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Consistency Conditions on the Strong Interactions Implied by a
Partially Conserved Axial-Vector Current. II
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Consequences of the partially conserved axial-vector current (PCAC) hypothesis are explored. A set of
simple rules is derived which relate the matrix element for any strong interaction process with the matrix
element for the corresponding process in which an additional zero-mass, zero-energy pion is emitted or
absorbed. A generalization to include lowest order electromagnetic processes is given. A theorem is stated
and proved which shows how divergence equations of the form 8),Jq ——D are modified when a minimal
electromagnetic interaction is switched on.

INTRODUCTION
' "N an earlier paper' it was shown that the hypothesis
~ ~ of partially conserved 65=0 axial-vector current
(PCAC) leads to consistency conditions involving
solely the strong interactions. One of these conditions,
relating the pion-nucleon scattering amplitude A ~(+'

and the pion-nucleon coupling constant g„, was shown
to agree with experiment to within 10%. In this note
we give a simplified and generalized derivation of the
consistency conditions implied by PCAC. Ke will
derive a set of simple rules which relate the matrix
element for any strong interaction or first-order electro-
magnetic process with the matrix element for the
corresponding process in which an additional zero-mass,
zero-energy pion is emitted or absorbed. The rules are
closely connected with the "chirality conservation"
formulas of Nambu, Lurie, and Shrauner.

Let us begin by recalling certain de6nitions from (I).
Ke denote by J~~ the strangeness-conserving weak
axial current. By partially conserved axial-vector
current we mean the hypothesis that

i%2M,vM. 'g a"(0)—
4 +& (1)

g E¹vm (0)

then

1(P I
~ In) I «1. (2)

Lv2M M--'g '(o)!g.E " (o)jl(PI&-I ) I

In what follows we derive equalities which hold
rigorously if the residual operator R is zero. If R is not
zero, but satis6es the inequality of Eq. (2), the "equals"
signs should be replaced by "approximately equals"
signs.

It will be helpful to introduce a number of abbrevia-
tions and definitions. Ke denote by 0 the momentum
transfer pF —pr. Let us introduce the isotopic vector
quantities Jb"', p, ~ (u= 1, 2, 3), in terms of which

Jb"=-'(Jb"'+bJb"') 4 = (I/v2)(4. '+i4 ') (3)

We denote the product g„E~~~(0) by g„~(0). Then
the generalization of Eq. (1) to all three isospin compo-
nents Jb"~ is (neglecting E)

BbJb" = i(2M~M 'ga~—'(0)/g, "(0)-)p, . (4)

It will be convenient to introduce an isospin notation
for the Z and for the analogous to that for the nucleon
X. Ke introduce isospinors and isospin column vectors
as follows:

Here M~ is the nucleon mass, M is the pion mass,
ga (0) is the P-decay axial-vector coupling constant
Lga~(0)=1.2X10 b/M~'), g, is the rationalized, re-
normalized pion-nucleon coupling constant (g,'/47r
= 14.6), and p is the renormalized 6eld operator which
creates the a+. The quantity E~N (0) is the pionic form
factor of the nucleon evaluated at zero virtual pion
mass; E~~ is normalized so that E~~ ( Ma')=1. —
In order to give content to the definition, we must
specify properties of the residual operator R. %'e

suppose that for states (p(pp) I
and In(pr)) for which

(PIP In)NO, and for momentum tra, nsfer near the one
pion pole at —M,"-Lsay, for —Ma'( (pb —pr)'(M~'g,
the matrix element of R is much smaller than the matrix
element of the pion operator term. In other words, we
postulate that if (p I 4.In)~0 and if

I (pp —pI)'I &M ',
*Junior I'ellow, Society of Fellows.
' Stephen L. Adler, Phys. Rev. 137, B1022 (1965). We will

refer to this paper as (I).
8

1 1
Z+ ~—i, 2' —b 0, 2 —+ — i . (—5)

v2 &2.0. . 0.
By u-. or Nz we will mean the ordinary Dirac spinor for
the hyperon, multiplied by the appropriate isospinor
or isospin column vector. Let r denote the usual Pauli
matrices, and let t~, t=, and t~ be the matrices
defined by

tea —t a —+a

jbc ZEbca~'
Then we may write the baryon matrix elements of J),~
and of J = (— +M ')p as follows. (We omit the
induced pseudoscalar terms in J~~, since these are
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treated separately in the derivation below. See Refs.
4 and 6.)

&&(p.) I
J~"

I &(pr))

MgM~ 'I'-'

IB (pF)gA Y A"ts't t»B (pr) q

PFO PTO

&&(p») I
J-'I &(pr))

(8)

Mg Mg '~'-'

NB(pp)sgr "rst NB(pr) .
PFO Pro

Here 8 denotes Ã, Z, or
Using these definitions of the coupling constants, and

Eq. (4), it is an easy matter to see that

M~g~~(0) Mzgg" (0) M-. gg=(0)

g "(o) g'(o) g =(o)
(9)

Equation (9) will permit us to eliminate the axial-
vector coupling constants g~, g&, and g~=" from the
consistency conditions obtained in the next section.

I. DERIVATION OF CONSISTENCY
CONDITIONS

We take the matrix element of both sides of Eq. (4)
between states &p(p»)'"'I and Ia(pr)' ), where p and
~ are any systems of strongly interacting particles.
This gives

&~&P (P»)'"'I J~"'Ia(Pr)'")

=(2~ ~.'g."(0)/g, "(o))(P(p.)'"'Ie-
I (p.)'"),

2M»rgb~(0) M.'
&p(p»)'"'I J-'la(pr)'") (1o)

g, ~(0) M'. '+As

Let us examine what happens in the limit as k —+0
(P» ~ Pr) The righ.t-hand side of Eq. (10) in most
cases approaches a finite limit, since

lim &p(p»)'"'I J 'Ia(pr)'")

lT g 7r P 7r

/

N Pl N Pi P

FIG. 1. The sort of situation which is excluded by the re-
quirement that we avoid singularities oi (p'"'Ia'~). When p;s= (p1+g1—g2)'= —3f~', the diagram illustrated is in6nite because
the nucleon propagator joining the two bubbles is in6nite. Such
inhnities can arise in general from pole diagrams contributing to
{tt'&')~' ). (Pole diagrams are those which can be divided into two
disconnected parts by cutting a single internal line. }We restrict
ourselves in the text to values of the external four-momenta for
which sll pole diagrams contributing to (P'"'~a'~) are nonsingular.

FIG. 2. Ways of attaching the proper vertex of J)t,", represented
by a heavy dot. The proper vertex can be (a) attached to an
internal line, (b) attached to a terminating external pion line,
(c) attached to a nonterminating external line.

is just the matrix element for

a ~ p+ (zero-mass, zero-energy pion),

and is in general nonzero. ' Thus, the matrix element
&p(p»)'"'I Jq~~Ia(pr)' ) must contain pole terms which
go as 1/k, in order that the scalar product of k with
this matrix element have a finite limit. Clearly, if we
can develop a simple set of rules for calculating these
pole terms, we can calculate &p(p»)'"'I J 'Ia(pr)' ) to
zeroth order in k.

Calculation of the pole terms in & p( p)»'"'I J~"
I

a(pr)' ) turns out to be quite easy. Let us restrict
ourselves to values of the momenta of the particles in
a and in p for which the matrix element (p'"'Ia'") has
no singularities. (The sort of situation we wish to
exclude is illustrated in Fig. 1.) The renormalized
matrix element for (p(p»)'"'I Jz"'I (par)' ) is obtained
as follows'; First we write down a complete set of
irreducible or "skeleton" diagrams for the matrix
element. Then we make a series of insertions in the
skeleton diagrams. Ke replace each bare propagator by
the renormalized propagator, each bare strong-interac-
tion vertex by the renormalized proper strong-interac-
tion vertex, and each bare vertex where J&" acts by the
renormalized proper vertex of J), .' We can divide the
diagrams so obtained into three categories, according
to where the proper vertex of J~" is attached: (a) The
proper vertex of J)," is attached to an interea/ line
[Fig. 2(a)7; (b) the proper vertex of Jq" is attached to
an exter»rat pio»s line which terminates [Fig. 2(b)7;
(c) the proper vertex of Jq" is attached to an exter»sat
line which does not terminate [Fig. 2(c)7.

'Note that the value of the limit depends in general on the
direction in which k approaches zero.

3 Let us review some de6nitions. The skeleton of a diagram is
obtained by replacing all vertex parts by bare vertices and by
omitting all self-energy parts from the propagators, so that only
bare propagators appear. An irreducible or "skeleton" diagram is
a diagram which is identical with its own skeleton. A proper
vertex diagram is one which cannot be divided into two discon-
nected diagrams by cutting a single internal line.

4Note that the dominant part of the induced pseudoscalar
coupling arises from the diagrams which give the one-pion pole
term in dispersion theory. These diagrams are improper when
considered as baryon-J), " vertices, and thus are not included in
the proper baryon vertices of Jlt~.
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Corresponding to this division, wc c;l.n ~cbrit. e

(P(pF)'"'Iki Ji" Iu(pr)' )
=(p(pF)outIk& J„Aa Iu(pi)in)»T

y(p(pF)out
I
k„J„Aa

I
u (p ) tn)PION

+(p(pF)outIk„J„AaIu(p )in)ExT (12)

Ke now analyze in turn the contribution of each of
the terms in Eq. (12):

(a) First let us consider the case where the proper
vertex of J~" is attached to an internal line. Each
diagram contributing to (p(pF) "'I J&A

I u(p. ) ")'"' cor-
responds to a diagram for (ij'"tIu' ), but has an addi-
tional internal propagator. The requirement that
(P'"t

I
u' ) be nonsingular means that all internal

momenta are either integrated over or are o6 the mass
shell. Thus the additional propagator cannot give rise
to an infinity as k ~ 0, and we conclude that (p(pF) "'I
kIJiAIu(PI)in)INT is of order k. '

(b) The sum of all diagrams where the proper
vertex of Jq~ is attached to a terminating external pion
line is proportional to

(P(PF)'"tI J 'Iu(PI)'")L1/(kz+M 2)](zr'I JxA'I0). (13)

Using Eq. (4) to evaluate (zr'I JiA'
I 0) gives the result

(p (p )out
I

k&J Aa
I
u (p )in)PION

—k' 2M„g„"(0)
lP(p.) "'IJ:

I (p.)'"). (14)
k2+M 2

g «N(0)

This is of order k' and may be neglected. '
(c) We next consider diagrams where the proper

vertex of J~" is attached to a nonterminating external
line. (We restrict ourselves to external lines of particles
in the pseudoscalar meson or baryon octets. ) These

~ %e assume, of course, that none of the proper vertices of Jq~
have a singularity as k ~ 0.

6 These diagrams form the dominant part of the induced pseudo-
scalar coupling. A statement much stronger than that they are
of order k' can be made. Referring to Eq. {10),we note that the
right-hand side may be written

(2kgNg AN (0)lg„.N (0))$1 kt/(kt+2I1. 2)j—(p(pF) out
( J(a ( pil}.

The part of this proportional to k'/(k'+M ~) exactly cancels the
contribution, given by Eq. (14), of the diagrams where Jp,~ is
attached to a terminating external pion line. Now k'//(k'+M ')
has the property

1 pB fr+iM—B
)

pB k iMB———2pB k+k'
(16)

showing that there is indeed a singularity as k ~ 0. To
lowest order in k, we can neglect k in calculating 5K
and can retain only the term of order k ' in Eq. (16).
Thus, the insertion becomes

(
MB "-'pB+zMB

zzB(pB)gAByiYQgB 5K(k=0) . (17)
PBQ —2pg. k

Calculating 5R with k=0 means that we keep the final
baryon 8 on the mass shell. Furthermore, pB+iMB is
just the positive frequency projection operator for 8,
with the property

(pB+2MB)pB (pB+iMB)iMB——

Let us denote by 5R' the matrix element obtained by
bringing all PB in SK(k =0) to the left and replacing them
by iM&. Then the insertion becomes, finally,

diagrams may be divided into two types, according to
whether J~~ changes or does not change the mass of
the external particle. ' The only case where the mass is
changed is that where J~~ changes an external Z to a A

or an external A to a Z. Both of these cases make a
contribution to (p(pF)outIk~JiA'Iu(pi)'")Exr which is
of order k, since the propagator which follows the
proper vertex of JiA behaves as (Mxz —MA2) ' as
k —+0, and thus is nonsingular. Finally, we will show
that the diagrams where J),~ is attached to a non-
terminating external line, and does not change the mass,
are of order k '. Insertion of J),~ into a pseudoscalar
meson line is forbidden by parity; insertion of J&"
into a A. line is forbidden by isospin. Thus, we need only
consider insertions of J)," into external V, Z, and "
lines. The contribution of the insertion of J),~ into the
line of a final baryon 8 of four-momentum pB is

1/2

zzB(pB)gA Yi'Ytg 5K ~ (15)
PBQ pB—k—zMB

Here 5K is the matrix element for the process u —+ P,
with the final baryon 8 Tzrtual Since .pB'= —MB2,
the propagator can be written as

lim lim k'/{k'+M ') =1,~ Mzr~0

lim lim k j(k'+M~') =02
Ms.~k~ (

MB "' pB+zMB
zzB (PB)gA Yi Y Qg

PBQ —2pB k
(19)

whereas the terms in Eq. (12) labeled IÃT and EXT are in-
dependent of the order of the limiting operations:
iim jjm (P(PFlout~k&JtAa~tu(PI)tn)INT EXT~M~

ijm (p (pF) out
~
k&J&Aa ~u lpiliol&NT. BXTM~~

Hence the exact cancellation of terms proportional to k'/(k'+M ')
means that the limit, as M ' —+ 0, of the consistency conditions
of Eq. (24) is identical with the consistency conditions which
would be obtained in a theory in which the pion mass was set
equal to zero at the outset. Note that by virtue of Eq. (4), in
such a theory the axial-vector current would be exactly conserved.

The crucial point is that

(p'"tI u'") =8po+ (2zr)tib(pF pi)0K(u ~ p—), (20a)

zoK(u —t—P) = 22B(PB)Ãt'
PBQ

(20b)

~We are neglecting the electromagnetic interactions, so all
particles in the same isospin multiplet are of equal mass.
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is just the matrix element which describes the strong
Process a —+ P, with all Particles on the nbass skell. Thus,
5K' can be measured experimentally. Similar arguments
show that the insertion of J~~ into an initial baryon
line gives

(
Me»' Pe+2Mo

OR '
gg ybybt ue(Pe), (21)

PBO 2pg k

i5—R(12—b p) = (Me/pe0) "9R"ue(pe) . (22)

To sum up, we have analyzed the behavior of each
of the terms in Eq. (12). Let us collect the results
and write

(2M„g„(o)/g„."(o))&P(P,) "
I J..la(P, )'-)+o(k-)

=O(k)+O(k')
+ P )insertions in —iOR(n —+ P)j+0(k) . (23)

external
lines

The three terms on the right-hand side of Eq. (23) refer,
respectively, to the internal line, the terminating
external pion line, and the nonterminating external
line insertions of Jb". Multiplying through by g„' (0)/
L2MNg~N(0)] and using Eq. (9) to eliminate the ratios
g~z(0)/g~ (0) and g~-(0)/g~ (0) in terms of strong-
interaction coupling constants leads to the following
set of rules:

(p(p )'"'l~-
I (p )")

=O(k)+ P Linsertions in —iÃt(a —1 P)j. (24)

—2p2 k 2pg k

-g mN(0)

X kybr' u(p1) . (27)
. 2MN

It is easily seen that Eq. (27) is equivalent to the
"chirality conservation" formula obtained by Nambu
and Lurie' in a theory in which the pion mass is zero
and in which the axial-vector current is exactly con-
served. Nambu and Shrauner' and Shrauner" applied
Eq. (27) to the case whenn, P=21+S and found possible
consistency with experiment. A simpler case was studied
in (I), where we took n=S, p=2rb+Ã. In this case K
is just the pion-nucleon vertex ig, rbyb and ((2rb&v)'"'I

I
E'") is the pion-nucleon scattering amplitude.

Introducing the usual pion-nucleon scattering-energy
and momentum-transfer variables v and vg,

P1 and any number of pions; similarly, let P be a single
nucleon of four-momentum p2 and any number of
pions. Then we may write

31' (a ~ p) = (MN /plbp20) 20N (p2)KuN (pl) ~ (26)

According to the rules derived above,

&p(p )'"'l~-
I (p )'")

2 1/2 -g wN(0)
=O(k) — iuN (p2) kg br

P10P20 2M~

P2+iMN P1+iMN
X K+K

external
lines p1 k = —MN (v—VQ),

Insertions P2. k = —MN (v+ ve),
For external 2r, E, 2t, A, the insertion is zero. For we get from Fqexternal E, Z, ™,denoted by 8, the insertions are

(2g)

anal 8:
g, e(0) Pe+iMe

ue(Pe) —+ u21 (Pe) kybte (25a)
2Ms —2pe. k

initial 8:
Po+iMe g„e(0)

ue(Pe) ~ kybte ue(Pe) . (25b)
2pe k 2Me

These rules are the generalization to arbitrary processes
of the consistency conditions derived in (I). It is an
interesting fact that these rules are just what would be
obtained if the effective pion-baryon coupling for pions
with four-momentum near zero were pseudovector
rather than pseudoscalar. This intimate connection
between PCAC and gradient coupling theories was first
noted by Feynman. '

As an illustration of the above rules, let us consider a
special case. Let 0. be a single nucleon of four-momentum

s R P Peynman, I'rocegbngs of the Air-en-I'roeence Inter-
national Conference on Elementary Parades (Centre d'Etudes
Nuclhaires de Saclay, Seine et Disc, 1961), Vol. II, p. 210. I am
very grateful to Dr. M. Veltman for calling my attention to this
reference and for emphasizing the connection between PCAC and
gradient coupling of the pion.

&(~b,V)-bl J..IS-)=
I

rCNN. (0)u (p,)
P10P20~

gt gs 7 7 T T
X b.s—i&

M~ 2M'y vg —v v~+ v
uN (p1) . (29)

The term (g„2/MN)ti b leads to the consistency condition

3 N1+'(v=o, ve ——0 k'=0) g'
E' N Nr(0).M~

(30)

which was discussed in detail in (I).

II. MODIFICATION IN THE PRESENCE OF
THE ELECTROMAGNETIC INTERACTIONS

It is interesting to see how the rules derived above are
modified when the electromagnetic interactions are
taken into account. Since isotopic spin is not a good

9 Y. Nambu and D. I,uric, Phys. Rev.&125, 1429 (1962); Y.
Nambu and E. Shrauner, iNd. 128, 862 (1962).' Y. Nambu and E. Shrauner, Ref. 9."E.Shrauner, Phys. Rev. 131, 184tI' (1963).
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quantum number in the presence of electromagnetism,
we will work only with fields and currents with definite
charge transformation properties. Thus, we replace the
three equations contained in Eq. (4) by the equations

and Shrauner, ' who also discuss a detailed application
to the reaction e+.V —+ e+X+x.
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where

()~J~&(k) —Cy (6)

g J ~(o) ~g@ (o)

J A(0) J A3 ~J A(+i —1(J Al~&J A2)

(31)
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4."'= «l~&) (~-'~'4-'),
(32)

iv—2MNM 'gAN (0)

g IfNN x (0)

LThe superscript (&) refers to the charge destroyed. ]
It is shown in the Appendix that to first order in the
electric charge e (e)0), the modification of Eqs. (31)
in the presence of the electromagnetic interactions is

(Bi&ieAi)Ji"~+'=6@

g J A(0) ~2C@ (0) (33)

As is customary, A~ denotes the electromagnetic field.
Since all electromagnetic corrections to masses and
coupling constants are of second order in e, questions
such as whether to use the charged or neutral pion mass
in computing C do not arise.

Equations (33) permit us to state a simple set of
rules for computing (up to terms linear in the four-
momentum of the added pion) the matrix elements
(p'"'~ J '~&

~
(np)' ), where a and p are any systems of

strongly interacting particles and where the initial
photon y may be real or virtual. The terms 8),J),~(~)
in Eqs. (33) give rise to insertions into the external
baryon lines of iOR(ay~—p) identical with those of
Eq. (25), apart from trivial changes in the isospin
factors arising from the use of fields and currents of
definite charge. In addition, we must add to (P'"'

~
J &+'

~

(ay)' ) the term

~gg mN(0)
y«&«~A„J A&+&~ (~y)'")

%2MNgAN (0)

arising from the term AiJ1A'+& in Eq. (33). Using the
standard reduction formulas, we find to lowest order
in e that

&O'"'I A i(y)Ji""'(y)
I
(~v)'")

exp(ik' y) 4'"'I ~iJ~"'"(y)
I
~' ) (35)

(2ko')"'

where k' is the four-momentum and ~), the polarization
four-vector of the photon y. Equations (33), (34), and
(35) allow us to calculate the matrix element for the
emission of a zero-energy, zero-mass pion in photo- and
electroproduction reactions. They are equivalent to
the formalism derived for this purpose by Nambu

APPENDIX

We give here a fairly general treatment of the way
in which divergence equations of the form

~)J~=D (A1)

are modified in the presence of electromagnetic interac-
tions. We state the result in the form of a theorem. "

Tkeorem Let f, b.e the unrenormalized fields of
particles of charge e;. Let us consider a strong-interac-
tion theory with the Lagrangian ZL{P), {B,P)], where

{f)denotes the set of the P,. Let J&, be a current with
definite charge transformation properties (charge eg)
derived by making an infinitesimal gauge transforma-
tion on the fields f, in the following manner":

»'=&+AF LH')]
~- ~'=~I 8'), {&.O'}],

J,= Lsz'/r(a, A)],=,.
(A2)

Then,
(1) In the absence of electromagnetic interactions

the current Jq satisfies

(A3)

with Ji and D both functions of the» and the 8,» only:

J~= JUL{4) {~.4)]
D=DLH') {~4}]. (A4)

(2) Inclusion of the electromagnetic interactions,
with minimal electromagnetic coupling, changes Eqs.
(A3) and (A4) to

(~i—i~~Ai) J.L{4},{~.}]=KM),{~.)], (A5)

where n;, denotes the quantity (8, ie,A.)/,—
Proof. We proceed as if the fields were classical

quantities, ignoring questions of commutation and
anticommutation. Let us first consider the case when
there are no electromagnetic interactions. The Lagrange
equation of motion for the field» is

bz bz
=~a

~(~A~)

Under the gauge transformation

4'~ ~ 4i'=4~+AF~Lf4)],

(A6)

(A7)
"I am grateful to Professor S. Coleman for assistance in proving

the theorem."M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
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the derivatives B f; and the Lagrangian 2 change
according to

B,f; +—B,P,'= B,if'+ (B,A)F, +Ii (B,F,),
~ ~ ~'= ~[{4') {B&')j

=2[g+IiF), {B.p+ (B,A)F
+A(B,F))j. (AS)

From Eq. (AS) we find for the first variations,

The first variations are

bZ, EM'

8 (ByA) 2 Bm;.i'

-bg EM' bg EM'

F,+ - (B,F, ie—;A,F,)

(A17)

bx' -bx' bZ'
F+ BF,

B(BA,')
(A9)

Using the Lagrange equation, Eq. (A15), we see that

-br EM'-

(A1S)

, F'
~(BiA) ~' &(B),P )

Eq. (AS) also implies tha. t

)
-Wi'-o=o

(A10)
~(BA.'')-~=o &(Beati)

Together, Eqs. (A6), (A9), and (A10) imply that

-&(BiA)- ~=o — » —i=o

Let us make use of the fact that the current Jq has
definite charge transformation properties. Since BZ/
8(Bgk,) transforms as a field with charge —e, , Eqs. (A9)
and (A12) tell us that F, must transform as a field

with charge e;+eJ. Thus)

F,/f2 exp(ieit), $2 exp(ieot),

=exp[i(e~+ez)tjF, [+2,$2 ' ' '] (A19)

-B(BRA)- A=o —BA —o=o

Taking the first derivative with respect to t gives the
identity

We define 2 i (&F2/bki)«A= (ei+ei)F2 (A20)

A —= [&&'/B (Bi&)]~=o,
D—= PZ'/BA)~=o, ' (A12)

these are clearly functions only of the {lt) and the
{B&)

Let us now turn on the electromagnetic interactions.
According to the hypothesis of minimal electromagnetic
coupling, the Lagrangian is modified according to

2 —+ ZEM=Z[{lt },{2r,) j+ZEMo, (A13)

where Z M' is the kinetic Lagrangian of the electro-
magnetic field A and where 2r, , is (B, ie,A.)p—;. The
new Lagrange equation for the field P, is

Let us henceforth treat P, and n;„rather than P, and
B,f;, as the independent variables in taking the varia. -

tion of REM. Then the Lagrange equation becomes

bg EM bgEM
—ie,A,

b~;
(A15)

Now let us make the gauge transformation P, —&P,'
=if,+AF; The quantity 2.r,, and the Lagrangian REM

change according to

2r, ,—+ or, '= 2r,. ie,A.AI&', + (B.A—)F,+A (B,F,),
gEM —+gEM' g[{lt } {2i '}j+gEMO

= Z[{p+AF), {2r, ieA,AF-
+(B.tt)F+A(B.F)}j+ZE"'. (A16)

Consequently, using B.F,=pi(BF,/~i)B.$2, we obtain

B,F, i (e+—eg)A, F,=+2(BF;/g 2) (B, ieiA )—$2

=2 2 &F2/~Pi) «' (A21)

In other words, B,F, Z(e;+e~)A,F, i—s the same func-
tion of {tt}, {m,} as B,F, is of {P},{B,p}. Hence, by
comparison of Eq. (A17) with Eq. (A9) it is clear that

This completes the proof.
Equation (A23) involves unrenormalized quantities

throughout and is exact. In the case of PCAC, as con-
sidered in the text, D= C"p, where the superscript on
C denotes that it is unrenormalized. It is trivial to
pass from Eq. (A23) to Eq. (33) of the text, which
involves only renormalized quantities, if we work to
lowest order in the electromagnetic coupling e: All
electromagnetic renormalization e8ects are of second
order in e and may be neglected. All strong interaction
renormalization effects are contained in the ratio C/C",
where C is the renormalized constant appearing in
Eq. (32) of the text.

[B~' '/&(BiA)jo=o=~i[{4), {~}j
2 {[B~'"'/02']o=oF,+[&&'"'/&~;.'jo=o

X[B,F; i(e;+e~)A—,F;$}=D[{P),{n.,}j. (A22)

Thus E (A18) can be rew itten as

(Bi—2eyAl) Ji[{p),{~)]=D[{p},{~)j. (A23)


