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F(f; &„&,)1
P, (t, ts) =—— dfr

2 2i c,. j+1—n(fr) —n(fs)

arises only for such j, t, and t2 for which the zero of the
denominator appearing across the cut t1)4p' and de-
forming the contour C1 of integration coincides with the

in Eq. (B3).The contours Ci' and Cs' (Figs. 16 and 17)
di8er from those represented in Figs. 2 and 3 in that
they are continued to ~.

The function F(t,ti, fs) has singularities at f'"=tP'
+fs't' t&=0, fs=0. If Refs'i')Ret'i' the singularity
$r'"= I'"—ts i' of the function P(f,ft, fs) is absent on the
physical sheet of the plane t1 represented in Fig. 16
since the point t1 for which Re/1'~'(0 lies below the cut
made in Fig. 16 left of the singular point t1=0.

Therefore at Ret'j'&Ret~'~' the singularity of the
integral over t».'

points t&=0. This singularity, given by the condition

j+1=~(fs)+~(0),

i.e., j=n(fs), appears on the cut of the plane fs, deforms
the contour (as is indicated in Fig. 17) and reaching
the line Ret2'" ——Re/'" does not lead to the singularity
of integral (B2)

(B4)

This means that the singularity of this integral arises
only from the region of small (or complex) fs, fs&t. Since
f is small the quantity ft'i'=t'" —fs" is also small (or
if it is not, it is complex). In either case the particle
masses cannot enter into the expression giving the loca-
tion of the singularity. Actually the singularity of inte-
gral (B2), (B4) arises from the point fr= fs ——t/4.
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The characteristic functional is calculated for a system of bosons obeying linear field equations. The
system is assumed to be in equilibrium, and the density matrix is taken to be of the form (lrr}

~ p((ra})
= Q, g„„„(1—z„)s„"»,where ft labels the individual modes. From the characteristic functional, the moments
and distribution functions of an arbitrary number of Geld components are derived. In addition, it is shown how
to obtain the density matrix from the characteristic functional, and, for the system in question, the original
density matrix is recovered. Explicit calculations are performed for the electromagnetic field in an unbounded
domain and in a semi-infinite domain bounded by a perfectly conducting plane.

I. INTRODUCTION

]' 'rSING the methods of quantum field theory, we

shall compute the characteristic functional for an
electromagnetic field in thermal equilibrium within an
enclosure of arbitrary size and shape. From this func-
tional, we shall compute the moments or correlation
functions and the probability distributions for any
number of field components at the same or diGerent
points in space-time. ' We shall see that the probability
distribution is a multivariate Gaussian function. There-
fore, all correlation functions are expressible in terms of
the two point correlation function. To exemplify the
result, we shall explicitly calculate this correlation
function for an unbounded domain and for a semi-
infinite domain bounded by a perfectly conducting
plane. For the unbounded domain our results agree with

*This research was supported by the U. S. Once of Naval Re-
search, under Contract No. NONR 285-(48).

' Of course, the distribution functions are physically meaningful
only when they refer to points at which the field components
commute. For the electric and magnetic field components, this
means that no two points lie on the same light cone.

those of Sarfatt, ' Bourret, ' and Mehta and Wolf. 4

The correlation functions for a semi-infinite domain
do riot seem to have been calculated previously.

The deduction of the Gaussian distribution functions
for black-body radiation in an unbounded domain has
already been given by Glauber" and Holliday. ' These
distribution functions were used implicitly by Purcell'
and explicitly by Mandel and Wolf' in order to analyze
the intensity interferometry experiments of Hanbury-

' J. Sarfatt, Nuovo Cimento 27, 1119 (1963),' R. C. Bourret, Nuovo Cimento 18, 347 (1960).
4 C. L. Mehta and E. Wolf, Phys. Rev. 134, A1143, A1149

(1964).
' R. J. Glauber, Phys. Rev. Letters 13, 84 (1963); Phys. Rev.

130, 2529 (1963); Quantum Optics and Etectronics: The 1964 Les
Houches Lectures, edited by C. DeWitt, A. Blandin, and C.
Cohen-Tannoudji (Gordon and Breach, Science Publishers, Inc.,
New York, 1965).

~ R. J. Glauber, Phys. Rev. 131,2766 (1963).
7 D. Holliday, Phys. Letters 8, 250 (1964); see also D. Holliday

and M. L. Sage, Ann. Phys. (N. Y.) 29, 125 (1964).' E. M. Purcell, Nature 178, 1449 (1956).
9 L. Mandel and E. Wolf, Phys. Rev. 124, 1696 (1961).
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Brown and Twiss." Glauber' has also obtained the
probability distribution for the number of photons
counted by a detector.

Although the analysis described so far refers to the
electromagnetic field, the same considerations apply
to any boson 6eld governed by linear equations. To
illustrate this, we shall calculate also the characteristic
functional and the two point correlation function for
a scalar meson field in thermal equilibrium.

We next solve the inverse problem of determining
the density matrix for a field when its characteristic
functional is known. For this purpose, we make use of
the representation developed by Glauber. ' In the case
of a characteristic functional which leads to Gaussian
distribution functions, we shall show that the density
matrix has the form of that for black-body radiation.

Our results shed some light on a question which has
been raised concerning the applicability of classical
physics to random electromagnetic fields. We know
that all the statistical information concerning a field
is contained in the characteristic functional. From this
functional, both the quantum-mechanical density
matrix and the probability distributions of the field
components can be determined. Therefore, two com-
pletely. equivalent descriptions of a random field can
be given —one in terms of a quantum mechanical
density matrix, and the other in terms of a set of
probability distributions for field components which
may be regarded as classical quantities. " The two
descriptions will give identical results for all quantities
provided that they both correspond to the same charac-
teristic functional. Of course, the correct probability
distributions cannot be determined classically, but once
they are determined, they can be used without any
further reference to the quantum-mechanical nature of
the Gelds.

II. DEFINITION OF THE CHARACTERISTIC
FUNCTIONAL

The electromagnetic field in a domain V devoid of
sources can be described in terms of a Hermitian vector
potential operator A(r, t). Within V, A satisfies the
wave equation

relations
E= -c-'cj)A,

B=VXA.
(2)

(3)

7 u„(r)=0. (4b)

If u„satisfies the same boundary condition as A,
then u, is an eigenfunction of the domain and co„, the
corresponding eigenvalue, is real. The index I~: labels
the various eigenfunctions and corresponding eigen-
values. When V is bounded the eigenvalues are discrete
and the index ~ may be restricted to discrete values.
Unbounded domains are covered by our treatment if we
interpret ~ as a continuous index, and understand that
summation over ~ means integration. Alternatively,
we shall consider V to be bounded and pass to the limit
of an unbounded domain in our final result. Since the
equations and boundary conditions for u„are real, it
follows that u„*, the complex conjugate of u„, is also an
eigenfunction corresponding to the same eigenvalue cv„.
We assume that the u„have been chosen to satisfy the
orthonormality conditions

u„*(r) u„.(r)dr=8„„..

By utilizing a complete set of u„(r) we can express A
in the form

A(r, t) =cg„(A/2~ )'t'

X La„u„(r)e '""'+a„tu„~(r)e'"")) (6).
The coefficient a„and its Hermitian adjoint a„t are
the annihilation and creation operators for photons of
the ~th mode of the field. We assume that they satisfy
the familiar commutation relations for independent
harmonic oscillators,

It is convenient to introduce the product solutions
of (1) of the form v„(x)=u„(r)e'"'. From (1) it follows
that u„(r) satisfies the reduced wave equation

(P+c—'~OP)u„(r) =0.

The functions u„must also satisfy the transversality
condition

(V'—c—'BP)A=O. (1a)

In addition, some appropriate subsidiary condition is
required to fix the gauge of A, such a,s

La„,a„)=)a„t,a„ t)=0,
$a)))a))'t) =~))))' ~

(&)

(8)

(1b)

the transversality condition. On the boundary of V,
we assume that A satisfies a real linear homogeneous
boundary condition which makes the Laplacian
operator Hermitian. From A the electric and magnetic
field operators E(r,t), and B(r,t) can be obtained via the

' R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 (1956);
Proc. Roy. Soc. {London) 4242, 300 {1957);A243, 291 {1957).

"See footnote 1.

From (6)—(8) the commutation relations of the com-
ponents of A at two space-time points can be found.

The statistical description of any quantum-mechani-
cal system, such as the electromagnetic Geld in V, is
expressible in terms of a density operator p. In terms
of p the expectation value (0) of any operator 0 is
given by

(0)= tr(po).

To find the expectation of A or of any function of A it is
convenient to introduce the characteristic functional
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FP.) defined by

rp]=(expl ~ x(x) A(~)dx
~

r l
l

(10)

into (18) we obtain

FP)=II exp —{c'(fi/2oo„)
~
X„~'(n.+-,')}

= exp{—P c'(t't/2oi. ) ~
X.

~

'(n.+-,')}. (19)
Here x= (r, t) is a four vector, 0. is an arbitrary real
vector function and the integration extends over the
domain j' in V and —~&t& ~.

Upon utilizing (6) for A the integral in (10) can be
written in the form

) t't ~'t'
X(x) A(x)dx=cg~

~
P.„a, +X„*a„ t). (11)

~ &2co.i

From the expansion of A(x) according to Eq. (6), we
notice that

(A;( )xA;(y))=P„c(h/2 to) {e,(x) s,'(y)(n„+1)
+,(y);*()(..»

By using (20) and the definition (12) of X„we have, in
dyadic notation,

The coefficient X„ in (11) is defined by 1
X(x)X(y): (A(x)A(y))dxdy

(12)X„= X(x) .n„(r)e '""'dx.

=2 ll~ I'c'I l(n+l&
t'5)
&2~„)

When (11)is used in (10) and the commutation relation
(7) is recalled, (10) can be written as

1
Ft A=exp —— X(x)X(y):(A(x)A(y))dxdy . (22)

2To proceed further we must specify the density operator.
For thermal equilibrium, the density operator takes

the form This is our general result for the characteristic func-

(14a) tional of an electromagnetic field described by a density
matrix of the form (15) with the p„satisfying (17). In
particular it applies to a field in thermal equilibrium
for which p is given by (14).

p=e ~~/tre —ea,

where the Hamiltonian H is given by

Ff=P ,'Ato. (a.a.'+a.'a.)—=g t'tco„(n.+-,') .
III. MOMENTS OF THE RADIATION FIELD

Upon making use of (21), we can rewrite equation

FP)= (II expgsc(I't /2to„)'t'(l, „a„+X„ea„t))) (13.)

with

p„=expL —/Italo„(n„+-', ))/tr expL —gttco„(n„+-',)). (16)

More generally, let us consider operators with matrix
elements of the form

(p.)-.-.=&-.-.(1—«.)«."', (17)

where s„ is a scalar function of a. It is clear that
La„,p„)=0 and La„t,p„)=0 for ttNa'. For density
operators with this property, (13) becomes

FP)=II(exp{ic(h/2(o„)'"(X„a„+X„*a„t)}).(18)

Here e„=a„ta„ is the number operator for the ~th mode
and /=1/kT, where t's is Boltzmann's constant and T
is absolute temperature. It follows from (14) that

p=II p. ,

Once the characteristic functional is known, the
calculation of all moments and distribution functions
is straightforward. The only difhculty arises from the
noncommutativity of the Geld operators at difterent
points in space-time. From the commutation relations
imposed on the operators a„and a„t, it is possible to
compute the commutator LA;(x),A, (y)). When the
field satisfies the transversality condition (1) it is found
that the commutator vanishes only for time-like pairs
of points x and y. (See, e.g., Heitler. ") The electric-
and magnetic-field components commute more gener-
ally, but still do not commute for pairs of points lying
on a light cone.

Nevertheless, we can deGne an eth-order moment as
follows:

I*" '~(xi, . x„)
1

(A;, (xi) A. (x„)). (23)
er ~&.& ~ ~ »)

The expectation value in (18) is just the characteristic
Bloch s The summation in (23) extends over the set P(xi x )

eorem. "grhen we insert this characteristic function of al1 Permutations of x~ ~ x„. For a set of Points

"F.Bloch, Z. Physik 74, 295 (1932).
r'W. Heitler, Qaantam Theory of Radiatt'ort (Clarendon Press,

Oxford, England, 1954), p. 405.
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(x;) such that LA (x,),A (x,)$=0 for all points in
the set, (27) reduces to the usual Nth-order moment
(A;„(x,) "A;„(x„)).

For an arbitrary set of points (x,), it follows from
the definition of FP.j that I„can be obtained by taking
the Nth-order functional derivative of FL)($. That is

~-FP,)I„'1 "~(x,, x.)=i-" (24)
w„,(*,)".sz;„(*.),(.&=-,

When FP.j is given by (22), we find by using (24)
that all moments for m& 2 can be expressed in terms of

I2'r ——-,'L(A;(x)A, (y))+(A, (y)A;(x))). (25)

Here e, ("& denotes the ith component of e("), and
(xi—x~)=(r, t). In the limit V-+ 0(), the sum g),
becomes (2s) 'J'dk, and (29) becomes

Im""(xi,x2) =-,'c'h(2s. ) dk P(e),),+-,')(2o&/, ) '

X (&iur r—ca&&)+& ie-rr air—r))& (&)&(1,) (30)

The two point correlation function of the electric-
and magnetic-6eld components can be obtained from
(30) by means of the defining relations (2) and (3).
If (n),i)=(e),), as is the case for thermal equilibrium,
we can make use of the relation

All odd moments vanish and the even moments (i.e.,I even) are found to be given by

I» "(x, . x)

P e, o')e, o') = l);,—k k k '
X=1,2

where k'=Q; kP. We then find

(31)

( ) V—1/2e(1)&i)r r (28)

The vectors e(i) (X=1, 2) are unit polarization vectors
orthogonal to k, and k is a vector such that V'/'k/21r
has non-negative integers as components. Here and
hereafter the index & is replaced by a double label
consisting of the vector k and the polarization index ) .
We shall write ~~ instead of or„since ~„=kc is in-
dependent of the polarization index ) and of the direc-
tion of k.

On the basis of (6), (23), and (28), we have

I2'r*r(xi x,) =c'(2V)—' p (e),),+-', )
//c, ) 2~I,

X (ciur r—caai)+& i(k r a&gr))&—(1)&—, (x) .(29)

Z II -'(A'. (*-)A'„(.)
partitions pairs

+A, (x,)A,„(x )). (26)

The summation in (26) extends over all partitions of
the integers 1, ~, e into pairs, and the product extends
over all pairs (n,y) in each partition.

Let us write the symmetrized product AB+BA as
(A,B).Then we have, in particular, from (26) and the
vanishing of odd moments,

Ii'(xi) = (A, (xi))=0,
Ig» "(xi,xp) =-', ({Ai,(xi),A;, (x2))),

Ig" ""(xi,x2,xa)=0,
I4» i2 ir ii(g1 g2 ga X4)

=-', ({A;,(xi),A;, (x2)) )((A,, (x3),A;, (xi)})
+-', ({A,, (xi),A;, (xa) })((A;, (x2),A;, (xi)})
+-', ((A;,(xi),A;, (x4)})((A;, (x2),A;, (x8)})

=I,'1'r(g, g,)I,'3'4(g, X4)+I 'r»(g, gg)I 'r'4(g, g,)
+I,'1 '4(x»x4)I2" "(x2,x3) . (27)

The basic quantity I2""(xi,x2) can be obtained from
(6). For a cubical domain of volume V with periodic
boundary conditions

((Z, (xi),E;(x2)})=
(21r)'

a)/, dk(l), +-,')

(e),)= (e"""1—1)-'. (35)

In this case the above formulas can be explicitly evalu-
ated. For i', we find from (32) that ({E;,Z;))=0.
For i=j and F.; the component of E parallel to r, we
shall call the moment defined by the left side of (32)
8»~g(r, t) Then (3.2) yields

h -.(r,t) =(P''(x ),&'(x )))
cA " coskct

kdk
gg/t(:X'2r2

p

Here a=Age, and

sinkr

kr
—coskr +D'(x). (36)

D'(x) —=

2x2r2
kdk coskct

sinkr

kr
—coskr (37)

is a singular contribution from the vacuum Quctua-
tions. Equation (36) can be rewritten as

cA tr rc))
4~~r3L ari fm'

L (r+ct) &+/L~ —(r——ct)
~

+D'(x). (38)
n i ku i

k,k, ~Xe'"' cos~it~ b, "~, (32)
k2i

({B(»)»J(xt)))=c'((~'(») ~t(»))) (33)
cfs

((E;(xi),B;(x2)))= o&/dk(N), +-,')
(2~)'

Xe'~' cos(0/, t (e;,1ki) . (34)

For thermal equilibrium it follows from (14) that
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Here I yves is the Langevin function

the corn onent of E perpendicular
the left side ofto r, let us call the moment defined by t e e

(32) h&,&(r,t). Then (32) yields

hi., (r,t) = ((E,(x,),E;(x2)})
Ac " coskct

dk

' x and D"(x), ourApart from sin ular terms
merical coe@cient,ormulas are the sam e to wit in a num

as those of S»
l be obtainecl for ((E (»)i

arfatt' and BOurett. 2

k'dk coskcti —coskr(fE,(xi)&B,(xp) })=

X$( - —1)- +-,'$. (43)

e see that if' = j, then((E, (xi),B;(x2)})=0.

tl o d t 11

case of interest is t a o

b' 1 d
~

f
a erfect y con

onsider erst a finite cu ica@=0. We will consi er
t walls at x=oerfectl con ucting wap

and x—V, an aand later let V ~ ~. e a
the field is periodic with p

to the conducting wal s. e
s ondin to the eigenvalue ~ =kceigenfunctions correspon ing o

are then

' —'"'")} ( )

—"~' n n e&'&) (e'k'+e' k"
+nX(ei'&Xn e' '—e

l to the conductingthe unit vector norma
—2 n k)n. The vector k is restricted

of the revious values or w ic
Since nX(e&"Xn)=ei"&—n e n,
written as

sink r 1 sinkr
X

kr k2r2 kr
Here

D"(x) =
4m' p

sinkr 1
t
siukr —coskrXcoskcf

kr
(41)

ular contribution arising romom the same
(40) be re itt u asvacuum fluctuations qs. E uation can

r8
a. (r&,)=~ 1+-—h....(r,~)

2ar
rd Ac f 8

2 ar 4~mr'k ar

X I. (r+ct) +I. -(r-—c&')
~

Q Q

ik~r xk ~r 45—'i' n n e "&)2e""'+e&'&(e'k'—e+D"(x). uk&, = (2V) '"(n(n e e' '

(42) From (6) and (27) we have

(46)

k
ik.r &ik'r &

—i~ytdk ~1——e'' e
(n k)&O 2&a

—(A+B) sinkr B siukr
2 'r' kr

Re(2~)—'I'"(xi)x2)=
2

kdk COSG)k( k+ )
2(2n.)' p

r ' where r is the magnitude of r.«« ~=D+(r*/r)'0 aud B=C1—3(r,yr) j, w ere

1

I y (1'2 e k, 8' =2Ig'~(xi, xg).~r2)e '"+~ ki, .(ri)+kk, (r2 ~A; xi,&; x2)})=Ac P LNk&. ..(ri I kx, ; r2 e(fA;(xi),&; x2 ——c

blackbody radiation,axis. Let us assume, as in ac onate s stem suc a axis.h that n lies along the x axis.y
ek~~ and then consider separately t e two po

First suppose i =j. en q.

e ~ ~k r+&~k'. r+(2g 1) (~ik.rz—~k"r2 &~ ~ — kayt—I,"(xi,x2) =c'k(2V) —,„e
(d I

n is erformed over all suc a(2 ) '1'dk where integration is per ormli it V —+ ~ thesum V becomes
d as a sum of two terms "and

In the mi
hatI2"(xix~) caubeconsi ere as

(48)

(n k)&O. From(47) weseet at 2" xi, ~

I,"=I'"(x„*,)+g"(*„*,.
its from the'u walls and Q" resu ts romnd in the absence of conducting wonds to what we have previously foun in e a

presence of the conducting wa s. ' is

2A
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To obtain an explicit expression for Q"(xi,x2) it is convenient to specify the orientation of r. I.et us first suppose
r is parallel to n. Then we find from (47)

Q(.~~.) "(» x2) = (2&'-—1)
2(27r)'

kdk cos(dkt(rid+ 2)

sink (r—2s)
X (A+8 sink(r —2s) 8

2 k (r—2s) k'(r —2s)' k (r—2s)
—cosk (r—2s), (50)

where s is the perpendicular distance between r~ and the wall. 3 and 8 are defined as above.
For r perpendicular to n, (47) yields:

(a) ('lln)

00

Q""(x,x ) = (22r) 'Ac kdk 1+k ' lD(k, r,s)(n2+-', ),
0 Bs2

( ) (2llr)

00 82
Q""{xi,x2) = (22r) 2kc kdk —1—k

—' D(k,r,s) {22),+-2, ),
0

(c) (2in J r)

"dk c)' 8' )Q"(x,,x,) = (22r)
—'etc — + lD(k, r,s) (22),+-2') .

k or' as')

(51)

Here s is a unit vector in the direction of the i axis. The
superscripts me, rr, and J J indicate that both the i
and j components of the field have been chosen in the
directions parallel to n and r in the first two cases, and
perpendicular to both n and r in the third. D(k, r,s) is
given by

D (k,r,s)—=coskct dt( coskrt), Jp(ks(1 —t(2)'") . (52)

Considering now the case i&j, we find that
I2'J(xi, x2) =0 unless i is parallel to n and j parallel to r.
In that case we 5,nd

I(ri~) (xl&x2)

8 8 kc 2k—(22'+-,2)D (k,r,s) . (53)
Br c)s (22r)2 p k'

It is interesting to note that in computing the charac-
teristic functional we have made no use of the specidc
nature of the electromagnetic field. In fact, the same
functional will describe any linear boson field whose
density matrix has the required form. The only modih-
cation which must be made is that the eigenfunctions
u„(r) defined by (4) must be replaced by the eigen-
functions of the equation which describes the field in
question. For example, let us consider the thermal
equilibrium of a scalar meson field p satisfying the
Klein-Gordon equation (V2—c 28P —2N2) q (r,t) =0.

The characteristic functional for this field is Lcf.,
(22)j

I'P.]=exp —— X(x)X(y)(q (x) y(y))dxdy, (54)
2

where X(x) is now an arbitrary real scalar function. As
in the case of the electromagnetic field, all moments can
be expressed in terms of the second-order moment, as in
(26). It is therefore useful to compute the second. -order
moment explicitly. For a cubical domain of volume V
with periodic boundary conditions, the Klein-Gordon
equation has the plane wave solutions e ' "'u2(r)
= V '~'e'"' —'"&'. By using them, and letting V become
infinite, we find the two point correlation function
I2——

—2,({pp(x),(p(y))) to be

kdk
I,(x,y) = i'tc (42rr) '(rt„+—-2')

(k'+2)22) '"
&&Lsin(kr+(p2t)+sin(kr —(p) t)j. (55)

When 2)2=0 and (222)= (e e"'"—1) ' we can evaluate
this integral and express the result in terms of Langevin
functions. If we ignore singular contributions on the
light cone due to vacuum fiuctuations, we obtain from
(55)

)2C /2r
I2(x,y) = Ll (r+ct) l+L (r ct) —. (56)——

16wnr ku i n
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IV. DISTRIBUTION FUNCTIONS

If $A; (x ),A;p(xp))=0 for all n, / =1, ~ . , n, then
it is possible to introduce the distribution functions
P„(A;,'(xi),A;, '(x2), ,A;„'(x„)).These are defined to
give the joint probability of the operators A;, (xi),~,A;„(x ) taking on the values A;, '(xi), ,A;„'(x ),
respectively. From them, all moments can be obtained
in the usual way. That is,

(f(A;,'(xi),A;,'(x ), ,A;„'(x„)))

P„(A,,'(xi), ,A;„'(x„))

transform of (26). We have

P„(A;,'(xi), ,A;„'(x„))
1 OQ

dg 1 ~ ~ ~

(2m)"

n

dz„expt' i—P X.A;.'(x.)]
a=1

Xexpt —-', Q X Xp(A, (x )A;p(xp))j. (62)
a, P=l

This integral can be evaluated, being simply the
Fourier transform of a multivariate Gaussian. The
answer can be written as

Here f is an arbitrary function of the components A; '.
Because of the commutativity of all the operators

in question, it is possible to choose a representation in
which all A;.(x ) are diagonal. In that case, the expec-
tation value of a product of operators A;, (xi) A;„(x )
obtained by taking the trace, as in (9), is the same as
the expectation value obtained from (23). The distri-
bution functions P„(A;,'(xi), ,A;„'(x )) can be ob-
tained from the characteristic functional FP,) as
follows. Let

(detG p)'"
n

Xe p{—:Z (G-')- A'. '( -)A' '( )}, (63)
a, P=l

where G is a matrix with components

G.p= (A;.(x )A;,(xp)),

and (G ')„p is the (u,O) element of the inverse matrix.
For n=1, 6 is a scalar

Xf(A;,'(x&),A,„'(x„))dA„'(xi) dA;„'(x„) . (57)
(2~)—n/2

n

Z(x) =P X.S(x—*.)n;. ,
a=1

where n;. is the unit vector corresponding to i . Then

G=(AP(x)).

For a uniform, isotropic system in equilibrium,

(A 2(x))=-',(A'(0)). (65)
PP j= (exp{i@,iA;, (x&)+ +l%. A;„(x„)j})

=—tr{p exp/i Q X A;.(x )7}.
Then 6 is independent of the choice of component i

(59) and space-time vector x, and (63)-(65) yield

P(A, '(x)J= (327r(A')) "' exp) ——,'A,"(x)/(A')] (66)
Using the formula for FP,f given by (22), we find

(exp{iP.,A;, (x,)+ +X„A;„(x„)]})
n

=exp{——,
' P li Xp(A; (x )A,p(xp))}. (60) and

a, P=l

(A;2(x)) (A;(x)A;(y))i

k(A;(x)A, (y)) (AP(y)) )
(67)

But (exp{i@.iA;, (xi)+ +X„A;„(x„)]})can also be
obtained from (23):

(exp{i@&Ai(xi)+ +X„A;„(x„)]})

G—1

(A '(x)A '(y)) —(A;(x)A (y))'

(A 2(x)) —(A, (x)A;(y)))
XI

k —(A;(x)A;(y)) (A 2(y))

dA;, '(x,) dA, „'(x„)

XP„(A~'(xi), ,A;„'(x„))expLi Q X A, '(x )j.
(61)

Again, for a uniform isotropic system in equilibrium 6
depends only on (i—j), and (x—y). That is

(69)
g(0) g(*-y)~' &

kg(x —y)S,; g(0) i
Therefore, the distribution function P„(A;„(xi),~ ~, where g(x) =(Ai(x)Ai(0)). The distribution function is
A;„'(x„)) can be obtained by taking the Fourier then

1 1 g(0)LA;2(x)+A 2(y)]—2B,~g(x —y)A, (x)A„. (y)
P2[A;(x),A;(y)]= exp

2~(g'(0) —~ g'(x —y))"' g'(o) —~' g'(*)
(70)
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It is possible to extend the definition of the distri-
bution functions P„[A,,'(xh), ,A;„'(x„)$ to include
those points where [A;.(x ),A,~(xs) j&0. This is done
simply by replacing the product (A, (x )A,~(x~)) by
the correspondhng symmetrized product —,'({A; (x ),
A,~(xp))) wherever it appears. Then Eq. (63) remains
unchanged provided that the matrix G p is appropriately
symmetrized. That is, G s=(-, {A,.(x ),A,~(xs))). It is
then possible to compute all the symrnetrized moments
from these distribution functions at all points in space-
time. Caution must be taken, however, in the interpreta-
tion of the distribution function at those points where
noncommutativity occurs. Since it does not make sense
to speak of joint probability distributions for non-
commuting operators, the usual interpretation of P'

must be abandoned at these points.
Nevertheless, since the above extension of the

definition of P permits the calculation of the sym-
metrized moments everywhere, the full set of functions
{P„)provides sufficient information to re-obtain the
characteristic functional. This is because the functional
Taylor expansion of F[Xj involves only symmetrized
moments. That is

the wider domain of commutativity of the electric- and
magnetic-field operators, the distribution functions of
these fields have a correspondingly wider range over
which they ca,n be physically interpreted.

V. OBTAINING THE DENSITY MATRIX FROM THE
CHARACTERISTIC FUNCTIONAL

~K +K OK OK

a. P.)=P. P.), (74)

In Sec. II we have derived the characteristic func-
tional for a system described by a density matrix
of the form (17). In this section, we will solve the
inverse problem for an arbitrary system. We will
show that, given the characteristic functional (F[Xj)
=(exp[ij'X(x) A(x)dx7), it is possible, by judicious
choice of 3 (x), to obtain the density matrix p.

It will be convenient for this purpose to use the basis
employed by Glauber. ' In particular, we will obtain the
matrix elements (nl pip), where In)=g„ln„) and lp)=g.

l p, ). The kets ln„) and lp„) are eigenstates of the
annihilation operators a„. That is,

Zn

FP,]=P—
n=O gt i1,

X„(x,) X;„(x„)
where n„and P„are complex numbers. It follows that
(n„l and (p„l are eigenstates of the creation operator

S-PP]
X

SX,,(x,) m„.(x„), ,
(n„a,t= (n„n„*,

(75)

00

n=O g, t i1, ,

X,,(*,) X;„(x„)

XI "' """'(xi,x.), (71)

1 8
y(x) =——P Z.S(x—x.)n...

c Bt~=~
(72)

while for the magnetic field we would take

where I„"' ' ""(xi, x„) are defined by Eq. (27).
Consequently, the full set of distribution functions
{P„),defined everywhere, provides a complete descrip-
tion of the system.

For comparison with experiment, it is convenient to
obtain the distribution functions of the electric- and
magnetic-Geld components. For the electric field, Eq.
(58) is replaced by

Glauber has shown that these states, although not
orthogonal, do provide a complete basis in terms of
which any state of the system can be expressed. We will
call this representation the "n" representation. In order
to simplify the calculations, we will consider a single
mode of oscillation. Tha, t is, we will show how to find
(n,

l pIP.). The results for a full set of modes are ob-
tained by straightforward generalization of the results
for a single mode.

The matrix elements of p in any other representation
can be obtained from the appropriate transformation
formula. In particular, the matrix elements p „„„
=—(m. lple. ), (where Im.) and In„) are eigenstates of
the photon-number operators a„ta„), are obtained as
follows:

1
p, =— d'n. d'P. (n.

I p
I
P.)""

~2

X(x)= —&X P li 5(x—x )n;. . (73)
m

Xexp[——:ln I'——:lP I'1 — (76)
gn. ! gm!

For any mixture of the two, the appropriate combination
of (72) and (73) would be employed. In the same way
as above it is found that the distribution functions of
the electric- and magnetic-field components are the
same multivariate Gaussian functions with the ap-
propriate replacement of A; by E; or H;, Because of

By J'd'n we understand the double integration

d (Ren) d (Imn);

that is, integration is over the entire complex plane.
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ationInt e « " represent
C

)'. ; g(,) A(*)dx
I

exp( i

g(x) A(x)d*=tr p exp
~

(.
~( ).A(x)dx lln .) (77)

where

)2+i(7172+71 7

I exp(27 *n'»

..Z (8~)ea ) exp(272ax)
I

Xexp(via»

„t „*..)I &
d,.(.„Ip e.p(v ' — *

Z(71,72 ==exp(2[(»)

ators under thet tionof the oPclic perm
trace, we have

)+ (72kx++» '
(78)

g( )
—2(7] x)xx+

bitrary comp
y„y are functions e

u."(r)
eXp(~2(0xt0)

2~i &0
—~~"

llm 0 '(2~x/")

(79)

d „t(„)=u.*(r)Here u, (&)=—"""
d7

p

p, n(p

f A(x)wit follows from t e
that

en *)])ZX".['(7"+""
ntrodu

2) (85)

b Gla

e„P-', (vln. *+ '

Hence

]
I

+.7,) exp[z(72n v,*n. )1d2n (n„l p nxI(vl, v2) =

(86)n 7,*)jZ(71»

by tak»g,b,aln (n.
l ~l~ &Letting 7~

the Fourier tra

, ~, *)z-'(v 7)j.17 n„+ 2nxvl[I(v„v) "p(

is lacemen«P erator'ust the isP
roperty

ut exp 'Y'+"
uber, ' w icD(71)~

'

Z„+(x) A(x)dx=a„,

2„-(x) A(x)dx=a„.

hoice of X(x) [Eq.E . (27)j, we then haveFrom our c oice

That is:

d'v (I(vl, v2)(8o) ( .I~IP.&=—

*—n.V1*)jZ '(Vl, V2))Xexp[—-', ( *—n.V1

(87)e —' *n.*+72n. . 8Xexp 2 72 nx

2*a„t) . (81)X = 1 ax)+2(72ax+72 axA x)dx= (via„t—71 a„z 0 (x) (

o erators suchf A and8areop . huse the fact that, 1

"c"number, thenthat (A,B7 is a "c num, n

72= $1+2$2

O'jr x( .I~IN.&=~-' exp[——.

1 2) = s nx gl+ 2g2) and„=hl+ih2, 71=p„n. — —
b tten asE . (87) can e

' nas

A B —1/2 [A, B]eA+B eAeBe— (82)
—i (h1~1 ~282)ds~ds2e '

tion

xxp x A(x) A(x)dx ~)I(71,72)= exp 2 x .&(
a„t— * exp(i72a„)= tr[p exp(via„t—

(88)*a )jZ(71,72,)&exp zy2 a„

ex iJX( )xA(x)d'x)) (now a func-we can write (exp i x
d as follows:of py and p2 as sl is2) . (88)—-'s ' 2s2')I (gl+g2, sl+is2 . —Xexp( —2$1 2$2

have an explicitwe now have(v,v )
the density ma

Ilg j for the
To actua ycharacteristic func

it is of course n(.I~l& &

in question.
described by a

system in
In particular, or
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teristic functional of the form

FP.]= expl —— X(x)X(y): (A(x)A(y)) I,
f 1

2

Equation (86) becomes

(89) ~({vi,».))=II ~ ' d'~. (~.
l
pl~.+vi.)

we can show that the most general equilibrium density
matrix is

XexpLip (v2 (~„+v2 *n„*)]

pmn ~mn(1 &)s (90) Xexp{-', p L (v2 ) +i(vl v2 +vl v2 )

This corresponds to black-body radiation if we take
s=exp( —PPuo). In order to show this, we substitute
X(x) as defined by (78) into (89), and find

~(»») =exp( —(~+2i) I»+i»*l')
= expL —(~.+l){»'+»'+g '+g2'

+2(gmsi+gisp))). (91)

Inserting this into (88) and performing the integration
indicated, we find, after some algebraic manipulation,

+( *- . .*))) (»)
Then, taking vi„——P„—n„, we obtain

1
( I IP)—= ({ .) I l{0.))=II- ~' .&({v.,v.))

x expl —ip (v2.*n„*+ vs,n.)]
x exp{—k 2 L(vi.~.*—~.».*)+

I vm. I'

+~(vi.v2.+vi.*v~.*))) (96)(~.lpl& )=(N +» 'exp(~ *& (~ )/(1+(~.)))
XexPI: 2l~ I' kl& I') (92) For EP,) given by (89), we find

Using (76) to obtain p„„„wefind

p„, „=8„„„(1—s)s"", (93)

where s= (e„)/(1+(e„)).
The procedure outlined above can be immediately

generalized to obtain the matrix elements of p corre-
sponding to all modes of oscillation. It is simply
necessary to consider an infinite set of complex numbers
{vi.,v2„) in place of the numbers vi and vm. Then (78)
is replaced by

f({vl v2)) exp( 2 Z(~+2)lvR. +ivl I')

=g J(vis&v2g) (97)

X(x)=P (i(vi„*X„+ vi„X,—)+(v2-„X„++v2„*2„-)).(94)

and
(98)

Consequently, the full density matrix, in the occupation
number representation, is given by

({~) !pl{~))=II~..-.(1+(~.)) '

XP( .)/(1+( .)))" . (99)


