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We give relativistic extensions of the Faddeev equations for three-particle scattering. They are linear inte-
gral equations for six amplitudes, one of the particles being off the mass shell. They satisfy exactly three-
particle unitarity. These equations are obtained by applying the techniques introduced by Blankenbecler and
Sugar to multiladder diagrams. Accordingly, the two-particle scattering amplitudes, which appear in the
kernel of the equations, depend on the energy of the third particle. We study the equations for these ampli-
tudes. If one replaces these two-body amplitudes by phenomenological amplitudes satisfying unitarity, one
gets phenomenological relativistic equations for the three-body problem. When the two-body amplitudes
are approximated by the contributions of bound states and resonances, the equations can be reduced to a set
of integral equations in one variable. As a by-product of this study, the following results have been obtained :
(a) a new proof of unitarity for the Lippmann-Schwinger and Faddeev equations; (b) a proof of the analytic
properties of a resonance form factor in the nonrelativistic theory; (c) a proof of the asymptotic behavior of
these form factors, which uses functional-analysis techniques and is a rather general method for investigating
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the asymptotic behavior of solutions of Fredholm equations.

I. INTRODUCTION

EVERAL sets of equations have been proposed
recently for solving the nonrelativistic scattering
three-body problem."—* Each of them is a set of linear
integral equations in momentum space which allow one
in principle to compute the off-the-energy-shell three-
body scattering amplitude once one knows the off-the-
energy-shell two- body amplitude. They ensure unitarity
in the three-particle channel.?

As they stand, these equations are not very useful
because of the high number of variables involved in the
integrations. However, a natural approximation consists
in taking into account only the contributions of bound
states, resonances, and virtual states to the two-body
scattering amplitude, i.e., to the kernel of the Faddeev
equations.® As a result, these equations separate into
one-dimensional integral equations which are easily
solved.?:?

Some of the most attractive three-body problems are
concerned with resonances of three elementary particles.
However, it is obvious that in that case, a relativistic
version of the Faddeev equations must be found.

This paper is concerned with the search for such rela-
tivistic three-body equations. More precisely we have
looked for equations having the following properties:

(a) They should be relativistically invariant, i.e.,
their form should not depend on the reference system.
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(b) They should be linear integral equations for an
off-the-mass-shell three-body scattering amplitude.

(c) They should exhibit explicitly the nonconnected-
ness of the three-body scattering amplitude.

(d) They should involve only some two-body scatter-
ing amplitudes as ingredients in the inhomogeneous
terms and the kernel.

(e) They should be Fredholm-type integral equa-
tions. More technically, some power of their kernel
should be of the Hilbert-Schmidt type.

(f) They should satisfy, automatically, unitarity in
the three-particle channel.

(2) If possible, they should be simple enough
to be solved on a computer, by use of reasonable
approximations.

Most of these conditions have been inspired by an
analogy with the Faddeev equations. They have no
fundamental meaning. For instance, condition (d) is
rather a limitation than a desirable feature, and crossing
is not mentioned because it is not compatible with
these properties. However, such equations would help
us to extend our understanding of relativistic three-body
systems.

In Sec. 2, we recall the method used by Blankenbecler
and Sugar to write an equation for a relativistic off-the-
mass-shell two-body scattering amplitude satisfying
exactly two-body unitarity. Some ambiguity is exhibited
in this procedure.t In Sec. 3, we introduce for compari-
son an off-the-energy-shell, on-the-mass-shell nonrela-
tivistic two-body amplitude satisfying an equation
analogous to the Lippmann-Schwinger’ and to the
Blankenbecler-Sugar equation. In Sec. 4, we give a
proof of unitarity for the ordinary Lippmann-Schwinger
equation. This proof is new and essentially based on the
fact that the Lippmann-Schwinger equation is of the
Fredholm type. It is easily extended to the Blanken-
becler-Sugar types of equations as well as to the equa-

8 R. Blankenbecler and R. Sugar (unpublished).
7B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1960).
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tions introduced in Sec. 3. In Sec. 5, we introduce a
three-particle propagator which is the function E; used
by Blankenbecler and Sugar. Some ambiguities are
unavoidable in this definition and are exhibited.

In Sec. 6, we write linear equations for two-body
scattering amplitudes constructed with a three-body
propagator. In Sec. 7, these equations are shown to be
of the Fredholm type and to ensure two-particle uni-
tarity. It is shown also that if there is a two-particle
bound state or a resonance, these amplitudes have a pole
when the total energy is equal to the mass of the bound
state or the resonance. The residue of the amplitude
then factorizes in the product of two form factors. In
Sec. 8, we prove the analyticity properties of the form
factors. The proof is made for the ordinary Lippmann-
Schwinger equation, but it is valid for all the equations
used in this paper. This proof is valid for the form factors
of resonances and virtual states as well as for bound
states. In Sec. 9, we prove the asymptotic properties of
the form factors when the energy tends to infinity.
While it is easy to guess their asymptotic behavior, it is
less easy to prove it. Our proof makes use of a new
functional-analysis technique for finding the asymptotic
behavior of a Fredholm-type equation. It is valid for a
bound state or a resonance. In Sec. 10, we describe the
three-particle scattering amplitudes that we are going
to use. They can be considered as defined by the sum of
a set of ladder-type diagrams. However, the rules of
correspondence between graphs and matrix elements
are not the Feynman rules and are given explicitly.
These rules have been found as the result of a trial-and
error process. We believe they are unique but we have
no proof for that belief.

In Sec. 11, we write linear integral equations for these
three-particle amplitudes. They satisfy conditions (a),
(b), (c), and (d). In Sec. 12, we show that these equa-
tions are of the Fredholm type and we give the essential
steps of a proof of unitarity. (This proof is extended in
the Appendix.) In Sec. 13, we show how these equations
reduce when one makes use of the conservation of
angular momentum and parity. It has also been checked
that they satisfy the Utopian condition (g). That is, if
the two-body scattering amplitudes in the kernel are
replaced by the sums of their bound states and reso-
nances poles, then the equations reduce to a set of
coupled integral equations in one variable. In Sec. 14,
we give a three-body version of Sec. 3. It gives a set of
equations for on-the-mass-shell, off-the-energy shell
three-body scattering amplitudes. These equations are
written in the total center-of-mass system of the three
particles and are very similar to the Faddeev equations.
They are not covariant although they use a correct
relativistic kinematics and satisfy the relativistic form
of three-body unitarity. When the customary pole
approximation is made on the two-body scattering
amplitudes in the kernel, these equations yield a set of
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coupled integral equations in one variable. Section 15
contains the conclusions.

An Appendix gives an explicit proof of unitarity for
the ordinary Faddeev equations and for the equations
of this paper. These proofs are new. Sections 4, 8, 9, and
12, which contain important but rather technical points,
can be skipped in a first reading.

2. TWO-PARTICLE SCATTERING: ORIENTATION

It has been shown by Blankenbecler and Sugar how
to comstruct an equation for a relativistic two-body
scattering amplitude satisfying exactly two-body uni-
tarity for any value of the total energy.® As their con-
siderations will be used and extended here, we recall
their main results.

One starts from the Bethe-Salpeter equation,®

t(pl,PZ; Pl,aPZI)
=V(pr—p)+ / V(p1—q0)8(p1tp2— q1—g2)dgadge

XG(g1,92)H(q1,q2; p1'p2), (2.1)

where
V(p)=g[p*—u*T?, (2.2)
G(q1,92) =Go(q1; g2)=—1i[(g:>—m*)(g>—m?) I, (2.3)

In place of this propagator G(g1,g2) one introduces the
propagator
Gi(g1,92)=E2(Q,9) (24)

Q=qtq; s=0%
and

w4
()" L] ], o

o+ (pP—m?)=5(p*—m*)O (po) . 2.7

This function is easily computed if one uses the ele-
mentary identity

8(a+b)d(a—b)=%0(a)d(b),
and is given by

Ex(Q,9)=4md[Q.q]Ls/ (m*— ¢*) *[4(w*—g*)—s]7*. (2.9)

Equation (2.1) with G=G; is a linear equation for
t(pr,p2; p1sp2), which is now an off-the-mass-shell
(g125%m?; 227 2), on-the-energy-shell (Q=P=P’) ampli-
tude. It satisfies two-body unitarity for any value of s
as a comparison of Eq. (2.6) and the Cutkosky rule
suggests.® This point will be explicitly verified in Sec. 4.
The § function in Eq. (2.9) ensures the three-dimen-
sional character of the equation.

8 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
9 R. Cutkosky, J. Math. Phys. 1, 431 (1960).

where

7=3(q1—¢q2) , (2.5)

where

(2.8)
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It is important to realize that there is an ambiguity
in all this procedure and that the propagator is not com-
pletely specified by the requirement of unitarity. For
instance, one could introduce

ds’

G2(q1,92) = 2w+ (12— m?)

4m? S’—S

o[ o] ] o

Then Eq. (2.1) would define an amplitude for ¢; on the
mass shell, and this new amplitude would also be
unitary. The prescription (2.6) is the only one which is
symmetric with respect to both particles.

3. LIPPMANN-SCHWINGER EQUATION

One can put both particles on the mass shell by using

another propagator,

© §[/s'—Q"1ds
Gs(g1,42) = 67 (g1°— m1) 6+ (go*—m?) / /
4m? §—=3

= 6+(q12_m2)5+(q22_mZ)/s—1I2(QO2.__s) .

In order to restore the balance of conserved quantities
and homogeneity, it is necessary to suppress the &
function of energy conservation in Eq. (2.1), which
now reads ‘

(3.1)

H(p1,p2; P1,p2) = / V(p1—q1)6(P—Q)d?q1d*qa[ Qo?—s ]!
X t(q1,92; 41',02") (92°¢2) ™ (3.2)

q1°=(qi’>+m?)1%;  p1°=(p2+m?)V/%
0= (q2>+m2)!/2.

The Lippmann-Schwinger equation (3.2) is very
similar to Eq. (2.1) with the prescription (2.4), although
not identical. Its unitarity will also follow immediately
from the proof of the next section. It is obvious, but
important, that the prescriptions which lead to Eq.
(3.2), as well as the equation itself, are not covariant.

with
(3.3

4. EQUATIONS OF THE LIPPMANN-SCHWINGER
TYPE AND UNITARITY

We shall prove the unitarity property for the solution
of the ordinary Lippmann-Schwinger equation
(s)=V+V(Ho—s)"U(s), (4.1)

where

Ho=p1%/2m1+ps*/2ms. (4.2)

The proof will be extendable trivially to the case of the
equations introduced in Secs. 2 and 3. Let us suppose
that ¥ is a converging superposition of Yukawa po-
tentials. It has been shown by several authors that in
that case the kernel in Eq. (4.1) is of the Fredholm
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type, even when s tends to the positive real axis.!® The
proof by Lovelace, for instance, can be extended im-
mediately to the equations of Secs. 2 and 3.

In order to prove the unitarity property of the solu-
tion of Eq. (4.1) let us proceed through the following
steps:

(a) Write the symmetric Lippmann-Schwinger equa-
tion
Us)=V4i(s)(Ho—s)1V. 4.3)
It is of essential importance for the proof that Eqgs. (4.1)
and (4.3) have the same solution.
(b) Take the adjoint of Eq. (4.3), namely, write

£(s)=V+V(He—3)4l(s). (4.4)
(c) Introduce the difference
Al(s)=1(s)—1'(s). (4.5)
Use Egs. (4.3) and (4.4). Then, we get
Al(s)=2mwiV(Ho— )it (s)+V(Ho—s)"1Al(s).  (4.6)

(d) Compare Egs. (4.1) and (4.6). They are integral
equations for #(s) and Ai(s), respectively. The kernels
are the same. The inhomogeneous term of Eq. (4.6) is
obtained by letting the operator §(H,—s)#(s) act on the
variables of the final state, which are but dummy
indexes for the integral equation. Since the kernel is of
the Fredholm type, the solutions are related by the
same linear relation as their inhomogeneous terms, i.e.,

Al(s)=2mwit(s)6(Ho—s)t'(s) . 4.7

The same proof holds for the equations of Secs. 2 and
3. Here the only delicate step is step (a), i.e., to show
that the symmetric equation has the same solution. The
simplest, if not rigorous, proof is by perturbation expan-
sion. A correct proof is via a Fredholm expansion. The
results are, for Egs. (2.1), (2.4), and (2.6),

At(?h?% PlI’P2,)
i f Uprypas 01,093+ (gr—m?) 5+ (ge?—m?)

Xo(Q*—s)s712d*q:d*qat (q1,q2; p1',p2) ,  (4.8)
with pi, pe, p1', po’ on the mass shell. For Eq. (3.2),

At(p1,ps; p1,p2’) = 2mi / t(p1,p2; p1',p2’)

X 8(Qo—s"?)d*q1d°q2(1°¢=") '4(q1,q2; P1',p2) . (4.9)

L. D. Faddeev, Stoklov Mathematical Institute Report No.

69, 1963 (unpublished); L. Brown, D. I. Fivel, B. W. Lee, and

R. F. Sawyer, Ann. Phys. (N. Y.) 23, 187 (1963); C. Lovelace,

Ref. 3; and S. Weinberg, M. Scadron, and J. Wright, Phys. Rev.
135, B202 (1964).
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5. THREE-PARTICLE PROPAGATORS

One can define a propagator 773 for three particles:

© ds’
Ly=4n° / —_
om? S’ —S

X H(g?—m?)o*(g*—m?)5* (g5’ —m?),  (5.1)

where

s'=(q1tqatgs)

This function has also been introduced by Blankenbecler
and Sugar.® In order to define it precisely, it is necessary
to introduce a basis of three vectors dependent on gz, g2,
g3 including Q=g¢1-+¢2+¢; as a basis vector in place of
the set q1, ¢, ¢s. Let us call (Q,p1,p2) such a basis. 3
will then be defined as

/

° ds' gs\U2
E3(Q:P17P2):472/ DI:(") Qaplap2]7 (52)

om? S’ —S$ s

where

D(Q,p1p2) = 6 (g12—m?)§+(qs?—m?) M (gs>—m?)
s=Q%.

Tt is easily checked that the function Es(Q,p1,p),
where (pi,p2’) is different from (p1,p2), will generally
be different from E3(Q,p1,p2)-

Contrary to the two-particle case, there is no basis
symmetric in all momenta for more than two particles,
so that there is not a single “natural” function F;. As
we shall see in the following, this ambiguity will be in
fact a useful tool for finding three-body equations.

We shall use the basis

(5.3)

Q=q1+qt+qs; P1=¢s; (5.4)
(a7677) = (172?3) b

and we shall hence define the three-body propagator as

P2=qy,
where

E@(s)=4x25t(qs2—m?*) 61 (g, —m?)

0 d.SI S/ 1/2 2
X/ - 6+{[<—> Q—‘]ﬂ_%:] —m2}, (5.5)
om2S —S§ S

or, in the total center-of-mass system,

m? witwstws
E(a)(s) =
wiwaws (w1twetwg)?—s
Xa((]ﬁo"“*’ﬂ)a(QvO—wv) , (5.6)
wa= (qa-+m?)'2. (5.7)

We have dropped the index 3 in E( since it will be
the only propagator used from now on.
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6. TWO-BODY AMPLITUDE WITH THREE-BODY
PROPAGATOR

Let us introduce a new two-body scattering amplitude
11D (pa,ps; p2’,p3’). It describes the scattering of particles
2 and 3 under the influence of a Yukawa potential, a
third particle (1) being present and not taking place in
the scattering.

This amplitude will be chosen to satisfy, for instance,

(P1paps| 1P (s) [pd P2 ps")
— (pupapel Vil pipa o)+ / diqudigudys

X (Dipaps| Vil 0192950 E ® (91,92,95)

X {Q1g2gs| 1P (s) [ pa'pa'ps),  (6.1)
where
(ppaps| Vil pi'ps' i) =c18(p1—p1)
X 8(patps— pd’ — p3 ) (pa—po) w217 (6.2)

We have taken the spectator particle (1) as being ex-
plicitly on the mass shell. The factor w; comes from the
invariant normalization of momentum eigenstates.
Then, we can factorize ({1 (s)) as follows,

(p1peps| 1P (5) | py'pe’ ps’) = w16(p1’ —p1)
X 8(pr'+ p’ — p1— p2)1@ (pa, ps; p2'p3)

so that Eq. (6.1) will become, written, for instance, in
the total c.m. system of the three particles,

112 (pa,ps; po',ps")

(6.3)

=Vi(pa—ps)+ / V1(P2“?2)5(92+(]3—Pz—-?s)d3Q2d4(13

% (w1t wstws)
w2w3[(w1+wz+wa)2—5:|

We have written p; to insist on the fact that this vector
is on the mass shell.

We shall also use the amplitude £1® (pe,ps; p2’,ps")
whose ps is maintained on the mass shell. £ and #®
are on-the-energy-shell covariant scattering amplitudes,
one particle being kept off the mass shell. They are
dependent, however, on the spectator particle 1. Note
that, after integration upon d‘gs, the scattering ampli-
tude £, can be thought of as an on-the-mass-shell,
off-the-energy-shell amplitude ¢ (ps,ps; p2’,ps’; 5177,
with s#witwstws.

(6.4)

11(qs,q3; P2 ,p3) -

7. PROPERTIES OF #®

If one integrates over dg® in Eq. (6.4), using
8(g2"+gs°— p2"— p3%), one is left with an equation very
similar, once again, to the Lippmann-Schwinger equa-
tion. Accordingly, we shall mention without detailed
proofs the following results which are obtained easily by
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simple modifications of proofs valid for the Lippmann-
Schwinger equation.

(a) Equation (6.4) is of the Fredholm type. The
proofs of Faddeev or Lovelace can be used for this
result.® In particular, the proof by Faddeev ensures that
the kernel in Eq. (6.4) is compact in a Banach space B.
This space is the space of functions f(qs) with the norm

[f((lz)—f((h)[“:l’ 1)
|q2—qo'[#

sup (105 | (a9 |+

where 0<pu<1.

(b) The proof of unitarity of Sec. 4 can be easily
extended to #® to show that it satisfies relativistic
two-body unitarity as given in Eq. (6.8).

Tt will be useful to have the unitarity of £,® expressed
as three-body unitarity. If one introduces the discon-
tinuity of E((¢1,gs,g3); 2miAs(s), where

As(s)= A3(g1,92,95)

=0t(q*—m?) (g —m*)ot (g —m?) , (7.2)
Eq. (6.1) can be shown to give
Aty (s) = 2mit 1P (5) Az (5) 1D 1(s) . (71.3)

In this equation, the operator multiplication is under-
stood as an integration over d*q:d%gsd*qs, so that Eq.
(4.5) obviously is relativistic unitarity.

(¢) The method of Lovelace can be used to show that,
as a function of s, the scattering amplitude #® is a
meromorphic function defined in two Riemann sheets
connected along the real axis cut from (w;+2m)? to
infinity. When some of the eigenvalues of the kernel are
equal to 1 for s=s, in that domain, #;®(s) has a pole at
$= 5o, i.e., in the neighborhood of s,,!

R(ps,ps; po',p5)

1@ (p2, ps; P2’ ps’,5) (7.4)

S—35o

Inserting this expression into Eq. (6.4), one finds that
the residue factorizes into

R(p2,p3; 02, 03) = g(D2,03)g™* (02 p5) - (7.5)

The function g(p1,p2) is called the form factor. It satisfies
the homogeneous equation

g(D2,ps) = /Vl(P2— q2)8(patps—qa—gs)d%qad*ys
KX (wiFwetws) (waws) ™!
X [(w1t-wstws)?—s1g(qs,gs) -

These properties are well known in the case of the
ordinary Lippmann-Schwinger equation. A convenient
approximation which has been discussed by Lovelace?
and Basdevant’ consists in retaining only in #® the
expressions of Eq. (5.6), i.e., to write a sum over bound

(7.6)

11 There is a dependence of all these expressions upon wi, which
we do not write here explicitly.
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states, resonances, and virtual states,

gm(p N )gm(P ',P )
1D (po, ps; Dz'?a')=§ 2\/;— \/:n .

We have replaced s by s'/? in order to reduce the de-
pendence upon w;.

(7.7

7. ANALYTIC PROPERTIES OF FORM FACTORS

Because of rotational invariance, the form factors
will behave as a member of an irreducible representation
of the rotation group in the total c.m. system!?:

g(D2,p5) = 8(P — pa— ps)8(p"—w2)g(p2) Vim(P2) ,  (8.1)
where dor(5)
¢?dgr?(Q_w
= | Vilpg)———(9)  (8.2)
g(p) / (pq)[(zw)2_s]w2w3g(q
and ( )
2 2+ 2+ 2._|_ we— 20 2:
Vl(P;Q)=‘g;QZI:P 7 ? ] (8.3)
P9 2pq
where
wo=(p*+m?)1/2,  g0=(q*+m?)/? (8.4)
and

Zw=w1+w2+w3.
When s is in the second Riemann sheet (i.e., in the

case of a resonance or a virtual state), Eq. (8.2) should
be replaced by

4(5) =2V, po) g )

¢*dgm* (2 w)
[ w)?—sJwows

where p9 is defined as the value of |p,| which satisfies

(8.5)

w3
+/m@m 5,

(8.6)

witwstws=s.

It is important to know the analytic properties of g(p)
as a function of p in order to reduce the possible func-
tional forms by which it will be approximated in prac-
tice. In the case of the ordinary Lippmann-Schwinger
equation this study has been made for the form factors
of bound states.’® Lovelace has also given a study of the
case of resonances, but the domain he obtains is not
large enough for practical applications.?

We shall now sketch another method which will be
exemplified in the case of the ordinary Lippmann-
Schwinger equation and of a bound state. It is trivial to

12 This procedure is not relativistically invariant, because of the
dependence of the form factors upon w;.

13D, Fivel, Nuovo Cimento 22, 326 (1961); L. Bertocci,
C. Ceolin, and M. Tonin, Nuovo Cimento 18, 770 (1960).
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extend it to Eq. (8.2) or (8.5). The equation reads

(8.7)

00 2d
0= [ Voo 5w,

N s
U(p,9)= —Qz(——); (8.8)
?q 2pq

U(p,q) has singularities at ¢g=0 (but ¢2U is not singular
at that point) and at

pEig==ipn. (8.9)
The integral in Eq. (8.7) therefore converges into a strip
Su: |[Imp| <u. We can then deform the contour of inte-
gration from 0 to « into S,. Then the integral in
Eq. (8.7) will converge in the strip Sy, indented by the
parts (iu,2iu) and (—7u1,—2iu) of the imaginary axis.
When z is complex the singularities in ¢ of Eq. (8.9) can
pinch the singularity of ¢>=2z. However, in that case
one has a resonance as in Eq. (8.5), and this confluence
of singularities can be taken care of by rewriting the
equation in the form (8.2). The process of the strip ex-
tension can be iterated to show that g(p) is analytic as
a function of p into the complex plane cut from ¢u to
i and from —iu to —ieo. This proof is admittedly
very simplified, but it is easy to make it into a rigorous
proof as is rather obvious and as we have checked in
detail.

Here y=min (4,ep) and the ¢’s are constants, generally
different from each other. Putting these equations
together, we get the above statement.

(c) Since g& By, by iteration of lemma (b), one gets
gE By, ie.,

g(p)ptti<c as p—wo. QE.D.  (9.6)

The case in which p tends to zero can be treated in the
same way to give

gp)p~'<c p—0. 9.7)

10. THREE-BODY AMPLITUDE

In order to build up equations for the three-particle
scattering amplitude, one could start from a sum of all
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9. ASYMPTOTIC BEHAVIOR OF THE
FORM FACTORS

Our problem is now to investigate the behavior of g(p)
when p tends to infinity. Here again we shall work on
the simple Lippmann-Schwinger equation (8.7) as an
example of the techniques to be used.

When p —, one has, according to Eq. (8.8),

U(p,g)=eq'p™*, (9.1

which suggests that g(p) behaves like p~—2 when p — .
Indeed when this assumption is fed into Eq. (8.7) it is
found to be consistent.

However, this does not constitute a proof, and it is
found deceptively difficult to provide one. The proof
that we are going to propose appears to be new and
seems to be of a wide applicability to the solutions of
Fredholm-type equations. It proceeds as follows:

(a) Introduce the Banach spaces B, characterized
by the norm

I

B~ 1@
<1+p2>a/21f<p>l+‘%_—f?—

(1+1>2)} .
(9.2)

Clearly B,C Bg for o> and, according to Sec. 7, g& B,.

(b) The Lippmann-Schwinger kernel applies B, to
Bety1_qU By, 1 being as small as wanted. The proof of
this lemma goes as follows: Introduce two fixed numbers
eX1 and A>>1 and suppose f(q)& Ba. Then

® 2d o 1 l+1d 0 id
./ U@ﬂfzqf@)<ﬁ/ »{——EL—J _£<i/ ? q< c, 9.3)
4 ¢~ ap PP+ tptd gt Jap gttt po
ap 2 a1 p2dg
[ veai o] <o ettt 0.9
ep q2_z ep P2 PZ pa pa—f—l Pa+1—17
€p qqu LT | pq +1 quq ¥ q 34 q c c
[ veai=sl<e[ o ] @< [ —trte[ <t 09
0 *—z 0 pq P2+q2+u2 ]g2_zl o pl+2 v pl+2 Pl+2 Pa—f—l

types of ladder-type diagrams where three particles
propagate. It is easy to write a set of linear integral
equations for the amplitudes corresponding to the sums
of these graphs.!*

These equations are very similar both to the Bethe-
Salpeter equation and to the Faddeev equations and
have therefore the following properties:

(a) Their kernel depends on the off-the-mass-shell
two-body scattering amplitude.

(b) They satisfy three-body unitarity only in a
limited region of energy depending upon the range of the
potential.

4D, Stojanov and A. N. Tavkhelidze, Phys. Letters 13, 76
(1964); V. P. Shelest and D. Stojanov, zbzd. 13, 253 (1964).
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From a practical standpoint they give rise to some
difficulties:

(a) The usual difficulties of the Bethe-Salpeter equa-
tion with respect to the non-Euclidean metric of mo-
mentum space.

(b) Our ignorance of the properties of the solution of
the two-body Bethe-Salpeter equation makes it difficult
to discover whether the three-body equations are of the
Fredholm type.

(c) They involve too many integrations to be of
practical use on a computer. Therefore, these equations
are not what we are looking for if we want to satisfy
the conditions stated in the Introduction.

We are now going to extend the techniques of Blanken-
becler and Sugar to a set of three-particle ladder dia-
grams. Consider for simplicity three distinguishable
scalar particles of the same mass. In the ladder approx-
mation, the three-body amplitude T'(pipeps; pi'peps’)
will be given by the sum of all diagrams of the form
shown in Fig. 1. We will call To(p1peps| p1'p2ps) the
sum of all Feynman diagrams in which the first inter-
action takes place between the pair (8,y) (a%B5%v;
a,B,v=1,2,3).Inananalogous way 7'y (p1psps| p1' 92’ ps")
will represent the sum of all diagrams in which the
last interaction takes place between 8’ and 4’; and
Tof (p1paps| p'pops’) the corresponding sum of dia-
grams with particles (8y) interacting first and (’v')
interacting last. In this way, it is obvious that

T(prpaps; pr'p2'ps")

3 3
= 'g,l To(pipaps; pr'pe'ps) = a;1 Te(pispi)

3
= 2 Tup(pip). (10.1)

a,f’=1

Needless to say, these amplitudes are considered off
the mass shell. However, in our final equations we will
be allowed to put two of the three initial or final particles
on the mass shell. For example, if we are considering
To(pipi’) we will need it either when particles («,8) or
when particles (a,y) are on the mass shell. Therefore,
we shall use the following notation:

Taﬂ(Pi:Pi,) = Ta(?h?fil) I pa’=mqa’, pg=mg* . (1023')

The requirement of keeping only the elastic part of
the amplitude means that our three-body amplitudes
will have only the Landau singularities associated with
the three propagators cut by lines B, C, D, --- and the
propagators cut by lines 4, A’. The prescription we will
follow for getting such an amplitude is to insert the
function E; defined previously in the sections B, C, D of
the diagram and also the same function in sections of the
type 4, A’. By using the Cutkosky rules for the dis-
continuity it is possible to convince oneself that this is
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Fi6. 1. Ladder-type diagrams considered in the derivation
of the relativistic Faddeev equations.

the correct prescription. Anyway, we will come back to
this point later.

Because of the ambiguities that are present in the
calculation of E3;, we have to be more explicit in our
prescription. If V, represents an exchange between
particle (8,v), then following any V, we will insert the
function Ev, with y>£q, introduced in Eq. (5.6). This
procedure is not symmetric starting from the right or
from the left side of the diagram; however, the final
explicit expression for a graph will be symmetric under
the exchange of the initial and final variables. This
result will be obtained by exploiting the ambiguity that
we still have in the function E;37; namely, given a certain
V. we can choose either Ef or E7; a#B5%y.

11. THE THREE-BODY EQUATIONS

Let us define the variable

s=(pr1+patps)?=(p1 '+ +pd)?,

which is the total energy in the total center-of-mass
system P=P'=0. It will be a fixed parameter in our
equations. Following our prescription, it is easy to
obtain the following equations for T.(s) and Tu(s):

To($)=1a($)+2 tal)EF(s)(1—8ay) T(s) , (1L.1)

To(s)=ta()F2 Ty()(A—duy)E¥ (s)tar(s), (11.2)

f«(s) being the solution of the two-body equation with
the Green function E; studied in Sec. 6. Equation (11.1)
is an equation in the initial variables p;, the final vari-
ables p/ being fixed parameters. The opposite is true for
Eq. (11.2). We can also write equations for 7,o in the
“right” or “left” variables:

T aor(5) = Baarta(s) 42 ta(s)EP(S)(1—8ay) Tyar(s) ,

a#B#y; (11.3)
T o (5)=baartar (s) 22 Tay (s)(1—8ary) EF (s)tar(s)
,yl
o#EB#Ey . (11.4)

Notice that the Green’s function E; that we use in
these equations now is prescribed unambiguously. In
the equation for T.(s), for example, next to the ampli-
tude T(s) we put the function E#(s), a=£B87=y.
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Let us write Egs. (11.1) more explicitly, in order to study them in more detail:

w)
To(Pappprvsba 06 D7) =wad(Da— Do Va(pspry,ps p+))+ f d4qﬁta(f’ﬂ?7:‘]ﬂ%)—_ 8(gp— ) Ts(Dagsqr,P)
wpwy (w)2—s
™ (Lo) ;
+ / diqta(pppr,98gy)—— —————0(qyy—wy) To(Dagsqy; pi). (11.5)
WeWy (Zw)z—s

In this equation we have already separated the total § functions of conservation of energy-momentum which appear
in the two- and three-body scattering amplitudes. The integration variables are taken to be gg and ¢, in the integrals
which contain Tg and T, respectively.

In Eq. (11.6) we have put the external momentum p, on the mass shell. Similarly, if we write the equation for
Tg and T, we see that we can put pg*=m? and p.2=m?, respectwely The three equations are still consistent with
this restriction because when we integrate the functions 74 in (11.5) we can choose g and ¢, as variables, respec-
tively, and still keep that restriction.

Therefore, after one performs the integrations over dgg, or dgs,, Eq. (11.5) reduces to

(2w)
To(papspr,pi)= 0ab(Da— Do )ta(Pppry, P8 Pyl)+/dQﬂta(P5P7,qﬁ97) P EE— <a)(paq3977?i/)
wpwy (Lw)?—s
(T ,
+fdQ7ta(PBP7:QHQ7) ——T (a)(PaQﬂ‘lei ) ) a¢ﬁ#7: Q, B’ Y= 1’ 2> 3. (11'6)
wpwy (w)?—s

These equations can be simplified still further. In the integral terms of the equations for 7’5 and 7', we will need
only T or T.", respectively. Then, we can put either pg or p, on the mass shell in Eq. (11.6) and get equations
for T,® and T',™. Notice that once we have done that, we are left with two- and three-body amplitudes in which
only one of the particles is off the mass shell. In the total center-of-mass system we have

31’2=Z 171'0:2 Qio=z pa’ . - (1)

If two particles, say a and 3, are fixed on the mass shell, then p,o=s5"2—w,—wg and we can write, for example,

Ta(ﬁ)(pa;pﬁ:p‘nl)‘vo; ?i,)z Ta(ﬁ)(pa,pﬁ;p'y; 51/2; Pt/) ’ (118)

so we can forget about the $,° variable and look at this amplitude as being ““off the energy shell,” because s1/25£ 3" w;.
The correct mass-shell amplitude is got by putting s on the “energy shell.”
We now introduce the notation:

ta(D8,Pv5 98,0) = LaP V(D5 D5 Us, G5 S12). (11.9)

These amplitudes can be obtained by solving Eq. (6.4) for {.f(psp,,4sq,) for example, because in that equation
g8, ¢y are dummy variables which can be given any value.
The final set of three-body equations is
w2 Zw
T (DaPgP ;S5 i) =wad(Pa—Da' Ve’ (P6Dv,5, 05Dy )+ / dqpteP(DeD+,5,q80,)— T5*(DaPpD,S, )
WeWy (Zw1)2—5

w2 2w
wpwy (w:)’—s

+ / dqst P (PsD+,5,450y) Ty (PaDsb,s,ps), (11.10)

a# B#y; e, B, y=1, 2, 3. In a more explicit form, they are

T12(S) t12(s) 0 0 t122(5) 0 t123(5) 0 1 le(s)
T+3(s) 113(s) 0 0 #%(s) 0 #%(s) 0 T43(s)
T2(s)| _ |tat(s) tl1(s) 0 0 0 0 £13(s) T2(s)
Ta)| " m | Tlan 0 0 0 0 6| PO |7 | (11.11)
T31(S) tsl(S) 0 f311(8) 0 tsm(s) 0 0 Tgl(s)
T32(S)l f32(5) 0 f:52‘(3> 0 t322(3) 0 0 T32(S>
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Go(s) being an operator diagonal in momentum space
whose matrix clement is

Wiwews (Zw,-)“’— S

12. PROPERTIES OF THE EQUATIONS

The foregoing equations are relativistic generaliza-
tions of the Faddeev equations; they are three-dimen-
sional and off-the-energy-shell. The main difference is
that, when simplifying the equations we started with,
we have doubled the number of amplitudes. As 7,5(s)
and T,(s) are different restrictions of the same func-
tion, the on-the-mass-shell three-body amplitude is one-
half the sum of the six amplitudes 7.f(s) taken on the
energy shell.

As the two-body ¢ matrices which appear in the kernel
have essentially the same properties as the solutions of
the Lippmann-Schwinger equations, the proof by
Faddeev of the compactness of the square of the kernel
of the nonrelativistic equations can be applied as well to
the set of Egs. (11.11) that we propose.

The proof of unitarity given in Sec. 4 can be applied
also to the nonrelativistic Faddeev equations and to the
relativistic equations of the previous sections. These
proofs are carried out in detail in the Appendix. Using
Egs. (11.1)-(11.4) we prove that 7'(s) satisfies the usual
three-body elastic unitarity condition

T(s)—T'(s)=+2miT(s)As(s) Tt(s). (12.1)

This is also a proof of the consistency of our prescrip-
tions for obtaining those equations.

It is important to realize that the proof of unitarity
uses only the fact that the two-body amplitude satisfies
unitarity and that the normalization of the state of the
spectator particle is invariant. It is therefore possible
to introduce into the equations any phenomenological
form for the two-body amplitude satisfying unitarity
without spoiling the wunitarity of the three-body
amplitude.
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13. SEPARATION OF ANGULAR MOMENTUM

Owing to the complete analogy of our equations with
the Faddeev equations, the separation of total angular
momentum can be carried on in the same way.!® If we
work in the center-of-mass system the three momenta
pipz2ps form a closed triangle in a three-dimensional
space, and the system can also be described by giving
the three lengths | p;| of the sides of the triangle, or else
w;=(p2+m*)!/2, and the orientation of the triangle in
space, namely: the three Euler angles (¢,0,¢) which
describe the rotation necessary to go from a space-fixed
system of axes to a “body-fixed” system of axes linked
to the triangle in a well-defined way. The set of quantum
numbers canonically conjugated to these variables are
the three subenergies w;; J, the total angular momentum,;
M, the projection of J over the body-fixed z axis; and
M ., its projection over the space-fixed z axis.

Of course, this procedure is not covariant; but it is
the simplest from the practical point of view. It is
straightforward to reproduce for this case the calcula-
tions carried out in Ref. 15. We shall not do it here; we
only want to point out the only differences: Relativistic
kinematics must be used, also the relativistic normaliza-
tion of momentum eigenstates

(p1p2ps| p1'p2'Ds) = H wd®(p—p/). (13.1)

The transformation kernel from the momentum to the
angular-momentum representation will be

8(py/+p2'+ps) (P12 ps’ | Pywrwsws, JMM )

27+ 1\1/2
( 2) 5(D1’+P2'+p3')5(P)

8w

XII 8(wi— (p*+m*) ) Daerr,” ¥,0,6) . (13.2)

Let us relabel the six amplitudes 7,%(s) which appear
in Eq. (11.12) by T®(s), =1, 2, - - - 6. After separating
angular momentum, we will get equations of the form

+7

T s ® J(wlwzwsywl/wz’wal ’ 5) =tpra® "(wlwgw;;; w1/w2'ws’) +> > H dw"K yraged 4D (wlwW3,w1"w2"ws//§ S)

; oo . h T,
KT ygre 300 D7 (w1 we w35 wi'ws'ws’; 5)

where 7 labels the rows and j the columns of the 6 by 6
matrices of Eq. (11.12). The reduction of parity can be
also carried out,'® the summation in (13.3) is reduced
only to the even or odd value of M”, according to the
quantum numbers J? of the state one wants to look at.

In Eq. (13.3) there are only two variables of integra-
tion because the kernel contains a §(w.—w,’’) since there
is always one particle which does not interact. In the
corresponding nonrelativistic problem, Lovelace and
Basdevant have shown that when one approximates the

A M =—T ) i

i#7; 1,7=1,2,3, (13.3)

two-body ¢ matrices by a bound state or resonance pole,
because of the factorization of the residue in the initial
and final variables the equations for 7 ara P9 (w,w") can
be transformed into a set of coupled linear integral
equations in only one variable.?®* We have checked that
the same is true for our relativistic equations. This fact
makes them very appealing from the practical point of
view, because the modified one-dimensional equations
are very easy to handle in a computer.

18 R. Omnes, Phys. Rev. 134, B1358 (1964).
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14. ANOTHER SET OF EQUATIONS

Following the same method as in Sec. 3, we can define directly an off-the-energy-shell, on-the-mass-shell ampli-
tude by considering the same set of ladder graphs as in Sec. 10, dropping all the & functions which ensure energy
conservation at each vertex, and introducing the propagator

ds’
G'5)= (2m)" [ 54(q )8+ a0 (gt = m5* /5 — (ot T — (14.1)
s'—s
The corresponding three-body amplitude can be written as
IT=T1+T:+Ts, (14.2)

where T, for instance, is the sum of all matrix elements whose graph has its leftmost interaction between parti-
cles 2 and 3.
The amplitudes satisfy

T'1(p1,02,03; P1'P2'Ps") = 11(p1,03; P25 )8(P1—p1’) w1

Ar? (w11/+w2”+w3") "3, 1 7 7
dps”dps” 8(pet-ps—p2”’ —ps”’)

8601”(.02"603” (w1/l+w21/+w311)2_s

X [T2(p1’p2/,’p3”; pllp2lp3,)+ T3(p1’p2”)p3”; pl’;p2,)p3’)] ’

+ / t1(p2,ps; P2 5ps’")

(14.3)

as well as two similar equations obtained by permuting the indices 1, 2, 3.
The amplitude ¢1(ps,ps; p2,ps’) satisfies

4 (w1+w2"+w3")
4w2llw3// (w1+w2//+w3//)2_s

X 8(patps—p2”’—ps")dpy"dps" ta(p2” 5" s p2'ps")  (14.4)

Vo—p)=gLle—o)—(p—p)—p*T".

(Note that the choice of the variable in the potential is somewhat arbitrary, owing to the nonconservation of
energy.)

The proof of unitarity given in Sec. 4 for the Lippmann-Schwinger equation immediately applies to Eq. (14.4).
On the other hand, the proof of unitarity given in the Appendix for the Faddeev equations applies to Eq. (14.3),
which is, in fact, extremely similar to the Faddeev equation. Equation (14.3) is, from a practical standpoint,
better than Eqgs. (11.12), since there are only three independent functions. On the other hand, their obvious defect

is to be dependent upon the system of reference. However, the unitarity of #; is not affected if one replaces Eq.
(14.4) by

11(p2,0s; P2'Ds") = V(p2—p2) + / V(p2—p2")

with
(14.5)

w2 1

t1(p2,ps; P2'5ps) = V(p2—p2)+ / V(p:—p2")

In that case (s—w1) appears as the energy of a two-
particle bound state. The same approximation can also
be made in the amplitudes of Sec. 6. However, this also
spoils relativistic invariance.

15. CONCLUSIONS

We have presented in Sec. 12 a set of relativistic
Faddeev equations which satisfy relativistic three-body
“elastic” unitarity. The three-body scattering ampli-
tude which in principle can be calculated with those
equations represents the part of the Bethe-Salpeter
amplitude for a set of ladder graphs which contains only
the contribution of three-particle intermediate states.

w1/1w2” (w2ll+w3/l)_(s__w1)

X 8(patps—ps”’ —ps”")dp:" dps" t:(p"" 03" ; p2',p5) -

(14.6)

The final equations (11.11) are such that the usual
mathematical techniques of potential scattering can be
applied to them.

We must emphasize that we did not undertake this
work guided by the belief that the Bethe-Salpeter equa-
tions represent something fundamental in high-energy
physics. As a matter of fact, we used the ladder diagrams
in order to obtain the final equations only; our main
interest was to obtain practical relativistic equations to
calculate the three-body amplitude once the solutions
of the two-body problems were known. In the practical
applications that we had in mind one does not start by
solving the two-body problem; the experimental in-
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formation is used and the two-body amplitudes are
approximated by the direct channel bound states or
resonance poles. That is the reason why this theory has
to be regarded only as a semiphenomenological one.

Among the relativistic three-body systems, probably
the most appealing is the system of three pseudoscalar
mesons, because of the number of three-body resonances
that are being found and because one can try to find the
pseudoscalar mesons themselves as bound states. The
computational procedure is in principle very simple.
After separating angular momentum, parity, and isospin,
one looks at the equation with the adequate J? and I,
and calculates the eigenvalues of the kernel. This gives
enough information to determine the three-body bound
states and resonances present in that channel. In
particular, work is now in progress! in the 3r system in
order to find the » meson in the 1~ channel and the
7 meson in the 0~ channel.

However, there is something which is lost in the
relativistic problem, and it is the simple relation that
there exists in potential theory between the two-body
¢ matrix with a two-body propagator f(z) and with a
three-body propagator £4(z),

(P1p2ps| a(2) | P1'D2P5")

=33 (pa—1"){(PsPv| ta(z—wa) | Ps'PY)
We= pa2/2m,, .

(15.1)

The dependence of our #,(s) upon w, is not so simple;
this point requires further investigation. This situation
is reflected in the fact that when one makes the “pole”
approximation for ¢,(psp,ps'p+), the form factors will
depend upon w,. However, they are still well-defined
objects; from the practical point of view that is not an
essential difficulty, because one always introduces phe-
nomenological expressions for the bound-state and reso-
nance form factors. Moreover, any form of the two-body
amplitude which satisfies two-body unitarity will pre-
serve three-body unitarity in the equations.
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APPENDIX. PROOF OF UNITARITY FOR THE
FADDEEV EQUATIONS

1. Nonrelativistic Equations

The Faddeev equations for the three-body scattering
operator 7°(z) are!

Ta(z) = ta(2)+z ta(z)

1
HO'—Z

(1=6841)T4(2), (A1)

where H, is the Hamiltonian of the three-particle system
and Z,(2) is the two-body ¢ matrix in a three-body

16 J. L. Basdevant and R. Kreps (private communication).
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Hilbert system. The meaning of the subindices is similar
to that explained in Sec. 11 for the relativistic case. Here
we assume that there are no two-body bound states,
so the only amplitude is the 3 — 3 scattering amplitude.
We also have

Tar(2)=taw(2)+2 Ty (B)(1=bary)—tuw(z), (A.2)

H(]_Z

Tow(2)= 6aa’la(z)+z ta(2) (1— 5417) Tva'(z) ’ (A-3)

HO—Z
T o (3)=0nartar(2)

td'(z) )
Ho—Z

+Z, Ta'y’(z)(l'_av’a') (A.4)

and
T)=5 Tu&)=L Tw()= T Terld).
The proof now follows the same steps explained in
Sec. 4.
(a) Taking the adjoint of (A.4), we have
Tau'(2)=bawta(2)
1

+Z ta'(2) (1=bary)Tay'(z). (A.S)

0—23

(b) Relabeling the indices a<>a’, and calling the
summation variable v in place of 4/, which gives

Ta’af (Z) = aa’alaT(Z)
1

+2 ta'(2) (1—=8a)) T+ (2). (A.6)

0—2

(c) Introducing AT e (2)=Taw(z)—Twa'(z) and
using (A.3), (A.6) and the unitarity condition for {.(z)
gives

ta(2) —tal (8) = + 2mito(2) 6(Ho—2)t4 (2);

we get

ATaa’(Z) =4 aa’(z)'l'z ta(z) (1_ 5a7)T7¢1’(Z) ’ <A7)

0—2
where
A qor () = 2mite(2) 8(Hy—3)
X [T,,,J(z)—i-%(l— Say)Tary'(2)],

A aar (2) = 2m0ito(2)5(Ho—2) (T Tar'(2))

= 2mito(3)6(Ho—2)Tor' (2). (A.8)



‘B 178

(d) Next, we define AT (2)=2 o AT we(z). Asd’ isa
dummy index in Eq. (A.7), we can sum over o’ and get

AT o= 27ito(2)8(Hy—2)T1(2)

1
Ho—'z

+ta(2)

(1—8,)AT,(z). (A.9)

Comparing this equation with Eq. (A.1), we find that
the kernel is the same, and its inhomogeneous term is
gotten by applying on the left of the inhomogeneous
term of (A.1) the operator 2mid(H,—z)T7(z). Therefore,
as the Faddeev equations are Fredholm equations, we
obtain

AT o(2)=2miT o(2)6(Ho—2)T1(3). (A.10)
(e) Finally, AT(2)=T(2)—T7(3)=2_« AT (3);

AT () =Y ATw(z)=2miT()6(Ho—2)TH(z), (A.11)

which is the off-the-energy-shell unitarity condition. If
there are two-body bound states, there are also addi-
tional cuts in the z plane which represent the right-hand
cuts for bound-state scattering. In that case it is neces-
sary to introduce more scattering operators because one
faces a multichannel problem. However, the right-hand
side of (A.11) is still the discontinuity of 7°(s) across the
three-particle cut in the z plane.

V. A. ALESSANDRINI

AND R. L. OMNES

2. Relativistic Equations

Here, in place of Egs. (A.1) through (A.4) one has to
start from Eqgs. (11.1) through (11.4). The only differ-
ence now is that the Green function 1/(H,—z) is re-
placed by E%(s). We remember that the function E%(s)
is just the function Ej(s) calculated according to a
certain prescription. That distinction is very important
in the manipulation of the equations, but for the proof
of unitarity it is irrelevant because E®(s), a=1, 2, 3
has the same discontinuity as Ej(s), given by

DiscE@ (s)=2miAs(s); (A.12)

here As(s) can be thought of as an operator diagonal in
four-momentum space, with matrix element given by
FHg>—m?) ot (g2 —m?)6t(g*—m?); s=(q1t+g+gs)*. By
repeating the same steps as before, and using the uni-
tarity condition for the relativistic Z,(s) discussed in
Sec. 7,

At o(s)=2mit(s)As(s)to (5), (A13)

one can get
T(s)—TT(s)=2miT(s)As(s) TT(s). (A.14)

This is an off-shell unitarity relation; when the integra-
tion over the intermediate variables ¢i1gs¢s in the right-
hand side is carried out, the presence of As(s) yields the
usual relativistic three-body phase space. When the
external variables are put on the mass shell, Eq. (A.14)
reduces to the usual mass-shell unitarity condition.



