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Moving branch points in the jplane are investigated on the basis of analysis of multiparticle terms of the
unitarity condition in the t channel. A definite assumption about the form of an analytic continuation of
these terms into complex jis used. It is shown that in this case in the jplane there arise branch points of the
partial amplitude f, (t) corresponding to the production thresholds of two or more Regge poles with relative
orbital momentum equal to —1.In the case of two zero-spin particles in the intermediate state, the partial
wave has a singularity at negative integral values of the orbital momentum. Azimov has found that such
singularities shift to the right if the particles in the intermediate state have nonzero spin. The branch points
in the j plane result from the extension of this shift throughout the Regge trajectory. This mechanism of
emergence of branch points has been indicated by Mandelstam for the case of Feynman diagrams of a cer-
tain class. The presence of these branch points at j=j„(t)where j „(t)=no. (t/n') —n+1 changes essentiaHy
the analytic properties of f, (t) in the t plane, leading to the emergence in the t plane of branch points at
t=t„(j),where t~(j) is the solution of the equation j=j„(t).The discontinuity 3&&"&f,(t) of the amplitude
f, (t) on the singularity / =t (j) corresponding to the n-Regge-pole production threshold (Regge-pole uni-
tarity conditions) is calculated. It is shown that this discontinuity has a form similar to the conventional
unitarity condition. 3&&"&fj(t) = (1f2/)[f, (t+ie) f, (t ie)—] bein—g given by the product of the amplitudes

of production of n Regge poles determined above and under a cut made in the t plane from the point
t = t (j).The discontinuity b&&"& f; (t) of the amplitude ft(t) across the cut connected with the branch point
t = t„(j) is calculated at t ~ t„(j).The discontinuity is shown to have the form S&&"&f (t) =nB [t—t (j)]" '.
This means that the singularity of f, (t) has a logarithmic character, i.e., near it we have f;(t)=A
+B„[j—j„(t)]"'ln[j —j (t)], where A and B„have no singularities at j j,(t) =The res.ults obtained will
be used elsewhere for analysis of the asymptotic behavior of the diffraction scattering amplitude in the region
of not-large values of the momentum transfer.

I. INTRODUCTION

S EVERAL years ago it was found that the asymptotic
behavior of the elastic scattering amplitude A(s, t)

as s~~ can be determined by singularities' ' of
partial-wave amplitudes f,(t) as a function of angular
momentum j.Analysis of the asymptotic behavior was
based on the hypothesis about a vacuum pole whose
trajectory j=&r(t) passes at /=0 through the point j= i.
The assumption about the presence of moving poles in
f;(t) and in particular of a vacuum pole was natural
since at integral physical j, the amplitude f, (/) has
resonance poles on the unphysical sheets of the t plane,
whose location depends on j.It is these resonance states
that give rise to the poles of f, (t) in the j plane.

Until recently there were no reasons in evidence for
the emergence in the j plane of any moving singularities
except poles. Recently, however, Mandelstam gave his
arguments in favor of a possible emergence in relativis-

r T. Regge, Nuovo Cimento 14, 951 (1959);18, 947 (1960).
s V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 1962 (1961)

[English transl. : Soviet Phys. —JETP 14, 1395 (1962)].
e M. Froissart, 1961 (unpublished).
4V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 667 (1961)

[English transl. : Soviet Phys. —JETP 14, 478 (1962)].' G. F. Chew and S. Frautschi, Phys. Rev. Letters 7, 394 (1961).
S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.

Rev. 126, 2204 (1962).
7 S. Mandelstam, Nuovo Cimento 30, 1113, 1127, 1148 (1963);

also J. C. Polkinghorn (to be published).
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tic theory of moving branch points resulting from singu-
larities at integral negative j' and their shift' for non-
zero spin particles. These singularities correspond to the
thresholds of production of several resonance states
(Regge poles) with integral negative orbital momenta
J= —1, —2, . They can be regarded as continuation
to complex j of the branch points which are located at
integral physical j on the unphysical sheets of the t

plane and which correspond to the thresholds of several
resonances' with physical values of j.

The presence of moving branch points considered by
Mandelstam cannot be regarded as rigorously proved.
However, the arguments in favor of this point~ are so
serious that it seems necessary to us to investigate in
detail these branch points and their effect on the asymp-
totic behavior of the amplitude.

This paper is the erst part of this investigation. The
branch points were obtained by Mandelstam from an
asymptotic analysis of a class of perturbation diagrams.
From Ref. '7 it is clear that these branch points are con-
nected with multiparticle intermediate states. Therefore,
the investigation of these singularities requires analysis

8 V. N. Gribov and I. Ya. Pomeranchuk, Zh. Eksperim. i Teor.
Fiz. 43, 1556 (1962) [English transl. : Soviet Phys. —JETP 16,
1098 (1962)];Phys. Rev. Letters 2& 232 (1962).

e Va. Azimov, Zh. Eksperim. i Teor. Fiz. 43, 2321 (1962)
[Engnsh transl. : Soviet Phys. —JETP 16, 1640 (1963)].

'e G. F. Chew (private communication).

184



MOVI NG 8 RAN CH POINTS I N j PLANE

where f; (t) is the helical partial-wave amplitude of the
production of the two particles and p=p(t, M', p,') is
their relative momentum. As was noted by Azimov' this
expression has a pole at m= j+1 and in particular at
j=o —1 (due to a pole of the I'-function). Near the pole
j=a—1 the expression has the form

1 2p(t, M', ti') f;.(t)f;.*(t)

j+1—o.I (2o.)

On the other hand, the contribution from Mandelstam's
branch point to the unitarity condition for Irnf, (t) has

(as is clear from his paperr) this form:

»' 2p(t, ti,ti') C(t, ti) dt t
(1)

t'ts j+1—rr(t&)

where p(t, tt,pP) is the intermediate state relative mo-

mentum of a particle and a pair of particles having a
Regge pole at l=n(tt) and C(t,ti) is a certain function
of t and t i Lhaving at p ~ 0 the form const/(p'(t, tt,pP)/t),
see below, Eq. (45)j.

Comparing the last two expressions we can see that
the branch-point results from integration over the mass
/~=M' of the particle pair state with a variable spin
i=a=a(tt). This circumstance can be interpreted as
the fact that the Azimov singularity extends all along
the Regge trajectory.

From the above comparison it is clear what is essen-

tial for investigating branch points in the multiparticle
unitarity terms: We must know those of these terms
which contain three-particle production amplitudes at
m close to j+1 and an orbital momentum of the pair
equal to m and close to its pole value t=m=n(tt). The
situation is similar when more than three particles are
produced.

Accordingly, a method of analytic continuation of the
unitarity conditions to complex j, corresponding to
form (1) of the result is proposed in this paper and used
for investigating the singularities in the j plane. We do
not contend that this method is accurate in the general

of multiparticle unitarity conditions analytically con-
tinued into complex j.

This analytic continuation involves considerable dif-
hculties and the problem has not yet been solved. An
assumption is used in this paper about the form of this
continuation near those values of j which are singular
for the amplitude f;(t).

To understand the structure of this continuation, let
us consider the terms of the unitarity condition Lfor

Imf, (t)] corresponding to the production in the inter-
mediate state of two particles one of which has nonzero

spin o (and mass M). These terms can be written as

2p(t, M', ti') I'(j+1—m)
f -(t)f -*(t),

I'(j+1+m)

Fxo. 1. Threshold
singularities and corre-
sponding cuts of the
amplitude f, (t) in t
plane.

t ' Iifane

4p' ep' /6p

case. However, it reQects correctly the mechanism of
generation of Mandelstam's branch points of the ampli-
tude f,(t) and therefore seems to reproduce accurately
the part of f,(t) singular in the j plane.

The location of the branch points and their character
can be found with the aid of the analytic continuation
method proposed. For simplicity let us consider only
those branch points which result from a vacuum pole.
A straightforward analysis made below shows that at
t~&16' in the j plane there are many singularities and
the location of some of them depends on the masses p
of particles. However, at 1&16@,' on the physical sheet
of the j plane there remain only singularities j=j„(t),
where

j (t) = isn(t/I') —I+1 (2)

)or displaced with respect to j„(t) by an even number]
whose location depends only on the n(t)-pole trajectory.
These singularities have been noticed by Amati,
Fubini, and Stanghellini" (see also Ref. 12).

The moving branch points in the j plane lead to the
partial-wave amplitude f,(t) at a fixed j as a function of
t having on the physical sheet, apart from the normal
threshold singularities, the branch points t = t„(j) whose
location depends on j.Each of them is the threshold of
production of a certain number e of Regge poles. The
unitarity conditions determining the discontinuities of

f,(t) across these singularities are found in the paper.
These Regge-pole unitarity terms are analogs of the
conventional ones in the sense that they are given by
the integrals of the product of the production amplitudes
of several Regge poles above the cut by the value of the
same amplitude under the cut (associated with the
corresponding singularity).

~' D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29
(1962).

»I. A. Verdiyev, 0. V. Kancheli, S. G. Matinyan, A. M.
Popova, and K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz.
46, 1700 (1964) )English transl. : Soviet Phys. —JETP 19, 1148
(1964)j.

II. MULTIPARTICLE UNITARITY TERMS

To obtain the Regge singularities of partial-wave
amplitudes we have to make an analysis of the multi-
particle terms of the unitarity condition. Let us con-
sider the partial-wave four-point amplitude divided by
l'ts'&'=$(t/4) tr'$& so that —it would, if continued into
complex j, be real below the threshold t=4p'. Let us
denote it by f;(t).

The threshold singularities of the amplitude f;(t)
at t=t„=(esp)' where v=2, 3, 4, are indicated in
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Fig. 1. Let f,&"'(t) denote the value of this amplitude
after enclosure in the plane of Fig. 1 of the singularity
t„and A„f;(t)= (1/2i) Pf, (t) —f, &"&(t)7, its discontinuity
across the corresponding cut. Unitarity gives this dis-
continuity in the form

where"

P(&; &r, &s) =-'.&-"'«'—21(li+ls)+(lt —ls)'7'&' (5)

is the relative momentum of the centers of inertial of
both pairs of particles, ki ——p(ti, p', y') and ks p(t——s,li', IJ,')
are the momenta of particles in the first and second
pairs~ and

I'(g+1 mi ms)
C;()~4)=C;(limr, lsms) =

Xfj,i, t"l(l, &n )pj, xa(&,r„)dr+, (3) I'(j+1+mi+ms)

where f, ,i,„(t,r +) is the amplitude of the transition of
two particles into n particles, X„are the angular mo-
menta, r are the energies characterizing (besides j
and t) the state of e particles, and p;, i,„(l,r ) is the statis-
tical weight of this state. By f;,q„&"&(t,r„) we denote
the value f;,i,„(l,r„) after enclosure in the t plane of the
singularity at l=(np)' and change of the sign of the
in6nitesimal imaginary additions to the energies v .

The state of a system of n particles can be determined
by dividing the particles arbitrarily into groups and
determining the energies, angular momenta, and helici-
ties of these groups. ""

For example, the state of four particles can be deter-
mined by dividing them arbitrarily into two pairs and
determining the quantities: (1) li, mi, and tt, the orbital
angular momentum, its projection, and total energy
squared t& of the 6rst pair in its c.m. system —the pro-
jection mi (usually called helicity) can be conveniently
determined on the direction of the total momentum of
both particles of this pair (in the over-all c.m. system);
(2) ls, ms, and ts which are the same quantities for the
second pair —here nz2 is the projection on the direction
of the same momentum and the helicity in this case is
not ms but —ms', (3) j and 1 are the total angular
momentum and total energy squared of all the four
particles.

Therefore, when v=4, )~ in Eq. (3) denotes the set
of numbers l~, m~, l2, m2, and r that of energies t~ and
t2, 1.e.,

f;,i„(t,r4) = f;,.t, ,~, i, ,~,(t; ti, ts)

(2li+1)I'(ii+1—m ) (2l +1)I'(l +1—m )
X (6)

I'(l t+ 1+mi) I'(is+1+ms)

ff»i(li lrils) = ~ (&)"4ksi &s)

XPi,~,(ni) Pi,„,(ns) P;,„,+,(ns) dntdnsdns,

where ns ——yo/pe, n, =k,/k„a=1, 2. These inte-
grals contain associated Legendre polynomials P& (e)
=Pi~(z)e' 4' instead of the normalized spherical func-
tions F& (n) differing from them by the factor
L(2l+1)1'(1+1—m)/I'(1+1+m)7'i . If the amplitudes
f;,i„were determined through spherical functions, they
would, if continued into complex j, li, and ls (which
would be used below), have purely kinematic root, singu-
larities in these variables due to the poles of the F
functions.

From the form (4) of p; i, it can also be noticed that
the factors k '~=)(l /4) p'7'I where —a=1, 2 have
been isolated from the amplitudes.

The sum over )4 and the integral fdr4 in Eq. (3) at
n=4 denote

This form of the statistical weight p, q4 and, in particular,
the factor C, (k4) results from the choice of normaliza-
tion" of the amplitudes f, ,i„viz., the quantities f;,i,
are connected with the production amplitude of three
particles A with given momenta via the integrals of the
form"'8:

Let us consider in detail the state with I=4 and the
corresponding term of the unitarity condition. For r1,=4

&4
the quantity p;, &4 has the form

1
p;,i,(&,r4) =—C,(li,mi, lp, ms)

4f
2p(l) lt, ts) 2kr'ii+' 2k,"s+'

X
t1/2

(4)
21/2

's M. I. Shirokov, Zh. Eksperim. i Teor. Fiz. 39, 633 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 445 (1961)7.

'4tA. J. Maciarlane, Rev. ModÃPhys. 34, 41 (1962).
's G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).
'6 K. A. Ter-Martirosyan (unpublished).
'~ K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 44, 341

(1963) LEnglish transL: Soviet Phys. —JETP 17, 233 (1963)7.' A. M. Popova and K. A. Ter-Martirosyan, Nucl. Phys. 56,
107 (1964).

:(tl/2 2&)2 (tl/2= t21l 2)2

0 77sg lI $2=0 m2=l2

The amplitude f;,&„(t; ti, ts) satisfies unitarity not
only in the t but in the t& and the t2 channels; the latter
channels correspond to the interaction of the produced
pairs of particles with angular momenta l~ or l2. In the

'9 In the following we consider the intermediate states with
generation of identical pions with neglect of isotopic variables.
Hence the introduction of the factor j./4 I in Kq. (4).The problems
involved in the identity of particles and symmetry in their
permutations are discussed below in detail.
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t1 channel the (two-particle) unitarity condition has the
fol m FIG. 2. The contour of

integration over t2 in the
four-particle unitarity-
condition term.

ts f.f-illls

P 24+1

fj,14(t; tg&' ,t2)fg, (tg), (8)
] I/2

where f, ,&„(t; t1&'&,t2) is the amplitude fj, 1(4t; tg, t2) after
enclosure in the t1 plane of the singularity at t1=4p, 2

and fg, (t1) the partial-wave scattering amplitude of the
two particles produced. It satisfies the unitarity condi-
tion of the form

y 2P 2~1+1

fgg(tr) = Lfgg(t, ) fgg& &(t,)j= fg, & &(t,)f„(t,)
2i

which can be written as

1 $ 2P 2&1+1—
t Dg, (tg) —Dg &'&(ts)j=-

2i 2
(9)

if this notation is introduced,

f.(t ) = —1/Dg (t1) ~ (10)

The factor -', in Eq. (9) arises because of the identity of
the particles.

Taking into account Eq. (8) and the same unitarity
condition in the ts channel we notice that f;&„can b, e
written as

f;,&„=G;,&„(t; tg, ts)/Dg, (t1)DI,(ts), (11)

where G;,q4 has no singularities at t1=4p2 and t2=4p, 2.

Quite similarly we have

fj,14&'&(t) t1—,t,—)=G , j14(&4t&; tgits)/Dg, &'&(t1)Dg, &'&(t,) . (12)

Substituting Eqs. (11), (12), and (4) into integral (3),
(7) and noticing that by virtue of Eq. (9) we have

2P 2l1+1 2P 2l2+1

Dg, (tt)Dgs(t2) Dg, &'&(t1)Dgs& &(ts)

22
&g 1 1 t' 1 1

(2i)'&Dg, (tg) Dg &"(t1) (Dgs(ts) Dg &'&(ts)

22 1
64fj(t) = PCj()4)—

4! 14 (2i)' es
dt2 dt1

Gi, 14(t; tg)t2)Gj, 14 (t& tgits) 2p(t; tg)ts)X-
Dg, (t1)Dg, (ts) ]1/2

(14)

we can write the right-hand side of Eq. (3) at n=4 in a
form similar to that used by Mandelstam~:

(12a)

G;,q, and 6;,q„having no singularities at f,=4/J, ', where
a= j., 2, 3 or a=1, 2, 3, 4.

Using the same normalization of these amplitudes as
in the case n=4 we obtain for p;,~, the value

pi, 14
——(1/6.)Cj(its,mts, lsms) Cg»(lt, mg', lsm2)

2p(t)tgs, ts) 2p(t12, tg, ts) 2k12
"+' 2kssgs+I 2k "3+'

$1/2)1 /2 f11/2)1 /2)1 /2

20 As Ya. Azimov pointed out to these authors, the integrand
function in a separate term of the sum over X4 in Eq. (14) cannot
be represented as a single analytic function throughout the region
of variation of t1 and t2. However, this is not essential in our case
since sum (14) will be understood in the sense that first the
summation over all the values of the angular momenta (over
) 4

——l1,m1, l2,m2) is performed whereupon the function obtained
which is now analytic in t1 and t2 is integrated over the complex
contours Ci and C2.

where C2 and C1 are the contours indicated" in Figs. 2
and 3.o

Let us clarify the general principle of introduction of
quantum numbers and form (3) of unitarity using as
examples the cases where Tg= 6 and Tg= 8 (odd numbers
except 23=3 are of no interest to us in the following).
The state of six particles can be determined by assign-
ing, apart from j and t, the angular momenta and ener-
gies of some four-particle and two-particle group. Let
them denote 312, m12, f12, and l3, m3, t3. To determine the
state of four particles it is necessary to divide them as
was done above (for 13=4) into pairs and determine the
quantum numbers 11, mq, t1 and l2, m2, t~ of each pair.
Hence, in the case n=6 we have )&.6 ——(tg,mg, ls, m2', '

lgsqm12l lssmsj and T6= (tlqt2)t12)ts)
The state of eight particles can be determined by

dividing them into two four-particle groups and de-
termining, apart from j and 3, the quantum numbers
312, m12, t12, and l34, m34, t34 of both groups. Besides, we
must assign the quantum numbers /„m„t where
a=1, 2, 3, 4 of those pairs out of which the first and
second four-particle groups are made.

Another method of- describing the state of eight par-
ticles can be obtained by dividing them into groups of
six and two particles and determining j,t and the quan-
tum numbers l123, m123, 3123 of the six-particle group and
/4, m4, t4 of the two-particle group. Besides, to describe
the state of six particles (in their c.m. system) one has
also to introduce the same quantum numbers as in the
case m=6, i.e., X6 and T6.

The amplitudes f, ,&„and fg, &,s can be written similarly
to (11)

Gi's(ts t12qt, 1qt2)t3) Gj,xs

fi &4= i fi &s=
Dg, (tg)DI, (ts)Dg, (ts)
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g, pe/)sie

FIG. 3. The con-
tour of integration
over ti in the four-
particle unitarity-
condition term.

Therefore, for ))= 6 the unitarity condition (3) is

23

tsfs(t) =P C—;C/„
)// 6! (2i)'

dt, dt~2

over ts to ts= (ti/' —4/M)',

over ts to te= (t'"—ts'/' —2/s)'

over ti to ti= (t'/' —t '/' —te'/')'
(17b)

In the general case of an arbitrary even number of
particles, the unitarity condition (3) can be written
quite similarly to Eqs. (14) and (16):

2" 1
a,„f,(t) =P C,'() .)i. (2u)! (2i)"

E;,„'(r.) „d7., (18)

II D.(t.)

where E;,„' is the product of e—1 factors of the form

2p(t. i„ t ,ti,)//t. i, '/',

one factors for each combination of two groups of par-
ticles with energies t, and t& into a group with energy

t, /, Similarly, C).
' is the product of n 1 factors—(6), one

factor for each such combination. The integration
J~„ds.„over all the variables t„ t/„ t~), , etc. , is performed
over a region corresponding to energy conservation, of

type (17a,b), and the integrals over t, (over particle pair
energies) are taken not over lengths of the real axis but
over contours similar to Figs. 2 and 3 around these
lengths and the points t,=4@'.

III. DIFFICULTIES OF ANALYTIC CONTINUATION
INTO THE j PLANE

The unitarity condition (14), (16), or (18) has been
written for integral j. Its continuation into complex j

Gs', &6G)',) 5 2P(ti t»Its) 2P(t»i t4t2)

D/g(tl)D/s(t2)D/s(ts) t t12

where
X6 l12my2 lymj l2m2 l3m3 ~

The integration over t» in Eq. (16) is performed within

(t 1/2+t 1/2)2(t ((ti/2 t I/2)2 (17a)

and over t~, t2, t3 over contours similar to C~ and C2

(Figs. 2 and 3) around the point t,=4/s' to these points
(located as in Figs. 2 and 3 on both sides of the cut):

a)

FIG 4 Examples of
diagrams of production
of two particles with
nonzero spin (li and l2)
having (a) p(s, N) NO and
(b) p(s,u)=0, p(s, t)&0.

"The authors are indebted to Ya. I. Azimov, G. S. Danilov,
and I. T. Dyatlov who have directed their attention to this
circumstance.

~ This would contradict that well-known fact that the partial-
wave amplitude has no singularities in the right-hand part of
the j plane.

is an intricate problem the solution of which requires a
knowledge of the analytic properties of the inelastic
amplitudes f, , i,„

For the sake of definiteness let us consider the
four-particle term (14) of the unitarity condition.
Even when the analytic properties of the amplitudes

fs, i„=f/, )., .. i, , are such that their analytic continua-
tion into the j plane is unambiguous for integral /y, mj,
and l2, m2 the following difficulty is encountered. "
Since the quantity ~mi+m2~ in the sum (14)—(16)
varies from 0 to ~ running through all integers, the
function F(j+1—(m&+m&)) which enters as a factor
into the coefficient C, (X4), Eq. (6), in the right-hand side
of Eq. (14) has poles a,t all integral positive j. These
poles would not be in evidence if the amplitudes f;,/„
(or G;,&„) had direct physical meaning for all integral j
since in this case G;,),4 would have to be zero for all in-
tegral j for which ~m&+mz~ ~&j+1.

However, the analytic continuation in the j plane
Lof the amplitudes f,(t) and. f , /„ilaikeg requires in any
case the introduction of signature. In other words, the
ana, lytic continuation of f, &, ,„„),~, has the meaning of
a physical amplitude only for even or only for odd j.
Therefore, for integral j of "wrong" signature (odd for
positive signature and even for negative signature), the
function f, ),~„), , need not vanish.

A more detailed analysis of some perturbation dia-
grams shows that the partial-wave amplitude f),),, cor-
responding to these diagrams at the "wrong" signature
points does not indeed vanish. For example, it is not
zero for the case of those Feynman diagrams which,
considered as the amplitudes of production of two par-
ticles with spins li, l2 (with masses ti'/' and t2'/'), have a
nonzero spectral function p(s, u). One of these diagrams
is indicated in Fig. 4(a). t On the other hand, in the case
of the diagrams of Fig. 4(b) for which only the spectral
function p(s, t) is nonzero, the amplitude f/. ), , ),„,
vanishes not only at all integer jfor which j+1~& mi+mm
but also" if j and m =mi+m2 are not integers but the
difference (mi+m2) —(j+1) is an integer. )

Thus, in the form (14) Lwith sum (7) over mi and mm

extended from —~ to +~ ) the unitarity condition
cannot be continued into complex j since the right-hand
side of Eq. (14) would have an infinite number of poles
at all integral positive j=e of "wrong" signature. '
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To obviate this diKculty let us determine the analytic
continuation into complex j of the right-hand side of
Eq. (14) not as a sum over integral It, m&, Is, ms, as in

Eq. (7), but as contour integrals over these variables.

Iv: ANALYTIC CONTINUATION OF THREE—PARTICLE
UNITARITY CONDITION

I'xo. 6. The contour
of integration over m
in (21), (19).

t OL, L g(f )

W ~ 4 e 0 .4

la- )Case

e + (.

1 G;., i (/, 4)G;,. i "'(t,ti)

2s c, Di(4)

2p(t; 4,p')
X

]1/2

I'(j—m+1) (23+1)I'(l—m+1)
C,P,m; 0,0) =

I'(j+m+1) I'(I+m+1)

(19)

the contour C& being exactly the same as in Fig. 3, but
ending at the point 4= (3'i' —ii)'. Equation (19) takes
into account the fact that the product C;G;.~mG;, ~~&'&

does not change" if m is replaced by —m, i.e.,
the sum Pi p" g i' can be written in the form
2 Q —p Pi—"where the prime means that the term
with m, =0 contains a factor of 2. For the three-particle
production amplitude f, , q,

——f;, i (f,4) (Fig. 7) in Eq.
(19) a value analogous to Eq. (11)

f;,. i (&,4) =G;,i„(&,4)/Di(4) (20)

was substituted and Eq. (9) was used for D&(4).
To continue analytically the right-hand side of Eq.

(19) to complex j we can write the sum over I, tis as
contour integrals

00 00 dm
2=22 Z~— (21)
im m=p i=m (2i)' sr tandem r, tan~(l —m)

dl

The contours I. and M are indicated in Figs. 5 and 6;
the contour I. encloses the point l=m, m+1, , and

FIG. 5. The contour
of integration over t in
(21), (19), (14).

+(&~)-z,

„d(ti) m+s

L

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

To avoid cumbersome operations let us 6rst describe
the transition to the contour integrals over l and ns as
exemplified by the unitarity condition term correspond-
ing to the production of three spinless particles in the
intermediate state. We assume that two of these par-
ticles are produced in a state with angular momentum
l and helicity m. The corresponding term in the uni-

tarity condition for f,(t) has a form ana, logous to
Eq. (14):

00 00

Asf,(t) = 2 Q ' Q —C, (l,m; 0,0)
m=o )=m 3!

the contour M encloses not only the poles of 1/tandem

)at m =0, 1, 2, ; the term with m =0 is reproduced by
the right-hand side of Eq. (21) without the factor ts,

yet it is not essential for the following), but also the
poles of the function I'(j—m+1) /1(j+nz+I) entering
into C, (l,m; 0,0). The latter condition is necessary for
integral (21) to have no singularities at arbitrarily
large positive integral j for which the poles of the func-
tion I'(j+1—tm) indicated by circles in Fig. 6 (at the
points m= j+1+p, v=0, 1, 2, ) coincide with the
poles of 1/tandem.

The continuation of Eq. (19) directly as the sum over
integral f,, m corresponds to the form of Eq. (21) with
such a contour M' which would not enclose the poles
I'(j+1—m) (see Fig. 6). In this case integral (21) has
the singularities indicated above: poles at integral j
since as j~ e the singularities I'(j+1—tis) and I/tandem
will pinch the contour M'.

It is worth noting that since the contour of integra-
tion M over m in Eq. (21) encloses the poles I'(j+1—tis)
the expression of the unitarity condition (19) in the
form (21) is ambiguous. Indeed, if 1/tandem in Eq. (21)
is replaced by (1/tarn. m)+y(j, l,m) where x is any
function of j, l, m without singularities inside the con-
tours I. and 3II in Figs. 5 and 6, then integral (21) will
change'4 due to the contribution of the poles of the func-
tion 1/tansy. The function x(j,l,m) must actually be
taken into account in the right-hand side of Eq. (21), its
form being given unambiguously by the limiting condi-
tion for integral (21) to be smaller than exp(i7r j/2) at
Im j—+ &~. To obtain an explicit form of g(j,l,m) we
must know the analytical properties of the functions in
the right-hand side of Eq. (19) in the planes of the vari-
ables j, l, and m. However, we shall only be interested
in the singular part of integral (21) as a function of j.
Therefore the possibility (or necessity) of adding

x(j,l,nz) to 1/tans. m is ignored in the following under
the assumption that the factor L1+y(j,l,nz) tans-m)'is
is included in Eq. (19) in the definition of the func-
tions G;,.E .

Let us show how the singularity which has been dis-
covered by Mandelstam" follows from Eqs. (19) and
(21). Let us assume that when /=n(4) the function
Di(4) vanishes, i.e.,

Di(~i) = —I:1/g'(4))(I —~(4)) (22)

when I —+ n(1t). This corresponds to the Regge pole of
the Gve-point amplitude of Fig. 7 in the channel tj

s4 Addition of an analogous term to 1/tans (l—m) in Eq. (21)
does not change integral (19), (21).
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Fio. 7. l'he five-point amplitude.

duction of three particles is regarded as occurring
through a virtual Regge state, it is natural to confront
this process with the diagram of Fig. 9 and the quantity

(Fig. 9) and corresponds to the conventional form of the
elastic scattering amplitude (10)

g(t ),
l n—(tt)

(25)

f(t)=g'(t)/Il-. (t)1, l (t),
i.e., the contribution from the Regge pole, I ig. 8.

It is clear from Fig. 5 that integral (21) over l has
poles in m at the points m=n(tt), n(tt) —1, n(tt) —2,
(indicated by crosses in Fig. 6) because of coincidence
in Eqs. (19) and (21) of the zeros of tans. (l—m) with
those of Dt(tt). These poles must be taken into account
in subsequent integration over m. In particular, the
poles of the function F(j+1—m) may coincide with
these poles, as j is varied in the complex plane. As a re-
sult the double integral (21) over l and m will have poles
in the j plane at the points j=n(tt) —1—k, where
k=0, 1) 2,

Let us consider the extreme right singularity of in-

tegral (19), (20) in the j plane corresponding to k=0.
Substituting Eq (22). into Eqs. (19) and (21), we can
readily calculate the singular part of the integrals over
l, m resulting from the poles (crosses in Figs. 5 and 6) of
the integrand functions at m=n(t) and l= n(t):

where X; ' is the Regge-pole and particle-production
amplitude.

On the other hand, when l —+n(tt) the amplitude
f;z, just has, according to Eqs. (20) and (22), the form
(25) with cV; '= —gG; . Therefore, if the amplitude

&"~-=1t(7,n)gGy-, (26)

Ã;.(t,tt)1V,.&s&(t,t,) 2p(t; t„&')
dtr. (27)

j+1—n(tt) ]I/2

differing from 1V'(j,n) only by the standard factor—A(j,n) is introduced in the right-hand side of Eq.
(24), the constant g, of the decay of a Regge pole into
two particles in the intermediate state drops alto-
gether out of the right-hand side of the expression for
& 'f, (t):

2
t4'f, (t) =—=

3l 27ri

(0

2s r, tanvr(l —m)

G;, („G,, t
t'& (2l+1)I'(l—m+1)

F(i+m+1)Dg(t t)

g' G; „G; tsar(2n+1) I'(n —m+1)

It can readily be noticed that after integration over
tt the right-hand side of Eq. (27) proves a singular func-
tion of the variable j.The branch point in j of integral
(27) results from the coincidence of the zero of the
denominator with the singularity of p(t; t t,p') at

n(t, )—m F(n+m+ 1)

dm/2i g'G;, G;, , t'l (2n+1) I'(n m+1—)

tans. m n(tt) —m I'(n+m+1)

F(j m+ 1) g Gj; aaGt;aa
=~'(j,n)

F(j+m+1) j+1—n(t t)
where

(2n+ 1) 1 2~
As(j,n) = (24)

F(2n+1) F(j+n+1) tannin(t, )

is a function having no singularities in the region 0./0,
j+1 n(tt) essential in the following.

Using this result, we can write the singular part
6s'f;(t) of interest to us in this form

&'(j, )(gG, -)(gG -"') 2p(t; t, ')

3!2i c, j+1—n(tt) t't'

where G; is written instead of G;'; for the sake of
brevity.

It is worth noting that the quantity gG; has the
meaning of the amplitude for the transition of two par-
ticles into a Regge-pole and particle. If, indeed, the pro-

tt= (ttt' —p)s (with the upper limit of the integral
over t~), i.e., a.t

j=nL(t'" —p) '$ —1.
This branch point has been discovered by Mandelstam
(this singularity was considered in detail by Simonov. ")

In conclusion of this section let us discuss this prob-
lem. We have found only one branch point resulting
from a Regge pole in the amplitude of interaction of
only one pair of pa, rticles (let us denote them by 1
and 2). Obviously, identical branch points must result
because of Regge poles in the interaction amplitude for
particles 1 and 3 or 2 and 3. However, no such singu-
larities are in evidence in our expression of unitarity in
the form (19) and (21) in which the state of three par-
ticles is described in particular by the angular momen-
tum / and helicity m of the pair of particles 1 and 2.

It. might be helpful to recall that a similar problem
arises for integer j if we want to find the contribution

FIG. 8. Regge-pole diagram for f, ()).

"Yu. A. Simonov, Zh. Eksperim. i Teor. Fiz. 48, 242 (1965)
/English trsnsl :Soviet Phys. .—JETP {tobe pnblishedlg.
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to the three-particle unitarity condition from the real
physical resonance interactions of not only particles 1
and 2 but also 1, 3 and 2, 3 as well.

Obviously, if we choose as the variables, the angular
momentum and the helicity of one pair, e.g., l», m» of
particles 1 and 2, a resonance in the state of this pair
with spin s» will appear only in those terms of the sum
over 112 and m12 for which lJ.2 ~].2 ~12&~m12~~~].2.

other resonance interactions will show in that the sum
over l» will prove divergent, if the energy of particles
1 and 3 (or 2 and 3) is made to tend to its resonance
value. This is clear from the fact that the expression of
the unitarity conditions as the sum over l» corresponds
to the expansion of the three-particle production ampli-
tude in the variables $13 and t23 at fixed t and f12. In this
case the singularities in (is and f22 (resonances) must
show in divergence of the sum.

Instead of the investigation of the divergence of the
sums, it is more convenient to find the contribution from
all the resonances, rewriting the unitarity condition in
all possible (three, in our case) ways and adding up the
results.

These considerations are also fully applicable to the
case where we are interested in the contribution from
Regge poles due to the interaction of a certain pair of
particles in the intermediate state, to the singular part
of the quantity As f,z,

Thus in the case of identical particles the right-hand
side of Eq. (27) should be multiplied by 3 in order to
take into account the contribution from all the three
interactions of 1 and 2, 1 and 3, and 2 and 3. In this
case the factor 2/3! in the right-ha, nd side of Eq. (27)
changes to unity.

V. ANALYTIC CONTINUATION OF FOUR—PARTICLE
UNITARITY TERMS

We continue analytically the four-particle terms (14)
of the unitarity condition similarly to Eq. (21), replac-
ing by integration the summation over X4 (i.e., over
li, mi, l2, m2) in Eq. (14).

To this end let us write the sum (7) over X4 in the
form

r. +2 2 Z r. , (28)
l1milamg m1m2&0 li=m1 l2=m2 m1&0 l1 =m1 l2= —mm

mal&0

which, just as Eq. (21), takes into account the fact that
the expression in Eq. (14) under the sign of summation
over P 4 does not change as m1 and m2 are replaced simul-
taneously by —m1 and —m2. The formulas obtained in
the following for the four-particle case will have a real
and not illustrative (as in. the three-particle case) mean-

ing. Therefore, it should be borne in miod that in any
case the amplitudes f, , x,=f, i, , i, , cannot be con-
tinued as functions on l1 and l2 from all integral values
l1 and l2 and it is necessary to introduce a signature with
respect to these variables. In the following, with respect
to both l» and l2, we are interested exclusively in a

Fio. 9. The 6ve-point amplitude with a
Regge pole corresponding to the inter-
action of a pair of particles produced
(with c.m. system energy tP~').

ye, &,

vacuum pole which occurs only in a state with positive
signature. Therefore, we consider merely that part of
the sums (28) in which li and l2 are even numbers.

In this case the sum over l1 and m1, for example, in
the first term of Eq. (28) can be represented as

m1&0 l1 even m1=0,2,4, ~ ~ li =m1 m1=1,3,5, ~ ~ ~ l1=m1+1l1)m

or, passing to contour integrals as in Eq. (21), we can
write

dm11 dl1

(4i)' 2r, tan(s-mr/2) L, tanL2. (li—mi)/2j

dm1
(29)

(4i)' sr, cot(s-m, /2) L, cotL~(li —mi)/2 j
where 311 and 1-1 are the contours such as indicated in
Figs. 5 and 6.

In the previous section it was shown that the singu-
larity of the total integral results from values of l close
to m. In the second term of (29) the quantity li is always
larger than m1at least by unity. Taking this into account
we can note (if we perform on this term all those opera-
tions that are performed below for the first term) that
this term has a singularity in j removed in the j plane
to the left by unity as compared with the singularity of
the first term. We shall not be interested in such singu-
larities and hence we omit altogether the second term in
Eq. (29). Similarly we can ignore the entire second
term in Eq. (28) since it does not lead to singularities
essential in the following (as is shown in detail in Ap-
pendix A).

Thus we can write the unitarity condition (14) as

22 1
~4'f~=

4! (4i)4 , tan(em, /2) L, tanL7r(l, —m, )/2 j
dl2

X
2r2 tan(wm2/2) Ls tanL7r(l2 ms)/27

dt2 d/1
X 2C;(li,mr i ls,ms)

g~ 2z

G;,i,G;,~,&+ 2P(&; 4, l2)X,(30)
Di (ti)Di, (t2)

where the factor C,(li,mi, ls, m2) was determined above
[see Eq. (6)7, the contours Li and L2 coincide with the
contour of Fig. 5, and the contour M2 includes the
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/o s a & 4
o a O O

~, ]fame.
Fn. 10. The contour

of integration over m&
in the four-particle
unitarity-condition term
(30).

', n'((t)-&
~& x &(tr)

. ('o a. ~ 6
0 O O O

FIG. 11. The contour
of integration over nsI
in (30).

singularities of the function F(j+1—mi —m2) con-
tained in C,(li,mi, l2mm) (Fig. 10).

Repeating the treatment of the previous section we
can come to the conclusion that after integration over
ll, l2, and m2 which must take into account the Regge
poles in li and l2 [i.e., the zeros of Di, (ti) and Di, (t2)
at li——u(ti), l2=u(t2)7 the integrand function in the
integral over mi has poles at the points: (1) mi ——0, 2,
4, because of the zeros of tan(n. /2)mi, (2) mi ——u(ti),
u(ti) —2, etc. , resulting from integration over li and

(3) mi=j+1 u(t2)+—k, k=0, 1, 2, resulting from
integration over /2 and m2. The mechanism of emergence
of these poles is perfectly similar to that considered in
detail in the previous section. These poles result as the
poles of the function I'(j+1—mi+m2), conta, ined as a
factor in the coefficient of Eq. (6), are taken into account.

All these singularities are indicated in Fig. 11. The
contour of integration M~ must be chosen so that the
poles of the third type lie inside, as indicated in Fig. 11.
Otherwise, the right-hand side of Eq. (30) has singu-
larities (poles) at an arbitrarily large j because of co-
incidence of the third-type poles with the singularities
of cot(m. /2)mi. Note that the possibility of adding the
function x to cotmm discussed in the previous section
holds here for both cot(m. mi/2) and cot(~m2/2).

The final integration in Eq. (30) over the contour
3E& of Fig. 11 leads to a singularity because of coinci-
dence of the poles of the second and third types at the

following values of j
j=u(t,)+u(t2)-1-k, k=0, 1, 2,

If the trajectory u(t) at a certain t= m' passes through a
physical value (e.g. , u=0), this formula corresponds to
the Azimov displacement of the singularity at j=—1.
However, when the particle production amplitude satis-
fies the Mandelstam representation it is known that k
is to be even (k=0, 2, 4, . ) because of the symmetry
properties of p(s, e) with respect to replacement of s by
u. If a symmetry of this kind holds for Regge-pole pro-
duction amplitudes as well, the coeKcients of the singu-
larity are zero for odd k. If it is assumed that this is the
case in reality we can, using another choice of function x
(see Sec. IV), write the latter so that only even k figure
explicitly. This can be done, for example, replacing in
(30) cot(~mr/2) cot(xm2/2) by the expression

sin[m (j—mi —m2)/2]

sin(fermi/2) sin(mm2/2) sin(m j/2)

which is no worse than the initial one. This procedure
is used in the following.

We are only interested in the extreme right-hand
singularity corresponding to k=0. The singular part of
the integrals over m&, m» tt&, l2 is calculated just as was
done in the previous section, using for Di, (ti) and
Di, (t2) near the pole the value (22)

2b(li, mi i l2,m2)

(4i)' ~, sin(hami/2) ~, sin(mm2/2) z, tan[~(li —mi)/2) z, tan[~(l2 —m2)/2) [li—u(ti))D2 —u(t, ))
I'(j+1—mi —m2) sin[or( j—mi —m2)/2)X--
F(j+1+mi+m2)

A'( j,ui, u2)

—27r2 2ui+1 2ug+1
tl.'(j,ui, u2) =

sin(m j/2) sin(~ui/2) sin(~u2/2) F(2ui+1) F(2u2+1) I'(2 j+2)

which is a function having no singularities in the region
of values of j close to ui+u2 —1 (ui ——u(ti), u2 ——u(t2)).
The expression b(li, mi, 4,m2) in the integral denotes all
the factors in Eq. (6) except

(2j+1)I(j+1—mi —m2)/F(j+1+mi+m2)

b(ui, ui)um)um) = (2ui+1)(2u2+1)/F(2ui+1) F(2u2+1) .

Hence for the singular part of Eq. (30) we obtain

692

;...,(; i) 2);"'(t; ti, t2) 2p(t; t,,t,)
X — (31)

]l/2



MOVING BRANCH POINTS IN j PLANE B 193

fj X4 +jaya2 glg2 y

(tl &ri) (ts &rs)

where X. . .' is the amplitude of the transition of two
particles into two Regge poles. According to Eqs. (11)
and (22) we have E;, ,'=gigsG;~, „i.e., X. . . differs
from the amplitude 1V;, ,' by only a factor A(j,nins)
(with standard dependence on ti, ts, and j).

Consequently, just as in the three-particle case the
constants g~ and g2 of the decay of both Regge poles into
particles drop out of the result (31) altogether. This
circumstance is a general property of relativistic theory
in which Regge poles act as real particles.

Equation (31) takes into account the fact that four
particles can be grouped in three diQ'erent ways into
two pairs with definite i~my and l2m2. Since all the par-
ticles are identical all these ways yield (just as in the
three-particle case) the same contribution and hence the
factor 3 was introduced in Eq. (31). Instead of the
coefficient 2'/4~ in Eq. (30), the factor 1/2!= (2'/4!) &(3
appears in Eq. (31).The factor 1/2! in Eq. (31) corre-
sponds to the identity of both Regge poles.

Integral (31) has singularities of several types. The
integral over ti over the contour Ci of Fig. 3 Ldenoted by
P, (tits)1 at a fixed ts may have singularities if the zero
of the denominator in Eq. (31) coincides with the in-
tegration edges ti 4pand ——ti=, (til —ts't )' In other
words, the conditions for the emergence of a singularity
of this integral are

and
j+1=&i(4ti')+a(ts) (33)

g+1=&r((t'i' —ts'")')+n(ts) . (34)

In the second integration over f2 the singularities of
the integral p, (t,ts) may coincide either with the inte-
gration edges ts (t'i' —2t&)' and ts 4'——' or they ma—y-

pinch the integration contour C~ from two sides. There-
fore, the singularities of the 6rst and second types of
integral (31) are given" by the conditions

while

lV; „,(t; ti, ts) =A(j,ni, ns)gi(ti)gs(ts)G. . .(t; ti, ts) (32)

has the meaning of the two-Regge-pole production
amplitude. The latter can be noticed by considering the
production of four particles (just as in the case of three
particles in the previous section) as occurring through
two virtual Regge states (Fig. 12). In the region
l~ ~ 0;~, l2 —+ n2, its amplitude has the form

FIG. 12. The four-particle production
amplitude vith Regge poles in tj and t2
channels.

reached. The location of these singularities is given by
that value of j for which the two solutions t2= t2&+& and
ts=ts& & of Eq. (34) with respect to t coincide. The con-
dition for this coincidence is the vanishing of the deriva-
tive in ts of the right-hand side of Eq. (34).

This equation has in any case the solution

t 1/s —tl/s/2 (38)

a4' f;(t)=— y;(t&ts) Ct, .
2z

(40)

the substitution of which into Eq. (34) gives the loca-
tion of the corresponding singularity

(39)

The problem of the possibility of other solutions re-
quires a special study of the properties of the trajectory
n(t).

It can be shown that there is a certain way of move-
ment in the j plane (from region of large values of j
where 64f; has no singularities) such that the two solu-
tions t2(+& and $2& ~ actually pinch the contour C2 in the
ts plane as j tends to the value (39).

When t=16ti', all the three singularities (35), (36),
and (39) of the function 64f, (t) coincide. As t is de-
creased and the point $=16p,' is crossed, singularities
(36) and (39) go around each other as they move in the
j plane. In Appendix 3 we show that the function f;(t)
has no singularities (35) and (36) at t(16tis if the cut
from singularity (39) in the j plane is made to the left
along the real axis Lsingularities (35) and (36) come onto
another sheet connected with this cut j.The movement
of the singularities (35), (36), and (2) as j is varied was
considered by Simonov. "

Let us calculate the discontinuity 8;f,(t) of the func-
tion f,(t) across the cut of interest to us at singularity
(39) in the j plane. Since the singularities of f;&4&(t) do
not coincide with those of f;(t) we have

8;t4f;(t) —= 5;(1/2i)Lf, (t)—f,&'i(t)]= (1/2i) 5;f (t) .
Therefore it is sufhcient to determine the discontinuity
of integral (31)

j=2n(4p, ')—1,
j=o.((t'~' —2p)')+n(4ti') —1.

(35)

(36)
The latter results, since the two singularities ts ——ts&+&

and t2=t2&—
& of the function

The singularities of the third type are the most inter-
esting since it is only these singularities that remain in
the j plane as t is decreased and the region of negative t

"Besides these points, quantity (31) has singularities at
complex-conjugate points.

A jaras1! jaras 2P(ti tlpts)
cti (41)

1-n& -~&

approaching in the plane t2 the contour C2 of Fig. 2 de-
form it in a diGerent way depending on the method of



B 194 GRIBOV, POMERANCHUK, AND TER —MARTI ROSYAN

l
I»are FIG. 13. The path of

enclosure in j plane for
the singular point
j =j&(t), for which the
point j proves to be on
the upper edge of the
cut.

where t2(+' and t2( ) are, as indicated above, the roots of
Eq. (34) which can be regarded as a consequence of the
two conditions

j+1-n(ti) —n(t, )=0,
p(t, ti,4) =0,

enclosure of the point j= j2(t) in the j plane of Fig. 13
Lfor the time being we neglect the terms in 8,f, (t) re-
sulting from dependence on j of the amplitudes 4V;, ,
and 1V;, ,"' themselves; see the following section].

Calculating the discontinuity of the integral (40) we
obtain for 0;f,(t):

~~f (t)= A~,p, (t, t2) dt2, (42)

where t2(+) is that one of the two singularities of the func-
tion (41) which has a positive imaginary part at j(j2
(and at j close to j2). Here A&,P;(t,»2) is a discontinuity
of integral (41) on the contour drawn between. the points
t~(+& and t~( & (i.e., the difference of its values on. both
sides of the contour divided by 2i).

This discontinuity equals, accurately to the factor
2i, the integral (41) taken over the contour CP enclosing
in the negative direction (as indicated in Fig. 3) the
point ti= ti'in which the nominator in Eq, (41) vanishes:

2ia„y;(t, t,)

1Vjmimg1V j ttimg 2p(t j tlt»2)
dt's

1

4i c,o j+1—n(ti) —n(t, ) t1 /2

7I 2p(t, »2,»i )
, (4)

& ~ ja1a2 ~ ~ japan
2n'(» 0) ti /2

(43)

This value can conveniently be written symbolically

1 7r''
22'

(4)&;a,a,-"'~a,a,

2p(»; t„t,)
X 5(j+1—n(ti) —n(»2))dti,

t1/2

assuming that the contour of integration in the complex
t~ plane is. chosen so that the argument of the 6 function
runs through zero taking real values. This form of Eq.
(43) is convenient (though not necessary) for the
following.

Thus the discontinuity f, (t) at a two-Regge-pole
singularity can be represented as

"( 'dt2
~if'(t) = dti Vi mlm2 VJa1a2"'

2 g2&+) 2Z

2p(t; ti, »2)

S(j+1—n(ti) —n(t,)), (44)
t1/2

or more accurately the equation t'»'= »i'»'+t&'»'.
Let us determine the behavior of 8,f, (t) at j close to

j2(t), when values of ti and »2 close to t/4 are required in
Eq. (44).

Under these conditions the amplitude X;, , „,cannot
be considered as constant (in spite of the fact that at
j~ j2 the regions of integration over t~ and t2 tend to
zero) because at p= p(t, ti, t2) -+ 0, 1V. . .has a thresh-
old singularity of the type 1V. , . .=C,(2p)~. Here
I-= j—o.&

—o.2 is the minimal value of the orbital angu-
lar momentum of relative motion of two Regge poles.
In the integra, l (45) L= —1 and, consequently,

1V;,-,-,=C,(t)/p, (45)

i.e., it tends to infinity at p —+ 0.
It should be noted that owing to the unitarity

condition the production amplitude of two particles
1V;,&,~,(t,mi2, mg) (but not of two Regge poles) cannot
tend to infinity as 1/p. Its true threshold behavior is
determined' by the formula

Il';„„(t,m, ' m, ''t= l , (4+ t"*)
7]SKI

where k= p(t, mi', m2'), mi and m2 being the masses of
two real particles. At I = j—l&—l2 ———1 and at k —+ 0
the amplitude 1V, , ~,~, (t,mi2, m2') tends to a constant but
not to 1/k. The compensating factor k'~+'=1/k (at
L= —1) in the denominator results from summing up
the dia, grams with two particles (with the masses mi
and mg) in the intermedia, te state. Each of these dia-
grams has a singularity at k= 0, i.e., at t'I'=m&+m2.

In the case of the amplitude of two-Regge-pole pro-
duction the factor p~(t, ti, »2) could be correspondingly
compensated only by the contribution of the multi-
particle intermediate states. However, this contribu-
tion has the form of the integral over the energies t~',
t2' of the groups of particles produced in the intermediate
state and, consequently, has a singularity at the real
thresholds (t= 16m', 36m', etc.). Therefore they cannot
compensate the singularity at t'"= »i'I'+t~'", where ti
and t2 are arbitrary energies of particles in the 6nal state.

Let us calculate the integral (44) over ti and t2 at
j~ j2 using the form (45) of 1V;, , To this end,
assuming ti t/4+xi, t2 t/4+x——2, we expan——d n(ti) and

n(t~) into series

n(t;) =n(t/4)+n'x;+-, 'n"x;2, i= 1, 2

and substitute the value x~ from the condition

j—j2(t) =n'(xi+ x2)+-,'n" (xp+ xp)
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into

P(tetr&t2) = Ij'2t'"[(Xr»)' —2t(»+»)~"".

We obtain from (44)

where 82 —
e
——&r[&1&&'(&1&&'+-,'&r&&"t)] 't' does not depend on

2 at j~ j2(t)
If C; at j~ j2 had no singularities (as was the case

we supposed so far) then it would follow from (46) that
f, (t) at j—+ j&(t) has a logarithmic singularity of the
form

f,(t) 4+—jj-2~,C,''" »[j—j1(t)1.

Because of the fact tha, t at j= j&(t), Eq. (47) t.ends to
inhnity, the singularity of C; changes essentially the
character of the singularity of f,(t). In the following
this question will be considered in detail.

The presence of this (and other similar singularities)
changes radica, lly the analytical properties of f,(t) in
the t plane. Besides the cuts indicated in Fig. 1 and con-
nected with the thresholds of production of usual par-
ticles, in the t plane there must appear, obviously, a
logarithmic branch point at t=t2(j) where t2(j) is the
solution of the equation

j=j2(t).

FIG. 14. The cut in
t plane corresponding
to the branch point
t=t2(j}; broken lines
indicate the trajectories
of the branch point
f=t~(j} and the move-
ments of the pole t=t;
with the decreasing of

J+&&.

x '2"'
dtm

~ "'f (t)=—
2 ~ g, (-) 2i

ctgx, +

VI. UNITARITY CONDITION FOR TWO —REGGE-
POLE SINGULARITY

While investigating the singularities of f, (t) we have
so far neglected the fact that the amplitudes Ãj and
Ã1, , entering into 53fj or j& 4fe may themselves have

. singularities at the same points as f,(t). Actually, by
unitarity, these singularities must be present in all the
amplitudes.

Let us show that taking this into account changes the
value 8jf;(t) = —&&4&"f,(t) obtained earlier and results in
the fact that the accurate unitarity condition, giving
the magnitude of the discontinuity &&4fj(t) of the ampli-
tude f, (t) at the two-Regge-pole singularity t=t2(j) in
the t plane, has the form

Therefore, to determine f,(t) unambiguously in the t

plane it is necessary, besides the cuts indicated in Fig. 1,
to make a cut indicated in Fig. 14 from the point
t= t2(j). It can readily be noticed that the discontinuity
84&2&fj(t) across this cut differs from l&jfj(t) only in sign:

where

X&j,aIn2 .

tI/2

il j,a&ac +j+eea&ae +j, (tutee t1e t2)

2 (t; tr t1)
~(j+1—~(t )—~(t2)) (5o)

Therefore, if we know the magnitude of 8,f, we can re-
restore the amplitude f,(t) with the aid of the disper-
sion integral

1 "
&& "'f (t')dt'

,(t) =-

To take into account in the t plane not only two-Regge-
pole singularities but all multi-Regge-pole (three-, four-,
etc. , Regge-pole) singularities, the additional terms'1

1 "
t&,

&"&f, (t')dt'

g~ ~j)

should be included into Eq. (49).

"From Eq. (2) it follows that at real j the singularity t =t„(j)
emerges on the physical sheet of Fig. 1 in the t plane only for such
ee for which j„& &)j, where j„&&=44(ee(4&4') —1]+1, while
1&~ee(444'l ~& 2.

are the amplitudes of the production of two Regge poles
on both banks of the cut t=t& in Fig. 15 at t) t2(j). It
should be emphasized that both quantities E;+,~,~, and
Ãj, I 2 entering into this formula are determined on the
same physical sheet of the t plane (with respect to the
thresholds of production of usual particles) in contrast
to Eq. (44) containing the amplitude 1Vj . .&4& on an
unphysical sheet.

Equation. (50) can be interpreted as a two-Regge-pole
unitarity condition in this sense. The branch point
t=t2(j) comes onto the physical sheet of the t plane of
Fig. 14 from under the cut running from t= 16@2, and
moves as indicated by a broken line in Fig. 14 as j is
decreased [along the real axis from la,rge values for
which f,(t) has no singularity t=t&(j) on a physica, l

sheet(. Since the singularity at t=t2(j) ca,n be re-
garded as a threshold singularity corresponding to
the production of two Regge poles, Eq. (50), the
right-hand side of which contains the amplitudes
Ã,+, ,=N;, ,(tWie, t1, t1) of the production of two
Regge poles on both banks of the cut connected with
the same singularity, is perfectly similar to the con-
ventional unitarity condition.
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FxG. 15. The amplitude of the transition of
two Regge poles with masses tI'/' and t2'/'
into two Regge poles with masses tI'/2
and &2'/'.

To avoid a tiresome number of subscripts, we derive
Eq. (50) in the symbolic-operator form. The state of four
particles will be characterized by the quantum number
e including the angular momenta and helicities l~, m~

and l2, m2 of two pairs of particles and their energies
t&'I' and t2'". We shall need the unitarity conditions for
the amplitudes of the transition of two particles into
two and into four: f, (t) and f„'=f'i,„,—ip~, (t; fi,ts),
and for the amplitudes of the transition of four particles
into four f„„jThe .amplitudes f„' and f„„jare written
in a form similar to Eqs. (10) and (11)

Di, (tt)D&,(ts)
(51)

(1/2i) Lfj —f,«&]= (Gj'r jGj«&), (53a)

(1/2')LGj —G, ' j=(Gj'I'j H; ')
=(Gj«&r,'Hj ), (53b)

(1/2i)LHj —Hj«)=(Hj'I j'Hj«). (53c)

Here (G;I;G;&'&)= (Gj„ I'j„G, &P&) symbolizes the right-
hand side of Eqs. (31) and (32). Similarly, (G;F;H, &P&)

=(G;„I';„H;„„&'&)and (H;I';H;&'&). The quantity I;„
contains all the singular factors entering into Eq. (31).

Calculating the discontinuity from both parts of
Eq. (53) in j at the singularity j= js, we obtain

(1/2i)cjf, =(Gj-crjGj«&)+(SGjrj'Gj«&), (54a)

(1/2')b;G, =(Gj-&&1'jHj&'&)+(8GjI',+H;&'&), (54b)

(1/2i) 4H, = (Hj-51'jH j&4&)+(8Hji'j+H j&'&), (54c)

where j+=jar means that the quantities on the
right-hand side are taken on the upper or lower bank

D&,(ft)D&,(fs)D&;(fi')Di, (fs')

Here H, „„(justas G;., „)has no singularities at the two-
particle thresholds in the variables t~, t2 and tj', t2',
while the quantity

~j;npnp' glgpgl gs Hj; npnp'+jib p +j +(Jqntqns) p

~ '= j~(j,ni', ns') g'= g(f') g''= g(f'')

$wherepspisthestatewithl;=jn;=n(f;), l =j&p =n(f ))
has the meaning of the amplitude of the transition of
two Regge poles with masses t~'~' and t2'I' into two
Regge poles with masses ft'I' and ts"I' (Fig. 15).

In these notations the four-particle unitarity condi-
tions for the amplitudes f;, f„', and f„j can be
written as

of the cut of Fig. 12 corresponding to the singularity
j= js(t). The first terms in the right-hand sides of these
equations are precisely those discontinuities of integrals
like (31), one of which Lthe first in the right-hand side
of Eq. (54a) was ca,lculated above in Eq. (44)j. Com-
paring the first term in the right-hand side of Eq. (54a)
with Eqs. (44) and (32), we notice that"

prA' 2p(f, f„f,)
l&I'j&„gt'gs' &&(j+1—n(f t) —n(tp))

(2i) 2 f 1 /2

X~(ll nl) &(j&pt—ni) t&(ls ns) ~(p&ps n2) ~

Equation (54c) is an equation with respect to 8Hj;
comparing it with Eq. (53c) regarded as an equation
with respect to H;+

(1/2i)H;+= (1/2i)H j&4&+ (Hj+I';+H j&4&), (55)

we notice that the solution of Eq. (54c) is

(1/2i)8jHj= (Hj-l&I'jHj ) (56)

Lsince on the application of the operator H; f&I'; to both-
sides of Eq. (55) the equation obtained identically
coincides with Eq. (54c) under the condition (56)j.

Equation (56) is the unitarity condition for the ampli-
tude (52) of the transition of two Regge poles into two
Regge poles. Similarly, comparing Eqs. (55) and (54b),
we notice that

(1/2i) &&,Gj= (Gj f&I'jHj+) . - (57)

Substituting this value into Eq. (54a) and taking into
account the second equation (53b), we obtain

(I/2i) S,fj(f)= (G; &rjGj-) . (58)

This equation is, according to Eq. (44), that unitarity
condition (50) which has to be demonstrated.

Multiplying both sides of Eq. (57) by the quantity
jI(j,nt, ns)g(tt)g(ts) and both sides of Eq. (56) by
(Agigs) (jl.'gi'gs') and using our notations, we notice that
these equations are the unitarity conditions for the
amplitudes (32) and (52) of the transition of two par-
ticles into two Regge poles and of two Regge poles into
two Regge poles. Quite similarly to Eq. (50) they can
be represented as

~2(+)

2$ )2&

X

2p(t, t, ', t,')
5(j+1—n, '—ns'), (59)

t1/2

2' Here the b functions denote symbolically that instead of the
sum over /~m~ and fpmp of the form (14) we must only consider one
term with lI=mI=n(tI) and l2 ——ns2=n(t2), and instead of the
factor C, (X4) entering into Eq. (14) substitute unity.
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2i
dt2'

X t '.I ~

2p(t, t,",t,")
X b(j+1-421"-n2"). (60)

t1/2

Formulas (50), (59), and (60) make it possible to de-
termine the character of singularities of the amplitudes

f,(t), N, ,', and M, . ..a,'at j~ j2(t). Substituting
into the right-hand parts of these formulas at tl —+ t/4
and t2-+ t/4 the amplitude N, ,& in the form

N, ,&= C~/p(t, tl, t2)

(see (45)j and similarly (at j—nl —n2 ———1 and

j—421'—n2' ———1)

M, . ..,'=dt/P(t, tl', t2'). P(t, tl, t2),

Therefore, when studying the 28th singularity (2), it is
natural to consider the 2n-particle unitarity condition
(18).However, before proceeding to the general case we
shall have to deal briefly with the six-particle (three-
Regge-pole) unitarity condition (15)—(16). Let us con-
sider its analytical continuation to complex j. If this
continuation is written in the form of contour integrals
of the type (30) over /lml, l2m2, l12m12, l8m8 and the
Regge poles in ll, l2, and l8 are taken into account, in the
calculation of the singular part of the integral there will
arise only the following difference from the two-Regge-
pole case considered in Sec. V.

Two I' functions entering into C, (l12,m12, l8m8) and
Cl„(/lml, /2m2) in Eq. (15)

I (j+1 m12 m8) ' I (/12+1 ml m2)

are essential for the emergence of a singularity. The
singularity of 68f;(t) results from the following points
in the contour integrals over /;, m;, l12, m12 of type (30)

ll= ml= Q(tl) /2= m2= 48(/2) l8 =m8 =48(/8)

we obtain
S.&»d =&8 d d+

/t "'f =xB2C;C;+..

and
l12 m12 48(tl) +42(t2) 1 ~

For the singular part of the integral we obtain an
expression analogous to Eq. (31):

It follows from the first equality that

8 ~2&(1/d;) = 2rB2. —
Hence

d;= 1/(A B2 ln(j —j2—)j.
From the second and third equalities we obtain

C, =1/$A B2 ln(j—j2)j, —
f= /rA B l u &)j—+f—

where A, 1 and f8 have no singularities at j-+ j2(t).

VII. THREE—AND MULTI —REGGE—POLE STATES

The Regge poles of the amplitude f,(!4)1of Fig. 11 of
the transition of two particles into four, in the angular
momenta ll and l2 of the pairs of the particles produced,
result from the interaction of the particles within these
pairs. As shown in the previous section, the same in-
teraction results in the angular-momentum plane j in
branch points of the type (47). It can readily be noticed
that taking into account the new singularities of the
amplitude f;,1„=f;1. .1, , in ., the. variables ll and l2

in integrals of the type (30) leads to a series of branch
points at j=j„(t),where j„(t) is given in Eq. (2). From
this formula it follows that the nth branch point becomes
complex at t=(2 )t418T2herefore, it should be expected
that the nth point of this series is connected by the
2n-particle unitarity condition, or more accurately,
that it is to come into the tth plane (as j decreases from
large values along the real axis) from the unphysical
sheet of Fig. 1 resulting from the production of 2n
particles.

~8f (t) =
21

+j;12,a~+j; 12,ag

j+2—n(tl) —42(t2) —42(t8)

2p(t; t12, /8) 2p(t12, tl, t2) dtld/2d/8
X &/12, (61)

t1/2 t1/2 (22)8

where Xj;$2,& Xj;].2, &I,&2,+, is the amplitude of produc-
tion of three Regge poles in a state with angular momen-
tum /12 of one pair of them equal to 42(tl)+n(t2) —1.The
amplitude Ej;$2,& is connected with the quantity
G;.1»,1,, 1,1,(t; t12,tl, t2, t8), given according to Kq. (12a), by

NJ;12, A(j /12 428) 'A(/12 421 422)

' gl ' g2 ' g8Gj, l», al, ala8 ~ (61a)

With the normalization chosen in Eq. (16) there actually
appears a factor 28/6! in front of the integral in (61).
However, it should be borne in mind that in this case
besides 6!/2 3!=15 ways of distribution of six par-
ticles in three pairs with definite values of angular mo-
menta there are three ways to group two of the three
Regge poles in a pair with deinite l~2. Therefore the
factor 2'/6! should be multiplied by (6!/2'3!)X3,
which is wha, t gives in Eq. (61) the factor —', correspond-
ing to the identity of the two Regge poles forming a state
with a given 1~2.

The singularities of integral (61) result from the zeros
of the denominator in Eq. (61) which is independent of
t~2. Therefore we assume that integration over t~2 has
been performed I within (tl'I'+t2'")'(t12( (t'I' —t 'I')'j
and integration over t„a=1, 2, 3, is made over the con-
tours C, indicated in Kq. (16). A singularity of the in-
tegral arises on coincidence of a zero of the denominator
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with the boundaries of integration. The coincidence of a
denominator zero with the lower limit 4p' of one of the
variables t, gives rise to singularities of type (35) and
(36) whose location depends on the particle masses.
These singularities are of no interest to us since just as
in the two-Regge-pole case they can be shown to occur,
at a small t, on the unphysical sheets of the j plane.

A singularity independent of particle masses results
from coincidence of denominator zeros with the upper
limit of integration over t; given by the condition

In Eq. (67), I3(tq, t2, t3, t) denotes the total phase space of
a system of three particles with masses t1'/' t2'/' t3'/'
and energy t'/'

2p(t) t12)t3) 2p(t12) t»t2)

ti/2

(gl/2 —t31/2) 2

I3(ty)t2, tg) t) =
(g 1/2+g 1/2)2

whose nonrelativistic va, lue (at x —+ 0) is proportions, l
to y'.

The location of the singularities t3(+) and t3( ) of
integral (67) is given as the solution of Eq. (65) at those
values t& and t2 for which the quantity U(t&, t2, t» j) has
an extremum at the upper limit of integration, i.e., at
y(t~, t2, t3, t)=0. In other words, the values t& t&(t,t3)——
and t2 ——tm(t, ta) which must be substituted into Eq. (65),
can be found from the equations

X(t&)t2)tg) t) = ty'&'+t2'I'+ t3'"—t'"=0. (62)

For integral (61) to really have a singularity in the j
plane it is necessary that in each consecutive integration
the singularities of the previous integral pinch the con-
tour of integration.

Consideration of the integrals over t1, t2, and t3 one
after another suggests that for the above purpose it is
necessary Ljust as in the case of a simpler integral (31))
that the denominator in Eq. (61),

Bx 8Q Bx
='A

7

Bt1 Bt2 Bt2
(68)

Cl(t»4, t, ;j)= j+2—n(t&) —n(t2) —n(ta),
x(tg, t»t»t) =0.

the Lagrange parameter X being determined from the

(63)
condltlon

»"&f(t)=
g

(+)
a„y;&»(t,t,)dt„ (66)

where h&,)t), &'& is the discontinuity of the integral

1
~ &"(«)=-

2 (2i)'

d4dt&&;; ~2...&;;~2..."'Ia(4,4)4; t)
x (67)

j+1—n(t&) —n(tm) —n(t, )

across the contour in the t3 plane drawn between its two
singularities ta&+& and ta& & (the singularity ts&+& is to the
right when j&js, it goes into the upper half-plane if j
goes round, as it, decreases, the point j= ja from above).

have an extremum under condition (62).
Therefore the location of the singularity can be de-

termined from the absolute extremum condition for the
function

2'= j+2—n(t&) —n(4) —n(4) —X x(4,4,t„t), (64)

the condition
(t&,tp, t3, j)=0, (65)

and the condition (62).The extremum condition leads to

n'(t. ) =X/2t. 't' a= 1, 2, 3.
Let to denote the solution of this equation; then from
the requirement &t=0 we get to t/9, when——ce we ob-
tain from the condition (65) for the location of the
singularity j= j3(t) the value (2) with n=3.

Let us determine the discontinuity»~'&63f, = (1/2i)
X»"&f,(t) at this singularity fat t)0, j(js(t)) ne-
glecting the singularities Xj,12, , for the time being.

Quite similarly to Eq. (42) we obtain
t3(-)

The discontinuity of integral (67) across the contour
between ts'+& and ta& ' can be calculated just as (Sec. V)
the discontinuity of integral (51) was calculated earlier.
Substituting its value into Eq. (67) we obtain for
& "'f (t) = »"'f (t):-

t2(+) t
8)&'&f;(t)=— —dt, dt2 dtg-

2t g, (-) 2i g2(-) 2i
(tl/2 —t31/2) 2

dt12+j; 12,ag-~j; 12,ag
(g 1/2+g„1/2) 2

2p(t, tg2, tg) 2p(42, 4,4)
x &( ), (69)

I/2tI/2

Cl(tg, t»t)),' j)=0;
x(t»t2)t»t) =o.

These equations also determine the value t1 essential in
Eq. (69).

After a treatment similar to that of the previous sec-
tion we obtain, taking into account the singularity
Ej,.»,a., the three-Regge-pole unitarity condition in this
form

gl(+) dt g2(+) dt
)I4(3&f.(t) =

2t l(-)

(gl/2 —gll/2) 2

(gl 1/S+g 1/0) 2

2(-)

dt12+j; 12,a~+j; 12,ag

2p(t) tl»4) 2p(t12) t»t2)
x &( ). (70)

t1/2 1/2

where t2& & and t2&+& are determined at a given t3 [when
t)0 and j(j2(t)$ as two solutions of the equations
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g (a)f,(»)
—Q /! (n, h) f.(»)

—p
lg 2"k

X; ...3(»)CV;—..„.3(»)

To calculate the character of the singularity at
j-+ j3(») let us take into account that in the region
»1 —+»/9, »2 —4»/9, »3 —+»/9, and»12 —+ 4»/9 that is essen-
tial in, the integral (70), we have P(»12,»1,»2) —+0 and
P(»,»12,»3) —+0. The threshold behavior of the ampli-
tudes X/. 12,. has a form analogous to (45):

Xj;12,a;—Cj,3/p(»12)»1)»2) ' p(»)»12)»3) ~

Substituting X;,12 ~,. in this form into (70) and cal-
culating the integral at j—+ j3(») we obtain

8;(3)f;(») =2rC, , 3C/, 3+ 83 (j—j,),
where 83 is a definite constant. Hence at j~ j3(»)

f (») = 4 +& '(j—j ) ln( j—j )

where 83'——83C, ,3C;,3+. In this case the singularity C,
at j= j3 should not be taken into account since the con-
tribution from this singularity at j—+ j3 tends to zero
Lbeing proportional to j—j3, as in the case of f, (»)j.

I.et us now turn to the general e-Regge-pole case.
If there are more than three Regge poles, it is neces-

sary to bear in mind the following. As indicated above,
in order to obtain the contribution from a singularity it
is necessary to consider all possible ways of grouping
the particles (and groups of particles) into states with
definite angular momenta and then add up the results
obtained. So far, concerned with identical particles, we
have been obtaining identical contributions from all
such configurations and therefore the procedure has re-
duced to the multiplication by a certain number of the
right-hand sides of the unitarity conditions.

From the four-Regge-pole case upward there appear
groups of Regge poles of different types making differ-
ent contributions.

In the four-Regge poles case there may be two differ-
ent groups of Regge poles (see Sec. II) leading to two
different terms in the Regge-pole unitarity condition. One-
of them contains the amplitude X(j/12/34 /12(21(32 /34Q3(34)

of the production of four Regge poles in a state with
definite momenta of two pairs made of them /12=a(»1)
+(2(»2) —1, /34 ——43(»3)+43(»4) —1, and the other contains
the amplitude E(j/123Q4 /123/12Q3 /12Q1432) of the produc-
tion of four Regge poles in a state with a definite angular
momentum of a pair /12

——(3(»1)+n(»2) —1 and that of a
trio of Regge poles /123= n(»1)+n(»2)+n(»3) —1. The
number of different configurations increases with in-
creasing number of Regge poles.

The unitarity condition for the discontinuity f;(»)
at the 23-Regge-pole singularity»= »„(j) has the form

where 1V/. „,3(») denotes the kth type of the 23-Regge-pole
production amplitude correspond'ing to a certain group-
ing of them into a state with given angular momenta
/, /// (» "' and»»/'/2 are the energies of these states). The
total discontinuity equals the sum 8&(" ")f, (») over all

types k of such groups. The factor 1/2 "3 results from the
multiplication of the initial factor 2"/(2n)! in Eq. (18)
by the number of ways of distribution of particles and
Regge poles, ((2N)!/2" n!) (23!/2"&), which can bring
about a given configuration. Here 223!/2 "/3! is the num-
ber of ways of distribution of 2e particles in m pairs and
23!/2"" the number of ways of grouping of 23 Regge poles
into a given configuration.

The quantity v& depends on the form of a configura-
tion and can readily be found (2"& is the number of
permutations of Regge poles as a result of which the
form of the configuration does not'charige). For ex-
ample, in the four-Regge-pole case we have for the 6rst
of the above configurations F1=3 and for the second
P2= 1.

By [7„we denote a quantity analogous to (63)

„=j+/3 —1—P (3(»3).
k=1

1/2»1/2

under the condition

y= 0 and Q „=0.
The solution of these equations can readily be shown

to be
».=»/~2 &=1, 2, 3, ,n,

and for the location of the eth singularity there follows
the value (2)

j (») =/2n(»/N2) 23+1. —

The function 8( „)in Eq. (71) has a symbolic mean-
ing just as in the three- and two-Regge-pole cases Dike
in Eq. (70) or in Eq. (50)] since the integration in Eq.
(71) is performed over complex contours. The first in-
tegration in Eq. (71) over»1 at fixed energies»2, »3,

of all the other Regge poles leads to substitution of the
value of the integrand function at the point at which

a.(»„»„,»„; j)=0. (72)

The location of the e-Regge-pole singularity in the
plane is determined similarly to the two- and three-
Regge-pole cases from the extremum condition for the
function

Hn'=Un —~ &n)

where

p //(» //»»//)
The limits»2( ) and»2(+) of the second integration

»/ »
1/2 (23)n 1—(over»2 at fixed»3, »4, , »„) are the two solutions of Eq.
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('72) into which we have substituted the value tl from

x„(t„t„,t„;j)=o. (73)

The limits of subsequent integrations in Eq. (71) over

t3, t4, , t, e.g., over t; at fixed t;+j, t;+2, -, t are de-
termined as a pair of solutions t;(+'= f(+'(t,+l, t,+2,
Xt„,j,t) of Eq. (72) in t; into which we substitute the
values t&, t2, , t; & from

e ~~a=X-, k= i, 2, )i—j.
Btl(; Btls

(74)

and determine the parameter l1 from (73).It can readily
be checked that in the region j—+ j Eq. (72) actually
has a pair of complex-conjugate roots t;&+'.

Using these rules we can readily determine the de-
pendence of 8;(n&f, (t) on j in the region j(j„,j~ j„
(i.e., to determine the character of the singularity j„).

Near the singularity the limits of integration over all

t, t p, t p~, energies of Regge poles and Regge-pole
groups contract (coinciding at j=j ) and all the mo-

menta of relative motion p(t //, t, t/1) tend to zero. The
threshold behavior of the amplitudes E;,„,I, in these
conditions has the form

tj;n, 2 =&j,n, k/rr // pa(tapytaytp) ~

Taking C;,.„,~ out of the integral we obtain

Ã 1
~1(""f(t)=—C'. 2C'2+

2 a (2') —1

~, '-'f, (t)= ,(2'(/z —3)/2

7
X —g x-2+(j-—j)

2 a

//dx. ~II I--2( i I

where

y = (zz2/n't)((2'+ (2(2"/zz) t) .

Taking the above into account and substituting
xl —g 2" x we write p =1"x ' in the form

Q x 2=(g x.)'+g x.'=2 Q x.x. .
An=2 a~)a')2

Carrying out a linear transformation of the variables

where account is taken of the fact that the energies of all

Regge poles vary at j—+ j„ in a small region near
t '=t/I' and therefore the quantities

x.= t.—t/~2

are small as compared with t . By A„we denote a cer-
tain constant whose value is inessential for the follow-

ing. It can readily be seen from the latter value of
8j("'fj(t) that in the region near the singularity the
quantities x ' and p =1"x are of the same order of
smallness: of the order j„—jLthe discontinuity 8j("&f,(t)
is not zero only in the region j„)j).Taking this into
account, neglecting at j~ j„terms of a higher order in
x and calculating the integral over x~, we obtain

x ~(o,)II- / (t-/)'"p(t-/, t-, t~)

The integral over the energies t p, t p~, of the pairs
and groups of Regge poles at fixed values of Regge-pole
masses t&, t2, -, t„can be easily calculated. It contains
zz —2 integrations over these energies (e.g. , one integra-
tion in the three-Regge-pole case, two integrations
in the four-Regge-pole case, etc.) and jz—1 factors
1/P(t //, t, t//). The regions of integration over all energies
t //, t //~, , tend to zero at t'/' —+ Q =1 t '/' and each
of them is of the order of (t'/' —P =ln t '/') Each mo-

mentum is of the order of (t'/' —p 1" t '/')'/' There-
fore, the integration over the relative energies gives

(tl/2 g t 1/2) (n,—2)/2

a 1

pa = Z l1aa'Xa' y

at'=2

we can readily select the coeKcients X ~ so as to make
the form p y )2"x x diagonal:

n 2 n 2 n

2 P x.x..=—g p.2= ——Q &.2,
P cd~2 Cl ~2

where i $ =p . Bearing in mind that

n fdXa) n dpa n

rri . i=D. rr . =D;rr«. ,
2E Z ) a-2 Z a-2

where D„ is the determinant of the above linear trans-
formation and writing accurately the limits of integra-
tion over P we obtain

U -J)'»

(~2 n n ) (n 21/2—
(4t a=1 a 1

(~--~-z-)'»
«„1

-(i -i —0 ')'I'

where a„has no singularities at t =t/222. In this case &2("~fj(t)=&73n «n
Eq. (71) can be written as —(J~ —J)'»

'22

(jn-i —& 0a')'»

—(i~-i - & $a)'»

Xb~ j —j+(2' g x.+—P x.' ~(dx )"
a=1 2 a 1 )

XI:~.-~- 2 4'j("-'»'=~&-(j.—j)"-',
ex=2
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where B„'and B„are certain coeKcients. "
Since 82&"&f;(t)=—8;&"&f;(t), we have at j~ j„(t)

8; "f,(t)=2rB„(j j„—)"
and at n&~3

f (t) =~-+&-(i j-)—" '»(i j-)—
where A has no singularity at j~ j„.

Thus, near the e-Regge-pole singularity, the smaller
the singular part of f,(t), the larger is e. However, in

the region of small t (at o///'t j j„~—0) the situation

may be essentially different.
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APPENDIX A

We show that the second term in the sum (28), in
which m~ and m2 have opposite signs, does not lead to
singularities in f;(t) influencing the asymptotic be-
havior of the amplitude.

I.et us write the second term as integrals (29) and
(30) over contours L&, L2 and M&, M2 of the type indi-
cated in Figs. 5, 10, and 11.

Its contribution differs from Eq. (30) by only the
sign of m2, i.e., it is given, after integration over /~ and

l2, by the integral

d8$y

~, tanL(m/2)mq] ~, tanL(2r/2)m2j

I'(j+1—mg+m2)
X (A1)

D- (ti)D-. (t2)

where m2 denotes the value ~m2~. The contour M2 in
Fig. 10 encloses the poles of the F function so that their
coincidence with the zeros of tanL(2r/2)me] (at arbi-
trarily large j) does not lead to singularities of integral
(30) in m2. In the case of (A1) the poles of the I' func-
tion are located at the points

m2=mr —j—1—I, N=O, 1, 2, ~, (A2)

a pole of the I' function with a zero of D&, (t2) in Eq. (30)
(at l2= m2). If both poles of the I' function and. zeros of

D, (t2) lie outside the contour M2' (integration over mn

as in Fig. 10) this coincidence gives no rise to the
singularity of integral (A1).

Therefore, unlike (30), integral (A1) may have singu-

larities of another type, resulting from coincidence of
poles of the I' function and zeros of tang(2r/2)m2j. On

a subsequent integration over tj and t2 there arise, in
this case, singularities of the form j=n{(t"—2p)')
—1—m, where m=0, 2, . , which do not affect the
asymptotic behavior of the amplitude.

These singularities depend on the masses of particles,
and at t(16@' go through the cut associated with the
singularity j=j2(t) onto the unphysical sheet Lsimilar

to the singularities of form (35) and (36) considered in
the main text of the paper j.

The authors are indebted to Ya. Azimov who has
drawn their attention to the problem discussed above.

has no singularities (35), (36).
Substituting Eq. (31) into this integral and omitting

for simplicity the factors X; 2
2X;~" in Eq. (31) (near

the singularity this factor can be taken outside the
integral at tq ——t2

——t/4) we obtain, changing the order of
integration,

1
ft'(t) =—

2! (2i)'

F(t; t„t,)=-

J (t;t„t,)
(a2)

g+1—n(tg) —n(t2)

2p (t', t, ,t2)
dt',

(2 2/2+2 //2)2 t ~ (t t)

where the last relation must be understood in the sense

that the required number of subtractions has been made

$, t2t/2//e

APPENDIX B

We show that at small t the contribution from the
four-particle term of the unitarity condition in f, (t)

1 " a,f, (t')dt'
f '(t) =— (&1)

t' —t

which shift, as j increases, not to the right as in Eq. (30)
but to the left. Therefore, at a suKciently large j they
cannot coincide with the zeros of tanL(7r/2)m2) (at
m2 ——0, 2, 4, ) and the contour M2' must be drawn
so that these poles (indicated by circles in Fig. 10) lie
outside. It will be recalled that the singularity of inte-
gral (30) arises from coincidence in the plane of m2 of

'9 They only diGer by the numerical factor I+.'
(1~~2)l/0 (I~n2ma-12)'/2

I~= ~Pm ...~go,-I, , ~Pa-a ' ' '
(I y+2)l/2 —(1—yn9 —gn 12)1/R

(I ++2 f/+ gS ~ ~ 2~SR)1/S

/ty2 ($ y22 y22 ... y 2) (22—2)/2

-(&-u~ -" -u3)'~

Fxe. 16. The con-
tour of integration
in (B2) over t,

FIG. j.7. The con-
tour of integration
in (B2) over t2.

{/'4/2e-
I

Re &i, -'Re 2!t

f &(&a)
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F(f; &„&,)1
P, (t, ts) =—— dfr

2 2i c,. j+1—n(fr) —n(fs)

arises only for such j, t, and t2 for which the zero of the
denominator appearing across the cut t1)4p' and de-
forming the contour C1 of integration coincides with the

in Eq. (B3).The contours Ci' and Cs' (Figs. 16 and 17)
di8er from those represented in Figs. 2 and 3 in that
they are continued to ~.

The function F(t,ti, fs) has singularities at f'"=tP'
+fs't' t&=0, fs=0. If Refs'i')Ret'i' the singularity
$r'"= I'"—ts i' of the function P(f,ft, fs) is absent on the
physical sheet of the plane t1 represented in Fig. 16
since the point t1 for which Re/1'~'(0 lies below the cut
made in Fig. 16 left of the singular point t1=0.

Therefore at Ret'j'&Ret~'~' the singularity of the
integral over t».'

points t&=0. This singularity, given by the condition

j+1=~(fs)+~(0),

i.e., j=n(fs), appears on the cut of the plane fs, deforms
the contour (as is indicated in Fig. 17) and reaching
the line Ret2'" ——Re/'" does not lead to the singularity
of integral (B2)

(B4)

This means that the singularity of this integral arises
only from the region of small (or complex) fs, fs&t. Since
f is small the quantity ft'i'=t'" —fs" is also small (or
if it is not, it is complex). In either case the particle
masses cannot enter into the expression giving the loca-
tion of the singularity. Actually the singularity of inte-
gral (B2), (B4) arises from the point fr= fs ——t/4.
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Statistics of the Thermal Radiation Field*
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The characteristic functional is calculated for a system of bosons obeying linear field equations. The
system is assumed to be in equilibrium, and the density matrix is taken to be of the form (lrr}

~ p((ra})
= Q, g„„„(1—z„)s„"»,where ft labels the individual modes. From the characteristic functional, the moments
and distribution functions of an arbitrary number of Geld components are derived. In addition, it is shown how
to obtain the density matrix from the characteristic functional, and, for the system in question, the original
density matrix is recovered. Explicit calculations are performed for the electromagnetic field in an unbounded
domain and in a semi-infinite domain bounded by a perfectly conducting plane.

I. INTRODUCTION

]' 'rSING the methods of quantum field theory, we

shall compute the characteristic functional for an
electromagnetic field in thermal equilibrium within an
enclosure of arbitrary size and shape. From this func-
tional, we shall compute the moments or correlation
functions and the probability distributions for any
number of field components at the same or diGerent
points in space-time. ' We shall see that the probability
distribution is a multivariate Gaussian function. There-
fore, all correlation functions are expressible in terms of
the two point correlation function. To exemplify the
result, we shall explicitly calculate this correlation
function for an unbounded domain and for a semi-
infinite domain bounded by a perfectly conducting
plane. For the unbounded domain our results agree with

*This research was supported by the U. S. Once of Naval Re-
search, under Contract No. NONR 285-(48).

' Of course, the distribution functions are physically meaningful
only when they refer to points at which the field components
commute. For the electric and magnetic field components, this
means that no two points lie on the same light cone.

those of Sarfatt, ' Bourret, ' and Mehta and Wolf. 4

The correlation functions for a semi-infinite domain
do riot seem to have been calculated previously.

The deduction of the Gaussian distribution functions
for black-body radiation in an unbounded domain has
already been given by Glauber" and Holliday. ' These
distribution functions were used implicitly by Purcell'
and explicitly by Mandel and Wolf' in order to analyze
the intensity interferometry experiments of Hanbury-

' J. Sarfatt, Nuovo Cimento 27, 1119 (1963),' R. C. Bourret, Nuovo Cimento 18, 347 (1960).
4 C. L. Mehta and E. Wolf, Phys. Rev. 134, A1143, A1149

(1964).
' R. J. Glauber, Phys. Rev. Letters 13, 84 (1963); Phys. Rev.

130, 2529 (1963); Quantum Optics and Etectronics: The 1964 Les
Houches Lectures, edited by C. DeWitt, A. Blandin, and C.
Cohen-Tannoudji (Gordon and Breach, Science Publishers, Inc.,
New York, 1965).

~ R. J. Glauber, Phys. Rev. 131,2766 (1963).
7 D. Holliday, Phys. Letters 8, 250 (1964); see also D. Holliday

and M. L. Sage, Ann. Phys. (N. Y.) 29, 125 (1964).' E. M. Purcell, Nature 178, 1449 (1956).
9 L. Mandel and E. Wolf, Phys. Rev. 124, 1696 (1961).


