—1V„&~ y's which leave the unit
circle, i.e., ~ y ~

& 1 for e= 1, 2, , ~

E@ 1V„@
~

. Thus, —
when the operator M is such that the eth state of K and
3C„,with the eigenvalues 8„@and 8„,respectively,
satisfies

(5.17)

then it follows immediately that the iteration series
(5.13) or (5.15) diverges if and only if E lies between the
two values
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In fact, the series diverges even if %L is very weak, as
soon as E satisfies (5.18). This is peculiar to the multi-
potential problem and is due to the fact that the expres-
sion for 6, (5.6), involves 6@.Thus a, small perturbation
of the operator K in the denominator may cause a
violent behavior in 5 if E happens to be very close to one
of the eigenvalues of X. A similar divergence problem is
often encountered when one tries to evaluate the scat-
tering parameters near a sharp resonance by a perturba-
tion method.

The above discussion immediately suggests the
remedy in case the series either diverges or is very slowly
converging. It is only necessary to add an arbitrary po-
tentia, l 'JJ to 3C. such that the eigenstates corresponding
to the new operator 3C„'—=3C„+'JJ satisfy the inequalities

E~@Q $ (5.19)

The effect of the operator can be corrected by the modi-
fied inhomogeneous term and can be treated as part of
the iteration. With 'll, ='tt —'JJ, the modified iteration
series involves G"ll' instead of G@%,, and the series
converges since now X=Ã, .. For the method de-

scribed in Sec. IV, the addition of 'JJ may complicate
the problem, and it seems that the simplest way may be
to vary the strength of the potential 'U by adjusting the
over-all strength constant.

So far the discussion has been given under the assump-
tion that the Green's function G@ is known exactly. In
an actual application this is not usually the case, unless
the Q space is truncated for convenience, as in the
close-coupling approximation. If G@ is assumed known

approximatelv from a minimum principle calculation,
for example, then we have

g„Q)h„Q (5.20)

We conclude from (5.18) and (5.20) that the modifica-
tion of the form (5.19) with 'JJ(0 is definitely required
in order to have the series convergen. t if ( tt)(0, while,
if (tt))0, then the approximate Green's function Gio

will help the convergence as long as 6„~)E

VI. DISCUSSION

The expressions for the upper bound given by (2.12)
or (2.14) and the lower bounds given by (3.16) and

(3.21) in quadratic forms and (4.39) in linear form are
all exact, while many other approximate bounds are
also given during the various intermediate steps. Even
with the exact bounds, it is almost always necessary for
computational reasons to relax the rigor and substitute
various approximate quantities in the formulas in order
to apply. them in a practical calculation. Moreover,
none of the lower bounds obtained thus far are of the
truly variationa, l character with the linear operator 3C.

This shortcoming is inherent in the problem with the
opera, tor 3C having the spectral properties discussed
earlier, and it does not seem possible to derive a maxi-

mum principle as general as the minimum principle
(2.12).

Due to the discreteness of the spectrum of K, on the
other hand, a, rigorous discussion of the convergence
properties of the iteration series can be given; the
kernel G@'ll is square integrable for a reasonably well be-
haved potential 'll, and it is not necessary to introduce
the complex energy E nor complex p, as would be the
case if one were to deal with the original Hamiltonian H
directly. "It is also trivial to note that the question of
the connectedness of the Green's function and the kernel
in the case of many-particle scattering does not arise
with the operator 3C, simply because in the present
formalism, as in Feshbach's formulation of the reaction
theory, we presuppose that the target system with Ã
particles is completely known in. terms of P and Q
operators. Only the interaction between the incoming
particle and the target is in question. The interaction
potential V is the sum of two-particle interactions, but
it is smoothed out by the operation PVQ and thus

completely connected.
For the choice of the constant vector a in (2.13), the

detailed discussion has been given in Ref. 3. By di6erent
choices we obtain bounds on the diagonal elements of
the inverse reactance matrix, or on the appropriate
linear combinations of the matrix elements. Since we
now have the methods to calculate lower bounds as well
as the upper bounds, it is trivial to show that similar
bounds can be obtained on any individual elements of
the inverse reactance matrix.

It is not likely that the requirement on P and P%'
can be easily relaxed. However, from the fact that the
usual Kohn variational principle often gives an upper
bound when a large number of parameters are put into
the tria, l function, it is very plausible, although the proof
cannot be given, that the requirement of the strong
operator identity (A2) may be replaced by a weaker
identity of the form

(P%'i, [H E]P+i)= —(P+,,—PHQQ, ) .

If this were true, then we could write down a more
general minimum principle of the form

where A is a Lagrangian multiplier. We note that, as ex-
pected, A~ reduces for A.=1 to Kohn's variational
principle.
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APPENDIX A: VARIATION-ITERATION METHOD

The Green's function G~ appears in Eq. (2.11) when
the two coupled Eqs. (2.3) and (2.4) are uncoupled
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using the solutions (2.5) and (2.6). Therefore, in order
to eliminate G~ from the operator X, we may have to
go back to the original coupled equations and try to
solve them directly by iterations. The P equation (2.3)
is rather easy to solve once the inhomogeneous term is

given, while the Q equation (2.4) can only be solved
either variationally or perhaps by perturbation methods.

The variation-iteration method to be described here
specifically avoids the explicit evaluation of G, and is
essentially based on the simple observation that it is
not any more difficult to solve the inhomogeneous Eq.
(2.3) than the homogeneous one (2.7), which is required
in order to have a bound on ) . A similar technique has
been frequently used in the past, especially in evaluating
various sum rules involved in atomic problems. "The
method consists of the following three steps:

fi[(Q+i [H E]QP—,)+2(Q+,QHP@,)]=0. (A1)

(b) Q+~ thus obtained is substituted into the r.h.s.
of the P equation and the resulting equation is solved
exactly for P'+t, .

P(H E)P4, = —PHQ%'g. — (A2)

(c) For the pair of functions Q%'~ and P4~ obtained

by the steps (a) and (b), we can show from the minimum

principle (2.12) that
(A3)yg yM

where
X~=~,+(Qe„[H—E][Qe,+PC,]). (A4)

In deriving (A4), the following identities are used:

PC, =P+P+G~HQ@~ (AS)

g, =g~+(P@I',PHQ+ ) . (A6)

(a) Construction of the trial function Q+~ which
satisfies the boundary conditions but is otherwise arbi-
trary. QV&=0 is one simple choice. Or, the Q equation
may be solved eariationally using a reasonable function
P% ~, for example P%' . Thus we have

exactly,

P(II E)P4'0, = PHE%'Og =0.
The solution is the usual static approximation.

(c) From (a) and (b), we have

1st iteration:

(a) P+0~ is substituted in the r.h.s. of the Q-equation
and we solve for Q+&i variatioually,

5[(Q%'ii, [H—E]Q% ig)+2(Q+ig, QHP@og)] =0.

(b) Q%'ii is substituted into the r.h.s. of the
P equation and we solve for P+™j&exactly,

P(H E)P4'i—g PHQ——%—'i, .

(c) Then, from (a) and (b) above, we have

X&X ~=X +(Q+,,QHP[P+~+P4, P4o])—.
After the nth iteration, we have

X ~& X.~=4~+ (Q+n ~,QHP [PM~—P+n —i,~])
=&- i, ~+(Q+ ~

—Q+--i. i QHP+-) (A7)

The X ~ which is introduced in (A7) can be read off from
the asymptotic form of PC &. Assuming that the itera-
tion series converges rapidly, (A7) provides thus a
rigorous upper bouud on X at every stage of the iteration.

In the close-coupling approximation, as mentioned
earlier, a finite number of exact states are selected from

Q states, and then resulting coupled set of equations are
solved exactly. The variational principle, on the other
hand, treats the entire 4' approximately. Therefore, the
variation-iteration method given here is a suitable com-
bination of the two methods in such a way that the re-
sulting ) M gives a rigorous bound.

Finally, it is a simple matter to convert the result of
the usual variational calculation and obtain a rigorous
bound. From the variational principle we have

%e have neglected the possibility of the presence of
subtraction terms. It is connected with the problem of
resonance states and also with the convergence problem
of the iteration series, and has been discussed in Sec. V.

The method can be demonstrated for the simple
choice Q+oi ——0. This corresponds directly to the usual

procedure adapted in the close-coupling approximation,
in which the Q equations are truncated to a finite num-

ber of coupled equations and the reduced set of P and Q
equations are solved exactly numerically.

p,
i'= X,+(e„[H—E]eg) .

where

=X(+(Q%(,[H—E]%'(),

+~=P+i+Q%
) &

——) ~ associated with the function P+&.

APPENDIX 3: FLUCTUATION POTENTIALS

Following the steps (a), (b), and (c), we obtain

(A8)

0th iteration:

(a) Quoi=0
(b) P4 pi is obtained by solving the P equation

"R.M. Sternheimer, Phys. Rev. 96, 951 (1954); A Dalgarno
and A. Stewart, Proc. Roy. Soc. (London) A238, 269 and 276
(1956);C. Schwartz, Ann. Phys. (N. Y.) 6, 170 (1959).

In the usual phenomenological analysis of scattering
problems in atomic and nuclear theories, one often
assumes an optical potential of arbitrary form with
certain prescribed behaviors at the origin and at in-
finity in coordinate space. On the other hand the Quctua-
tion potential given by (3.14) has a definite physical
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interpretation and can be evaluated without the de-
tailed knowledge of QV. Therefore it is of some interest
to study the explicit behavior in simple cases in which
the total Hamiltonian H is given.

In the case of single-channel elastic scattering of posi-
trons by atomic hydrogen, we have I'=

I Prp)(it &p I
with

Pro=2 exp( —ri) and V= 2(rp '—rip '), where ri and yo

are the distances from the fixed proton of the electron
and the positron, respectively, and we have used the
atomic units for energies and the Bohr radius for the
unit of lengths. The explicit form of the Quctuation po-
tential (V) can be obtained for this case; dropping the
projection operator P which is present by definition, we
have

(E e)(V—)=—(4/yp)(1 —e "')p+(8/yp)(1 e—'"2)e '"2 4—e pt2 4 (eprg+& pr2)—

00 g
—2y

r2 y

212

r (e-p e
—2p)

dy + (ep r2 e pr 2)

00 g
—2g

dy+e —2r2

r2 y

rm (cop e-pp)

dy

The constant i is so far arbitrary and can be chosen to simulate the true potential when this is possible. It behaves as

(V) (L~' p) '(4+8—(yo', rp' ln2ro, )), rp=0

(V) ~ (E—e) '&4yp '+~l(rp '))

When ~ is chosen to be ~= 9
"and the total energy E is E=—1 corresponding to the zero energy scattering,

(V) behaves asymptotically as
(V)- -(l)"-'

as expected. On the other hand, we can use the most likely lower bound ~= ——,', which corresponds to the threshold
energy for the pickup process, and obtain the asymptotic behavior —Sr2 4.

A similar calculation can also be carried out for the elastic scattering of electrons by atomic hydrogen. In this
case, (V) becomes more involved due to the exchange eRect. However, its asymptotic behavior is exactly the same
as in the e+H case, since the exchange effect is of short range. We give here the explicit form of the P equation
with the fluctuation potential:

1
2 +V+Voo-E+E.o+ ((V'). -(V. )'} o( )

E

~Pro(rr)
V' —Voo(ri) V

«4rpo(r ) pV+ 2Erp E+- Qp f2

«p'lt'ro(yo') V(No(yp') Voo(yo')+4'ro(yp')«i'pro(yi') V@o(ri') } =0.

We used the notations: T» is the kinetic operator for the
particle 1, Vi ———2/ri Vpp= —2(1+yi ') exp( —2ri),
& signs are positive for the singlet and negative for the
triplet states. In the present case, the rigorous lower
bound e is also known, ' which gives the asymptotic be-
havior roughly of the form (V) ~ —(16/3)ri—'.

APPENDIX C: VARIATIONAL PRINCIPLES FOR
THE STRENGTH EIGENVALUES

A variational principle for the calculation of the
strength eigenvalues l associated with the interaction
operator BC(»&=BC—3C&" will now be described. Varia-
tional upper and lower bounds on „tftoe ennable us to
decide whether a complex scattering system has a cer-
tain number of bound states or resonances in some re-

"H. A. Bethe and E. E. Salpeter, Handbech der Physf', k, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35, p. 344.

Lucio) E+l-„—&3ci&lg
I f„)—0

with the normalization

6-I~&"Il-)=-~-
(C1) is the familiar form

(C1)

(C2)

(OE-~i")-~' ill. )=&.If.), (C3)

which appears in the usual iteration procedure puce as
(5.13).

gion in the energy or the strength variables. They also
give upper and lower bounds on the radius of conver-
gence of the series expansion which appears in the itera-
tion method or in perturbation theory.

It is irrelevant for our purpose whether 3C "& is a posi-
tive or a negative operator, and thus we assume 3'.&»& &0
in the following discussion. The strength eigenvalue
problem is
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It is essential to note that, from the discreteness of
the spectrum of the operators K and BC(" for the given
energy E below the threshold for new channels, f„'is
bolrrded from below with

With the value fo, chosen to satisfy fo& '& fo ' a.s can be
obtained by an upper bound calculation we finally
have"

1)fo) 1)f„—P/(f„l—~&&'If„)l&t'. (c14)

~)~(fo~ ' fo ')(fi ' foi ')(foil —~ '
Ifo~) (C15)

(c16)

Therefore we also get the lower bound

(C17)f —1)f —1

(fo~ fx)(for I
~ '

I
fo~)(fo

I I
~"'—EQUI fo )

pt )f —1

(foi I

—~"'
I
fo~)

(c5)
The forms given by (C14) and (C17) are the analog of
the formulas by Stevenson-Crawford and Temple, re-
spectively, for the bound state problem.

The discussion given above can also be carried out in
terms of the energy eigenvalue problem for the opera-
tors 3C and 3C( ), although the argument is indirect. For
the lowest state of K, we have

Similarly, if we are interested in obtaining upper bounds
on the higher states as well, then we can apply the
Hylleraas-Undheim theorem and by diagonalizing the
matrix ((~ I

LK"'—EQ] I (~) with the vector trial function

I g~) which conta, ins M terms we have

0&f &f & . (c4)
On the other hand, again from (C11), we have

That is, the operator 3C has been constructed such that
the negative part of the spectrum of (K—EQ) is dhscrete,

and the interaction operator X(» does not change the
if

locations of the thresholds. Therefore we can treat
(BC&'&—EQ) exactly the same way as in the bound state
problem, as far as its spectral structure is concerned.

(i) The upper bound on fo
' can be obtained trivia, lly

from (C1) and is of the form Ifufo~

for n=0, 1, , N (C6)

implies that
8 &E, for all m,

f„&1, for all rt,

(C7)

(CS)

(CS) is just the condition of convergence of the iteration
series (5.15). Thus, it follows from (C5) that if K&'&&0

and 1 & fo& &~ fo, then we are sure that the series diverges.
(ii) The lower bounds also follow readily by an

analogous procedure used earlier in Sec. III. We con-
sider a positive definite quantity

( — X&'&
~(o)—E+

sc(»-
x x —e+ r„).(c9)

ot

with NUM+1. The condition that the eigenvalues of
3C and 3C"' given by h Q and h„"',respectively, are
such that

&oio& boo& bo o, (C18)

~-'=(Q~. 'I~IQ~. ')(Q~. IQ~. )-,
&or.o = hovo —J(Bio—hovo)-',

gQ(g Q& g Q

J~
hovo&-,'(boo+ &9),

I= (Q@'«
I

~'I Q~'o~ )—(QC'o I~
I
Q@o~ )'.

The upper bounds on the higher states can also be ob-
tained using the Hylleraas-Undheim theorem.

Thus, if we carry out the calculation for 3C and BC('&

and obtain the various bounds such that, for example,
the inequality

&oUQ~& ~~& ~oi, "'

Expanding
I for) in the form

we have

Pt ~nt n
n-o

Firstly, if

f.hen we get
f '&-'(f '+-f ')--

(1 1
I&

I

—— (fo~ I

—&&"'
I fo~) .

&fo~ fo

M 1 1 2

I= 2 .' ——(f. l

—~&'&If.).
foi

(C10)

(C11)

with
C12

Q~& QU, (C19)

(C13)

~v= 2 (1—f-~) '(f-~l&o)'
n=o

"See for example, L. M. Delves, Nucl. Phys. 45, 443. (1963).

holds, then the series such as (5.13) involving the kernel
(QE—BC&«) 'K&'& will surely be divergent.

Finally, we give. an alternate expression for 6 using
the eigenfunctions and-the eigenvalues of- the strength
eigenvalue problem. Diagonalizing the mmmm matrix
(f,

I

BC "&—EQ I f,) with the normalization given by (C2),
we have


