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in Eq. (B3). The contours Cy and Cy’ (Figs. 16 and 17)
differ from those represented in Figs. 2 and 3 in that
they are continued to .

The function F(f¢1,t2) has singularities at $/2=¢2
+15'2) 11=0, #,=0. If Ret,!>>Ret'?, the singularity
2= 12— g,172 of the function F (¢,1,6s) is absent on the
physical sheet of the plane #; represented in Fig. 16
since the point ¢; for which Rez;!2<0 lies below the cut
made in Fig. 16 left of the singular point £;=0.

Therefore at Ref'2<Refy!? the singularity of the
integral over #;:

11 F(t;t1,ts)
¢j(i7t2)=~ "“‘/ X dtl
2 2 cy ]+1—a(t1)—a(t2)

arises only for such 7, ¢, and £, for which the zero of the
denominator appearing across the cut ¢;>4u? and de-
forming the contour Cy’ of integration coincides with the
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points £;=0. This singularity, given by the condition
JjHi=alt)+a(0),

i.e., 7=a(?2), appears on the cut of the plane ¢, deforms
the contour (as is indicated in Fig. 17) and reaching
the line Refy!?2=Ref'? does not lead to the singularity
of integral (B2)

1
fi®)= p” &;(t,t2)dts. (B4)

21 J ¢y

This means that the singularity of this integral arises
only from the region of small (or complex) ¢, £,5 ¢. Since
¢ is small the quantity #;'/2=2—[,!? is also small (or
if it is not, it is complex). In either case the particle
masses cannot enter into the expression giving the loca-
tion of the singularity. Actually the singularity of inte-
gral (B2), (B4) arises from the point ¢{;=¢,=1¢/4.
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The characteristic functional is calculated for a system of bosons obeying linear field equations. The
system is assumed to be in equilibrium, and the density matrix is taken to be of the form ({n}|o|{m})
=TI, 8ngm (1 —2)2s™, where k labels the individual modes. From the characteristic functional, the moments
and distribution functions of an arbitrary number of field components are derived. In addition, it is shown how
to obtain the density matrix from the characteristic functional, and, for the system in question, the original
density matrix is recovered. Explicit calculations are performed for the electromagnetic field in an unbounded
domain and in a semi-infinite domain bounded by a perfectly conducting plane.

I. INTRODUCTION

SING the methods of quantum field theory, we
shall compute the characteristic functional for an
electromagnetic field in thermal equilibrium within an
enclosure of arbitrary size and shape. From this func-
tional, we shall compute the moments or correlation
functions and the probability distributions for any
number of field components at the same or different
points in space-time.! We shall see that the probability
distribution is a multivariate Gaussian function. There-
fore, all correlation functions are expressible in terms of
the two point correlation function. To exemplify the
result, we shall explicitly calculate this correlation
function for an unbounded domain and for a semi-
infinite domain bounded by a perfectly conducting
plane. For the unbounded domain our results agree with
* This research was supported by the U. S. Office of Naval Re-
search, under Contract No. NONR 285-(48).
1 Of course, the distribution functions are physically meaningful
only when they refer to points at which the field components

commute. For the electric and magnetic field components, this
means that no two points lie on the same light cone.

those of Sarfatt,” Bourret? and Mehta and Wolf.*
The correlation functions for a semi-infinite domain
do not seem to have been calculated previously.

The deduction of the Gaussian distribution functions
for black-body radiation in an unbounded domain has
already been given by Glauber?$ and Holliday.” These
distribution functions were used implicitly by Purcell®
and explicitly by Mandel and Wolf® in order to analyze
the intensity interferometry experiments of Hanbury-

2 J. Sarfatt, Nuovo Cimento 27, 1119 (1963).

3 R. C. Bourret, Nuovo Cimento 18, 347 (1960).
(1496(:4) L. Mehta and E. Wolf, Phys. Rev. 134, A1143, A1149

5R. J. Glauber, Phys. Rev. Letters 13, 84 (1963); Phys. Rev.
130, 2529 (1963); Quantum Optics and Electronics: The 1964 Les
Houches Lectures, edited by C. DeWitt, A. Blandin, and C.
Cohen-Tannoudji (Gordon and Breach, Science Publishers, Inc.,
New York, 1965).

6 R. J. Glauber, Phys. Rev. 131, 2766 (1963).

7 D. Holliday, Phys. Letters 8, 250 (1964) ; see also D. Holliday
and M. L. Sage, Ann. Phys. (N. Y.) 29, 125 (1964).

8 E. M. Purcell, Nature 178, 1449 (1956).

9 L. Mandel and E. Wolf, Phys. Rev. 124, 1696 (1961).
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Brown and Twiss.® Glauber® has also obtained the
probability distribution for the number of photons
counted by a detector.

Although the analysis described so far refers to the
electromagnetic field, the same considerations apply
to any boson field governed by linear equations. To
illustrate this, we shall calculate also the characteristic
functional and the two point correlation function for
a scalar meson field in thermal equilibrium.

We next solve the inverse problem of determining
the density matrix for a field when its characteristic
functional is known. For this purpose, we make use of
the representation developed by Glauber.® In the case
of a characteristic functional which leads to Gaussian
distribution functions, we shall show that the density
matrix has the form of that for black-body radiation.

Our results shed some light on a question which has
been raised concerning the applicability of classical
physics to random electromagnetic fields. We know
that all the statistical information concerning a field
is contained in the characteristic functional. From this
functional, both the quantum-mechanical density
matrix and the probability distributions of the field
components can be determined. Therefore, two com-
pletely .equivalent descriptions of a random field can
be given—one in terms of a quantum-mechanical
density matrix, and the other in terms of a set.of
probability distributions for field components which
may be regarded as classical quantities.! The two
descriptions will give identical results for all quantities
provided that they both correspond to the same charac-
teristic functional. Of course, the correct probability
distributions cannot be determined classically, but once
they are determined, they can be used without any
further reference to the quantum-mechanical nature of
the fields.

II. DEFINITION OF THE CHARACTERISTIC
FUNCTIONAL

The electromagnetic field in a domain V devoid of
sources can be described in terms of a Hermitian vector
potential operator A(r,f). Within V, A satisfies the
wave equation

(1a)

In addition, some appropriate subsidiary condition is
required to fix the gauge of A, such as

V-A=0,

(VZ— —28t2)A= 0.

(1b)

the transversality condition. On the boundary of V,
we assume that A satisfies a real linear homogeneous
boundary condition which makes the Laplacian
operator Hermitian. From A the electric and magnetic
field operators E(r,£), and B(r,f) can be obtained via the

1 R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 (1956);
Proc. Roy. Soc. (London) A242, 300 (1957); A243, 291 (1957).
11 See footnote 1.
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relations

E= —c“é)tA ’ (2)
B=VXA. ©)

It is convenient to introduce the product solutions
of (1) of the form v, (x)=wu,(r)e’t. From (1) it follows
that u,(r) satisfies the reduced wave equation

(V42w du,(r)=0. (4a)

The functions u, must also satisfy the transversality
condition

V-u,(r)=0. (4b)

If u, satisfies the same boundary condition as A,
then u, is an eigenfunction of the domain and w,, the
corresponding eigenvalue, is real. The index « labels
the various eigenfunctions and corresponding eigen-
values. When ¥ is bounded the eigenvalues are discrete
and the index x may be restricted to discrete values.
Unbounded domains are covered by our treatment if we
interpret k as a continuous index, and understand that
summation over k¥ means integration. Alternatively,
we shall consider V to be bounded and pass to the limit
of an unbounded domain in our final result. Since the
equations and boundary conditions for wu, are real, it
follows that w,*, the complex conjugate of u,, is also an
eigenfunction corresponding to the same eigenvalue w,.
We assume that the u, have been chosen to satisfy the
orthonormality conditions

/ uF(r)-ue (r)dr=24,, . (5)

By utilizing a complete set of u,(r) we can express A
in the form

A(@,)=c> (7/2w )2
X[am (e o+a,tuF(r)eie]. (6)

The coefficient a, and its Hermitian adjoint a,! are
the annihilation and creation operators for photons of
the «th mode of the field. We assume that they satisfy
the familiar commutation relations for independent
harmonic oscillators,

[aK:aK’]= [aKT,aK’ T.__] =0 ] (7>
(30,00t ]=80e . 8)

From (6)-(8) the commutation relations of the com-
ponents of A at two space-time points can be found.
The statistical description of any quantum-mechani-
cal system, such as the electromagnetic field in V, is
expressible in terms of a density operator p. In terms
of p the expectation value {(O) of any operator O is

given by
(0)=tr(p0). 9)

To find the expectation of A or of any function of A it is
convenient to introduce the characteristic functional
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F[3] defined by

F[?»]=<exp(i / () ~A(x)dx)> .

Here x=(r,t) is a four vector, & is an arbitrary real
vector function and the integration extends over the
domain r in V and — 0o<{< 0,

Upon utilizing (6) for A the integral in (10) can be
written in the form

(10)

7

/ l(x)-A(x)dx=cZ( )llszaﬂm*aJ]. (11)

k \2wg

The coefficient \, in (11) is defined by

A= /l(x) -u,(r)etontdy . (12)

When (11) is used in (10) and the commutation relation
(7) is recalled, (10) can be written as

FL0]=(IT expllic (/2002 \atAFah) Ty, (13)

To proceed further we must specify the density operator.
For thermal equilibrium, the density operator takes
the form

p=¢PH [tre—6H (14a)

where the Hamiltonian H is given by

H= Z %hwx (axaxf‘i‘axfax) = Z ﬁwk (’ﬂr‘l‘%) . (14b)

Here n.=a,la, is the number operator for the xth mode
and 8=1/kT, where k is Boltzmann’s constant and T
is absolute temperature. It follows from (14) that

p=I1I p«, (15)
with
PK=€XPE“BMK(WK+%)]/U exp[_Bth("x‘{’%)]' (16)

More generally, let us consider operators with matrix
elements of the form

an

where 2, is a scalar function of . It is clear that
[awpe]=0 and [at,pw]=0 for x##«’. For density
operators with this property, (13) becomes

FIA]=TT{explic (/20 2 actrta)}).  (18)

(Px) nemyg anxm,( (1 - Zx) 3, )

The expectation value in (18) is just the characteristic
function for a single mode k and this is given by Bloch’s
theorem.'? When we insert this characteristic function

12 F, Bloch, Z. Physik 74, 295 (1932).

EVELYN FOX KELLER

into (18) we obtain

FLA]=]I exp—{c* (/2. [\ Xnet-2)}
=exp{—2 (/20 [\ Xnt-2)} . (19)

From the expansion of A(x) according to Eq. (6), we
notice that

(4:(@)4; ()= (/209 {v:(@)v;* ¢) (1)
+o; (e (x)(ng} . (20)

By using (20) and the definition (12) of A, we have, in
dyadic notation,

1
: / 2 (2)2.0): (A)A(y))dxdy h
=Z|)\K[2cz(-2——)(m+%>- (21)

Wy

Upon making use of (21), we can rewrite equation
(19) in the form

1
F[xj=exp{—5 f m(x>a<y>:<A<x>A<y>>dxdy} . @)

This is our general result for the characteristic func-
tional of an electromagnetic field described by a density
matrix of the form (15) with the p, satisfying (17). In
particular it applies to a field in thermal equilibrium
for which p is given by (14).

III. MOMENTS OF THE RADIATION FIELD

Once the characteristic functional is known, the
calculation of all moments and distribution functions
is straightforward. The only difficulty arises from the
noncommutativity of the field operators at different
points in space-time. From the commutation relations
imposed on the operators a, and a.f, it is possible to
compute the commutator [4;(x),4;(y)]. When the
field satisfies the transversality condition (1) it is found
that the commutator vanishes only for time-like pairs
of points # and y. (See, e.g., Heitler.!®) The electric-
and magnetic-field components commute more gener-
ally, but still do not commute for pairs of points lying
on a light cone.

Nevertheless, we can define an n#th-order moment as
follows:

Inil"”’i"(xl,"'xn)
1
=— X (dy(x)--Aixa)). (23)
n! P(z1e+2n)

The summation in (23) extends over the set P(x1- - * %)
of all permutations of #;-:-%,. For a set of points

18 W. Heitler, Quantum Theory of Radiation (Clarendon Press,
Oxford, England, 1954), p. 405.
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{x:;} such that [A4(x;),4(x;)]=0 for all points in
the set, (27) reduces to the usual nth-order moment
(A (1) - A, (22)).

For an arbitrary set of points {x.}, it follows from

the definition of F[\] that I, can be obtained by taking
the nth-order functional derivative of F[\]. That is

8"F[\]
6ki1(x1) . '5)\zn(xn) )\(I)EO.
When F[\] is given by (22), we find by using (24)
that all moments for #>2 can be expressed in terms of

Iy=3[{4:(®)4;())+{4;(4:))].  (25)

All odd moments vanish and the even moments (i.e.,
n even) are found to be given by

Inil. .. 'in(xl,. . .xn).:i_"

(24)

Inil. . 'l'n(xl, cen xn)
= 2 I 2(diy(x)ds,(xy)
partitions pairs
44w A ). (26)

The summation in (26) extends over all partitions of
the integers 1, - - -, » into pairs, and the product extends
over all pairs (e,v) in each partition.

Let us write the symmetrized product AB+BA as
{4,B}. Then we have, in particular, from (26) and the
vanishing of odd moments,

Ii¥ (1) ={4:(x1))=0,
Iyt (xlyxl) = %«A DY (xl)sA i3 (x2)} ) )
Iy iis(gy 29 23) =0,
Tovindsis () w9 25,004)
= %<{A Pt (xl)’A P (xZ)} ><{A 13 (x3))A g (x‘i)} )
({4 (o00), 45, (o0) } ){{ A iy (w2),4 5, () })
+%<{A Y (xl)sA i (x4)} ><{A g (x2>;A 3 (x3)} >
= To™%2 (00,009) T ™94 (203,004) +- L 271%8 (20125) ] 5%2%4 (103, %04)
Lo (xg,x0) 125 %3 (209,205) . (27)

The basic quantity 7,%%(xy,22) can be obtained from
(6). For a cubical domain of volume V with periodic
boundary conditions

Uy (3) = V2o Weiter, (28)

The vectors e™(A=1, 2) are unit polarization vectors
orthogonal to k, and k is a vector such that V3k/2x
has non-negative integers as components. Here and
hereafter the index « is replaced by a double label
consisting of the vector k and the polarization index A.
We shall write w; instead of w, since w,=kc is in-
dependent of the polarization index X and of the direc-
tion of k.
On the basis of (6), (23), and (28), we have

7t
Iie(ann) = 22V) E ~—(mactD)

kN LWy

X (eiter—wrt) J gmileer—ait))g, Mg, A (29)
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Here e, denotes the ith component of ™, and
(x1—%2)=(r,). In the limit V— o, the sum Y
becomes (27)~3 /'dk, and (29) becomes

I (xl’xz) = %czﬁ (21r)—3 dk Z (nk)\+ % > (Zwk)—l
A

X (eFterr—ort) - githr—wrt)) g, Mg, V) (30)

The two point correlation function of the electric-
and magnetic-field components can be obtained from
(30) by means of the defining relations (2) and (3).
If (m)={(nx), as is the case for thermal equilibrium,
we can make use of the relation

Z ei(")ejo‘):&i,-——kik,-k‘?,

A=1,2

where k?=3_; k?. We then find

(1)

/
({Ei(x0),E;j(x2)} )=221r—)3 widk{(ne+3)

A kik;
X gtker coswkl(aﬁ——];) s (32)

({Bi(x1),B;(2))} )= cX({ Es(21),Ej(29)} ), (33)
(B, By = [ontinet 1y
i\¥1),D;(¥2)5)=——— | Wk T3
(2m)?
X ekt Coswkt(ei,-lkl) . (34)

For thermal equilibrium it follows from (14) that
()= (ePeor— 1) 35)

In this case the above formulas can be explicitly evalu-
ated. For ¢4, we find from (32) that ({E;E;})=0.
For ¢=j and E; the component of E parallel to r, we
shall call the moment defined by the left side of (32)
Siong(1,). Then (32) yields

glong (ryt) = <{E’L (xl),Ei(xz)} )

ch [®  coskct
=— kdk
w2 Jg eok—1
sinkr
X|: k ——coskr:I—I-D’ (x). (36)
7

Here a=78¢, and
ctr  [*® sinkr
D' (x)= / kdk coskctl:
0

222 kr

—coskr] @7)

is a singular contribution from the vacuum fluctua-
tions. Equation (36) can be rewritten as

ch 70
(-3)
4qrar? or

><[L(Zwra))u(f(r—ct>)]+D'<x). (38)

@

& long=
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Here L(7) is the Langevin function

200 [ sin(7tkar)
Lr)=—| ——

m™Jo

1
dk=cothr——.
(ex*—1) T

For ¢=j and E; the component of E perpendicular
to r, let us call the moment defined by the left side of
(32) 81at(r,0). Then (32) yields

Srat(1,0) = ({Ei(21),Es(w2) })
he [ \ coskct

272y eb—1

sinkr 1 /sinkr
<5l
kr R\ kr
Here

hc [
D”(x)=—-—/ k3dk
0

42

(39)

Coskr>]+D” (x). (40)

sinkr 1 /sinkr
——( Coskr):l (41)
kr  R¥2\ kr

is another singular contribution arising from the same
vacuum fluctuations. Equation (40) can be rewritten as

X Coskct[

70
813'5(1‘,0 = <1+_ _)glong(r,t>
2 0r
79 fic d
(2l-2)
2 9r/ 4mar? a7

><[L(Z@+¢))+L(Z<r—ct>)]]+D"<x).

(me+3)
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Apart from the singular terms D’(x) and D" (x), our
formulas are the same, to within a numerical coefficient,
as those of Sarfatt' and Bourett.?

A simple form can also be obtained for ({E;(x1),
B;(x2)}) for E; and B; components of E and B perpen-
dicular to r. In that case, Eq. (34) yields

¢l sinkr
{Ei(x1)'Bj(x9)} )= / k2dk coskct< — coskr)
4y 0 k?’

X[ (e 1) 44].

From (34) we see that if ¢= 4, then ({ E;(x1),B;(x2)} )=0.

Another case of interest is that of a semi-infinite
domain bounded by a perfectly conducting wall at
#=0. We will consider first a finite cubical domain of
volume ¥V with two perfectly conducting walls at x=0
and x=V and later let V— . We assume that
the field is periodic with period V3 in the directions
parallel to the conducting walls. The normalized
eigenfunctions corresponding to the eigenvalue wx=kc
are then

Wo= (2V)~¥2{n(n-e®) (et} ¢i -&r)

+nX (eMXn)(ekr—e )}, (44)
Here n is the unit vector normal to the conducting
plane, and k’=k—2(n-k)n. The vector k is restricted
to those of the previous values for which (n-k)<0.
Since nX (e®MXn)=eM— (n-e™)n, ux may be re-
written as

(43)

u= (2V)2{n(n-eM)2ek" 14 M) (gkr—gik 1)} (45)
(42) From (6) and (27) we have
[, s (ro)w¥ien 5 (o) e 4 a* o (1) tien j(xe) et | = 215%9(21,%5) . (46)

{A4i(x1),4;(29)} )= e %:

Wi

We have chosen a coordinate system such that n lies along the x axis. Let us assume, as in blackbody radiation,
(mn)=(myx) and then consider separately the two possibilities i= j and i .

First suppose 7= j. Then Eq. (46) becomes
(mt3)

Wi

1% (xl,x2) =c%h (ZV)—']' Re Z
k k2

ke
(1 —_ _) [eik-r__'_ eik’-r+ (zain—— 1) (eik‘ﬂ‘ik"1'2+e'ik"rlﬁik'YZ)je*iwkf i (47)

In the limit V' — o« the sum V13 becomes (27)~3 f/'dk where integration is performed over all k such that
(n-k)<0. From (47) we see that I»%(x1,x5) can be considered as a sum of two terms P# and Q;

Igii: P”(xl,xz)—i—Q“(xl,xg) .

(48)

Pit corresponds to what we have previously found in the absence of conducting walls and Q% results from the

presence of the conducting walls. P* is given by

) ch (mt3)f kP
Piéi(x,00)=— Re(27)3 dk (1 ——> (eikr - gik’sr) gmivit
2 (nek) <0 k2
ch © (A+B) sinkr B /sinkr
= / kdk coswkt(nk+%)l: ———( ——coskr)] . (49)
202202/, 2 kb B\ By

Here 4=[1+4 (r;/r)*] and B=[1—3(rs/7)%], where 7 is the magnitude of r.
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To obtain an explicit expression for Q% (xy,x5) it is convenient to specify the orientation of r. Let us first suppose

r is parallel to n. Then we find from (47)

in

kdk coswrt{ni+%)
0

B ch
Q(mn)”(x1,xz)=2 )

I‘sink (r—2s)

A—I—B\sink (r—2s) B
K 2 /] k=2

k2(r—23)2|_ k(r—2s) _COSk<r—28)]} , 50)

where s is the perpendicular distance between r; and the wall. 4 and B are defined as above.

For r perpendicular to n, (47) yields:
(@) (1ln)

QM (1,%2) = (21r)‘2hc/m kdk(l—f—k—2 i )D(k 7,8)(ni+3%),

0

®) (@l
0" (way22) = (2m) e /

0

(c) (tlnlr)

O (21,%2) = (2m)~%hc /

Here 7 is a unit vector in the direction of the 7 axis. The
superscripts nn, 7, and L 1 indicate that both the ¢
and j components of the field have been chosen in the
directions parallel to n and r in the first two cases, and
perpendicular to both n and r in the third. D(k,,s) is
given by

1

D(kyr,s)= coskct/ du coskru Jo(ks(1—u2)12).  (52)

-1

Considering now the case i#j, we find that
I5%(%1,22) =0 unless 7 is parallel to n and j parallel to r.
In that case we find

T (e1ny™" (21,22)

d a3 e

cdb, .
_——5—;5; (2‘”)2‘/; ;(nk_l_z) ( ,V,S). (

It is interesting to note that in computing the charac-
teristic functional we have made no use of the specific
nature of the electromagnetic field. In fact, the same
functional will describe any linear boson field whose
density matrix has the required form. The only modifi-
cation which must be made is that the eigenfunctions
u,(r) defined by (4) must be replaced by the eigen-
functions of the equation which describes the field in
question. For example, let us consider the thermal
equilibrium of a scalar meson field ¢ satisfying the
Klein-Gordon equation (V2—¢292—m?)(r,t)=0.

kdk( e )D(k r,5) (1),

wdk(&
o k

(1)

2

62
+~—)D<k,r,s><nk+%>.
ar:  9Js?

The characteristic functional for this field is [cf.,

(22)]
1
Fm—exp{—— / x<x>x<y><¢<x>so<y>>dxdy} (54)

where X (x) is now an arbitrary real scalar function. As
in the case of the electromagnetic field, all moments can
be expressed in terms of the second-order moment, as in
(26). 1t is therefore useful to compute the second-order
moment explicitly. For a cubical domain of volume V
with periodic boundary conditions, the Klein-Gordon
equation has the plane wave solutions e %ty (r)
= Vl2giker—ivkt, By using them, and letting ¥ become
infinite, we find the two point correlation function
I=%{{¢(x),0(5)}) to be

kdk
(B2 m2)112
X [sin(kr4wit)+sin (kr—wit) ].

Io(x,y) =hc(4nr)~ / {net3)———

(55)

When m=0 and {(n)= (¢ #**—1)~! we can evaluate
this integral and express the result in terms of Langevin
functions. If we ignore singular contributions on the
light cone due to vacuum fluctuations, we obtain from

(35)
1:;7[L<§<’+ﬂ>)+L(E(r—co)]. (56)

Iﬁ(xay) =
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IV. DISTRIBUTION FUNCTIONS

If [4:,(%e),455(x5)]=0 for all @, =1, -+, n, then
it is possible to introduce the distribution functions
Po(4:) (%1),43 (x2),- - +,A:," (%,)). These are defined to
give the joint probability of the operators 4 (x1),
-+ +,4;,(x,) taking on the values 4,/ (x1), - - -,45, (%4),
respectively. From them, all moments can be obtained
in the usual way. That is,

(A (®1),44 (Fa), -+, A3 (%))
=/ : '/Pn(Aill(xl);' : '7Ain,(xn))

XA (1), - - A (1)) A (1) - d A3, (x0) . (5T)

Here fis an arbitrary function of the components 4.

Because of the commutativity of all the operators
in question, it is possible to choose a representation in
which all 44,(x,) are diagonal. In that case, the expec-
tation value of a product of operators 4;, (1) « - A4, (%)
obtained by taking the trace, as in (9), is the same as
the expectation value obtained from (23). The distri-
bution functions P.(44 (x1),:*-,4:, (%)) can be ob-
tained from the characteristic functional F[A] as
follows. Let

l(x) =Zn )‘aa (x_ xa)nia )

=1

(58)

where n;, is the unit vector corresponding to 7,. Then
FIN]={exp{i[Ad oy (x1)+ - - - +Nad in(wa) ]})

=tr{p exp[? X Nadia(%) ]} - (59)

Using the formula for F[A\] given by (22), we find
(exp{iDuA i (x1)+ e +>\nA in (xn)]}>

—exp{—} X A{dul@d (@)} (60)

a,pf=1

But {exp{i[Mds (®)+ - -+Nadi, (x.)]}) can also be
obtained from (23):

(exp{i[ad1(x)+ -+ - +Nadin(®a) 1})

=/.../dA,-l’(xl)-ndAi,.'(xn)

XPo(4s) (xl),' -4 i (22)) eXp[i PP z‘al<xa):l .
(61)

Therefore, the distribution function P.(4:,’(xy),: -,
A;(x.)) can be obtained by taking the Fourier

Po[A4(x),4;(y)1= 27(2(0)— 33" (1—) )11 ¢

Xp{——
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transform of (26). We have
Pu(di (x1),-+ A3 ()

1 ®° il n
= / dA;- - / A\ expL—1 2 Nadi (%2)]
(271-)” o e a=1

Xexp[—1 §= Adildale) Ay (62

This integral can be evaluated, being simply the
Fourier transform of a multivariate Gaussian. The
answer can be written as

Pn(A il'(xl)) e ’A 'in, (x"))
(2m)—2
 (detGag)'?

n

Xexp{—3 2 (G apdis (%) Aig (x0)}

a,f=1

(63)

where G is a matrix with components

Gaﬁ = <A o (xa)A ig (xﬂ)> ’

and (G)p is the (a,8) element of the inverse matrix.
For n=1, G is a scalar

G=(42(x)). (64)
For a uniform, isotropic system in equilibrium,
(48(x))=3(4%(0)). (65)

Then G is independent of the choice of component 4
and space-time vector %, and (63)-(65) yield

PLA7 (x)]= (Gr(4%)) "2 exp[—34.(%)/(4%)]. (66)
For n=2
=( (42(x) (4 i(x)Af(y))> 1)
. (A:@)4;()  (A2>)
1

—1__

(A2@) A2 () —(Ai(x)4;(y))?
42 —(4:(x)4;
><( (42(x)) (44(#) (y))). (68)
—(di(@)4;())  {420))

Again, for a uniform isotropic system in equilibrium G
depends only on (:— 7), and (x—7v). That is

=( g(0) g(x—y)éﬁ)
gx—)s;  g0) /'

where g(x)={41(x)41(0)). The distribution function is
then

(69)

1 g(O[A42(x)+A42(y)]—208(x—v)Ai(x)A4;(y)

. (70)
2 g(0)—d:¢° (%) } (
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It is possible to extend the definition of the distri-
bution functions P,[4;’(x1),--+,4:, (x,)] to include
those points where [A;,(xa),4:5(xs) ]#%0. This is done
simply by replacing the product (4;,(x4)4:;(xs)) by
the corresponding symmetrized product ({4, (xa),
Aig(xg)}) wherever it appears. Then Eq. (63) remains
unchanged provided that the matrix G.g isappropriately
symmetrized. That is, Gas=(3{d:,(®a),4di5(xs)}). It is
then possible to compute all the symmetrized moments
from these distribution functions at all points in space-
time. Caution must be taken, however, in the interpreta-
tion of the distribution function at those points where
noncommutativity occurs. Since it does not make sense
to speak of joint probability distributions for non-
commuting operators, the usual interpretation of P,
must be abandoned at these points.

Nevertheless, since the above extension of the
definition of P, permits the calculation of the sym-
metrized moments everywhere, the full set of functions
{P.} provides sufficient information to re-obtain the
characteristic functional. This is because the functional
Taylor expansion of F[\] involves only symmetrized
moments. That is

F[\]= %% . Z . /M(xl)' N (%)
5"F[N]
Ny (201) 0N, (20) [rmo
P R o LACAE N
n=0 7! 41, +,in

Xln(’il,"'in)(xl’...’xn), (71)

where I, in(xy,---x,) are defined by Eq. (27).
Consequently, the full set of distribution functions
{P.}, defined everywhere, provides a complete descrip-
tion of the system.

For comparison with experiment, it is convenient to
obtain the distribution functions of the electric- and
magnetic-field components. For the electric field, Eq.
(58) is replaced by

10 ~
AMx)=——3 Nb(x—xs)n;,,

(72)
¢ 0t a=1
while for the magnetic field we would take
N
ANE)==VX 3 Nab(x—x,)0,,. (73)

a=1

For any mixture of the two, the appropriate combination
of (72) and (73) would be employed. In the same way
as above it is found that the distribution functions of
the electric- and magnetic-field components are the
same multivariate Gaussian functions with the ap-
propriate replacement of 4., by E;, or H;,. Because of
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the wider domain of commutativity of the electric- and
magnetic-field operators, the distribution functions of
these fields have a correspondingly wider range over
which they can be physically interpreted.

V. OBTAINING THE DENSITY MATRIX FROM THE
CHARACTERISTIC FUNCTIONAL

In Sec. IT we have derived the characteristic func-
tional for a system described by a density matrix
of the form (17). In this section, we will solve the
inverse problem for an arbitrary system. We will
show that, given the characteristic functional (F[\])
=(exp[s/M(x)-A(x)dx]), it is possible, by judicious
choice of A(x), to obtain the density matrix p.

It will be convenient for this purpose to use the basis
employed by Glauber.® In particular, we will obtain the
matrix elements {(a|p|B), where |a)=]].|a:) and |B)
=]1.|B). The kets |a,) and |B,) are eigenstates of the
annihilation operators a,. That is,

alag=aay,

dxlﬁx>:BK|BK>;

where a, and B, are complex numbers. It follows that
{ax| and (B«| are eigenstates of the creation operator
at:

(74)

(] act= (o] e,

(ﬁx]axf=<5:(!6x*- (75)

Glauber has shown that these states, although not
orthogonal, do provide a complete basis in terms of
which any state of the system can be expressed. We will
call this representation the “a’ representation. In order
to simplify the calculations, we will consider a single
mode of oscillation. That is, we will show how to find
(ac| p|Bs). The results for a full set of modes are ob-
tained by straightforward generalization of the results
for a single mode.

The matrix elements of p in any other representation
can be obtained from the appropriate transformation
formula. In particular, the matrix elements pm,n,
= (m«|p|n.), (where |m.) and |u,.) are eigenstates of
the photon-number operators a.'a,), are obtained as
follows:

1
—— / Pa. / B 0162
,".2

™ (BK*)m
Xexp[—3Fa]*—3]64%]

nl A/ m! '

By S @« we understand the double integration

/:od(Rea)/:o d(Ima);

that is, integration is over the entire complex plane.

(76)
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In the “a” representation

<exp(i / l(x)~A(x)dx)>
EtrI:p exp(i / Ax)- A(x)dx)]

1
=— /d%z(alp exp(i/l(x)A(x)dx)[a) (K]
Let us take A (x) to be
;‘(x) = i(’Yl*D‘-x“’“—'Ylg‘-x")'!" (72lx++72*9‘m’) (78)

=¥ (x),

where v and v, are arbitrary complex numbers, and
A+ are functions defined by

. uE(r)
At (%) =F lim ¢ (2w, /F)V2 — exp (iw.do)
0 2m1 to— 1T 1€
=®F*(x). (79)

Here . (r)=u«(r) and u,!(r)=u*(r). Because

1 © giatdr

=1,a>0

2wt J e T—1E
=0,a<0,

it follows from the plane wave expansion of A(x) (6)
that

(a) /?w (%)-A(x)dx=a,,
(80)
(b) /D».,‘— (x)-A(x)dx=a,'.

From our choice of A(x) [Eq. (27)], we then have
i [30) A= (o —pta)bitrmactritad) . 1)

We now use the fact that, if 4 and B are operators such
that [4,B] is a “¢” number, then
eA+B= eAeBe—1/2 [4,B] . (82)

Then we can write (exp(:/ A (x) -A(x)dx)) (now a func-
tion of v, and #») as follows:

I(‘Yl,‘Yz)E<eXp(i/l(x)‘A(x)dx>>

= tr[p exp(v1a.!—7v1*a,) exp(ivaa.)

Xexp(ivs*a) 1Z(viv2), (83)

FOX KELLER

where

Z("/l,’)’z) = eXp{%[ (72)2+1:(71’Yz+ 71*’)/2*)]} .

Making a cyclic permutation of the operators under the
trace, we have

1
I(y1,v2)=~ / (o, | exp(iy2*a,p
m
Xexp(via'—v1*as) exp(ivaal) [a)Z  (84)
1
= fd2ax<ax]p eXp('Yla’xT—'Yl*ax) [ax>

™

Xexp[i(vaaxtve*a®)])Z .

But exp (via«f—v1*a,) is just the displacement operator
D (1), introduced by Glauber,® which has the property

D(y1)|a)= |actr1) exps (viaF—aw®).  (85)

Hence

1
1(71772)=—' fd2ax<axlp]ax+71> exp['i('y2ax+72*ax*)]

™

Xexp[ 5 (v —ay1*) 1Z (v1,72) . (86)

Letting v1=8—ax, we can obtain {a.|p|B«) by taking
the Fourier transform of

[I (71,72) €xXp —%’7101,‘*“‘“%&()’1*)2_1 ("/1,72)]-

That is:

(] p|Be)y=77" / @yo(I (v1,72)

X exp[— % (7lax* —ax'yl*)]Z—l (71972))

Xexp[—i (ye*a*+ya)].  (87)
Letting A=a+Bc=hitihs, v1=Bc—a,=g1t1ig;, and
vo=s1+1s2, Eq. (87) can be rewritten as

(a] p| By =" exp[—4 (Bra*—auB:¥)]
X/d.\‘ldsge—i(huhhzsz)

Xexp (=352 =559 (g1+gz, s1+is2).  (88)
Using (83) to define 7 (y1,v2), we now have an explicit
formula for obtaining the density matrix p from the
characteristic functional F[A]. To actually compute
{ac|p|B.) it is of course necessary to know F[A] for the
system in question.

In particular, for a system described by a charac-
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teristic functional of the form

1
Fm=exp(—5 / a<x>x(y>:<A<x>A<y>>), (89)

we can show that the most general equilibrium density
matrix is

Pmn="0mn(1—2)z", (90)

This corresponds to black-body radiation if we take
z=exp(—phw). In order to show this, we substitute
A(x) as defined by (78) into (89), and find

I (y1yv2)=exp(— (net+3) [ v2tivi*|?)
= expl—(mt 1) (sihor'+ g g
+2(ges1+g152)} 1.

Inserting this into (88) and performing the integration
indicated, we find, after some algebraic manipulation,

(el p|Bo)= (net 1) explaBe(n)/ (14 (n) ]

1)

Xexp[—3[ax]*—3[B[%]. (92)
Using (76) to obtain p,,m,, we find
p"xmx__—a"xmx(l_z)znx) (93)

where z= (n.)/ (14 (n.)).

The procedure outlined above can be immediately
generalized to obtain the matrix elements of p corre-
sponding to all modes of oscillation. It is simply
necessary to consider an infinite set of complex numbers
{71,724} in place of the numbers v; and .. Then (78)
is replaced by

A (x) = Z [1 ('YIK*Q'H - 71le‘)+ (72&3-x++72x*3\-x-):| . (94:)
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Equation (86) becomes
I({'le,'Y?K}):H T_I/dzax<ax|Plax+'le>
Xexp[iy (varatvactad®) ]

Xexp{z 2 [ (va)? +i(vrevaet vidyad®)

+ (71nax*—ax71x*)]} . (95>
Then, taking v1,=8.—a,, we obtain
1
(all’lﬁ)E({ax}lPI{Bx}):H— dzaxl({'le,'Y‘Zn})
Xexp[—— 12 ('Y?K*ax*+72xax)]
Xexp{ _% Z [('leax*_ax71x*)+ I'Y2x| 2
+i(71x72x+71x*72x*):]} . (96)
For F[\] given by (89), we find
I({71x,72x}) = eXP(—% Z("’K'i‘%)l'yh“l‘i'ylx*lz)
=17 (v1eyv20) 97)
and
({ae} [p[{83)=TI (x| p|Bs)- (98)

Consequently, the full density matrix, in the occupation
number representation, is given by

<{1’l,‘} lpl {mx}>=H 5nxm~(1+<n">)hl

X[/ A(m)) I (99)



