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If we write Dp„„'(q") in the form

DR'...=Dg)'v Dugs' g) p

and

It fonows that
U&(x)U, '=gt(x).

but
(A18)DrH„—Dg(H q')q, '=0.

where D~ and D~ are functions of q" only, then Eq. (A17)
implies

W„(x',x; y) = —W„(x,x', y),

W„(*',*;y,y') = W„.(x,x', y,y').

On multiplying Eq. (A17) by (q')'q'" and using Eq. (A14) We then have
we see that H q'=0, so that Eq. (A18) implies

Thus, we have

and by symmetry,

H„=O.

q„F~=O

q„'F~"=0. (A19b)

UQ„(y)U, '= —A„(y),

Equations (A16) and (A19) constitute the analogs for a
neutral Geld of the generalized %ard identities for
charged Gelds.

Invariance under particle-antiparticle conjugation is
equivalent to the existence of a unitary operator U,
which leaves the vacuum invariant and is such that

F .(q, q'; P) =F.„(q',q; P). (A20c)

Equations (A20a) —(A20c) are the symmetry properties
of F„and F„„used in Sec. III of this paper.

W..(p', p; q, q') = W..( pp'—, q q')

so that, using Eqs. (A15a) and (A15b), and recalling
that P= p+p',

F„(q P) = —I'„(q; P), — (A20a)

F„„(q,q'; P)=F (q, q'; P). — (A20b)

Finally, since W„„(x',x; y,y') = W,„(x',x; y', y) so that
W„„(p',p; q, q') = W„„(p',p; q', q), we have also
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Some of the difEculties of relativistic SU(6) are examined. Those arising from the use of continuous
groups can be avoided by the use of algebras of 6nite sets of operators which are sufhcient to give the desired
properties of elementary particles. The nonconservation of probability associated with the relativistic
separation of space and spin is pointed out. Quantum electrodynamics applied to atomic structure is shown
to exhibit the type of peculiar syrrt~etry which leaves the interaction invariant but is broken by free Dirac
propagators. The implications of this analogy for SU(6) are discussed. The mixing of physical and non-
physical states (positive- and negative-energy quark states) leads to noninvariance of the vacuum under
the symmetry group, and to a degenerate vacuum in the exact symmetry limit. The existence of open in-
elastic channels for low-mass boson production is relevant to unitarity calculations and is implied in all
energy regions where the symmetry is not badly broken.

INTRODUCTION

HE successes of the SU(6)-symmetry scheme for
elementary particles' and its relativistic generali-

zations~ have been accompanied by an assortment of

'F. Gursey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964); A. Pais, Phys. Rev. Letters 13, 175 (1964); B. Sakita,
Phys. Rev. 136, B1756 (1964).

~A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) 284, 146 (1965);M. A. B.Bdg and A. Pais, Phys. Rev.
138, B692 (1965); B. Sakita and K. C. Kali, ibid. 139, B1355
(1965). A detailed list of references to earlier works on SU(6)
and its relativistic modi6cations is given bv Sakita and Kali.

difFiculties in principle and also by some predictions in
disagreement with experiment. ' A better picture of the
relation between the successes and the diR culties can
be obtained by examining the general assumptions
underlying the proposed theories to determine which
are really necessary to obtain the desired results.
Analysis of the sources of some of the troubles may
help in Gnding ways to get around them.

' S. Coleman, Phys. Rev. 138, B1262 (1965); M. A. B.Bhg and
A. Pais, Phys. Rev. Letters 14, 509 (1965); R. Blankenbecler,
M. L. Goldberger, K. Johnson, and S. B. Treiman, ibid. 14, 518
(1965).
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THE POSSIBLE IRRELEVANCE OF THE
CONTINUOUS GROUP

The continuous groups of transformations commonly
used to introduce isospin, SU(3), SU(6), and SU(12)
symmetries are not really necessary to obtain these
results and may be dispensed with if they give rise to
difhculties in principle. All results usually attributed to
these symmetries are obtainable from the following
assumption: There exists u Pnite set of operators zchich

commute with the Lagrangian, Bamiltonian, or S matrix
in some approximation, and which constitute the Lie
algebra corresPondkug fo the Particular grouP. The exist-
ence of the continuous group is not required. As an
example, one can consider the case of isospin under the
assumption that a superselection rule restricts the
allowed states in Hilbert space to those which are
eigenfunctions of the electric charge. The continuous
isospin transformations are not dehned in this case.
However, the three isospin generators 7-+, v, and ~,
are well-defined operators which take a state within
the Hilbert space into another state which is also
within the Hilbert space. The existence of these three
operators and their commutation rules are sufFicient to
give all the results usually obtained from isospin; the
continuous group is not required. '

The combination of Lorentz invariance and internal
symmetries is quite straightforward if the latter are
defined only by a finite set of operators, rather than
by a continuous group. Lorentz covariance of the Lie
algebra is sufhcient. Note that the distinction between
compact and noncompact internal symmetry groups
becomes irrelevant if only commutation of the S matrix
with the generators is required and not invariance
under the continuous group. A Lie algebra can be
transformed from that of a noncompact group to that
of a compact group by multiplying generators by
phase factors which are c numbers and do not aGect
the vanishing of the commutators with the S matrix.
One can thus define multiplets of particle states from
the Lie algebra without worrying about whether these
are finite-dimensional nonunitary representations of
a noncompact group or unitary representations of a
compact group. ' The problem of the existence of a

4 H, J. Lipkin, Lie Groups for Pedestrians (North-Holland
Publishing Company, Amsterdam, 1965), shows in detail how all
these results are obtainable from the Lie algebra without the use
of the continuous group. Note also that the use of isospin and
Wigner supermultiplets in nuclear physics does not require the
existence of the continuous transformations or give them any
physical meaning. Rather the relation between representations
of continuous unitary groups and finite permutation groups
makes the Lie algebra convenient for describing systems of
nucleons with charge- (and spin)-independent interactions under
the additional requirement that neutrons and protons must
separately satisfy the Pauli principle.

Whether finite- or infinite-dimensional representations arise
in a particular case depends upon the physical interpretation of
the operators which constitute the Lie algebra. Hermitian op-
erators have real eigenvalues and their squares are positive
definite. Thus if an invariant of the Lie algebra, such as the
quadratic Casimir operator, is expressed as a function of Hermitian
operators, one can examine the restrictions which Hermiticity and

larger continuous group containing both the Poincare
and internal-symmetry groups is avoided. ' The Lie
algebra of the larger group is dehned, but only a subset
of the continuous transformations generated by this
algebra need have physical meaning, namely, those
which produce continuous transformations in space-
time and not in the space of the internal degrees of
freedom.

SEPARATION OF SPACE AND SPIN

One set of troubles arising in relativistic SU(6)
theories stems from the separation of space-time from
spin in order to dehne "spin independence. " This
requires the assumption of invariance under a group of
transformations which is the direct product of two
noncompact groups, one acting only on space-time and
the other acting only on the internal degrees of freedom
including the spinor indices. ' Each of these groups
must contain a group isomorphic to the homogeneous
Lorentz group in any Lorentz-invariant theory. Thus
any such theory is invariant under a subgroup which is
the direct product Z)&g of two groups isomorphic to
the Lorentz group, one acting on space-time and the
other acting on the internal degrees of freedom. In-
consistencies are already inherent in this direct product.
These can be seen from the well-known transformation
properties of velocities and particle probability densi-
ties under ordinary Lorentz transformations. The den-
sity is not an invariant, but the relation between the
transformations of densities and velocities is such that
probability is conserved. The use of independent
Lorentz transformations for space-time and spinor in-
dices results in independent transformations of veloci-
ties and densities (a transformation in the space of
spinor indices alone, for example, transforms the densi-
ties without changing the velocities at all). This can
clearly lead to nonconservation of probability and
difFiculties with unitarity.

Clues to the resolution of these difIiculties may be
found in an existing and well understood theory which
has many of the same properties, namely, quantum
electrodynamics and its application to the structure of
atoms. 7 The interaction of a charged Dirac particle with
the electromagnetic Geld Py„f.4 & is invariant under the
group )(2 defined above. This is true for any Lorentz-

positive definiteness impose on the allowable eigenvalues of
operators of the Lie algebra. Examples where such considerations
distinguish between finite- and infinite-dimensional multiplets
are given in Ref. 4. This question is discussed in more detail in
the Appendix using a specific example.'L. Michel and B. Sakita, Ann. Inst. Henri Poincare (to be
published).

H. J. Lipkin, International Center for Theoretical Physics,
Trieste, Report No. ICTP 65/52 (unpublished). Note that the
spectrum of the hydrogen atom for example can be obtained by
treating two Dirac particles coupled to the electromagnetic field
with an interaction invariant under g)(g. (This neglects the
anomalous magnetic moment of the proton on the hyperfine
splitting, but these effects are irrelevant to the present argument. )
The "spin-independent" symmetry is indeed present to a very
good approximation.
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invariant interaction which has no explicit spatial
dependence (i.e., no explicit derivative couplings).
Many of the low-lying bound states of this theory
exhibit this symmetry to a very good approximation.
It appears as a decoupling of the spin and orbital
angular momenta commonly known as Russell-Saunders
or I.5 coupling. The splitting within the multiplets is
small and is known as fine and hyperfine structure.
The formulas for these splittings are the ancestors of
the Gell-Mann —Okubo mass formula. ' The symmetry
is also exhibited in scattering processes treated in the
Born approximation. A particularly relevant example
is the absence of polarization in the scattering of
relativistic electrons in a Born approximation.

Although many difficulties have worried the investi-
gators of quantum electrodynamics, the difIiculties as-
sociated with ZXZ were never noticed and cause no
trouble. This is one of the advantages of having a
complete theory from which explicit dynamical calcu-
lations can be made, rather than trying to draw gen-
eral conclusions from approximate symmetry proper-
ties. However, the gal/ invariance appears in a very
similar way in quantum electrodynamics and ele-
mentary particles and the comparison is instructive.
Examination of the former case from the point of view
of this invariance reveals the following properties:

1. ZXZ is only an approximate symmetry. It is
broken by the spin-orbit coupling in the propagators
of the Dirac particles. Thus agreement with predictions
from the symmetry is found in certain areas where the
approximation is good, and not in others where the
approximation is bad.

2. The symmetry holds very well in two areas: (1)
properties of bound states in which the motion of the
constituent particles is nonrelativistic to a good ap-
proximation; (2) sca, ttering processes treated in Born
approximation.

The assumption that the relativistic SU(6) theory of
elementary particles also has the above properties
avoids the difficulties of the noncompact groups, and
also the disagreements with experiment in predicting
no polarization for certain scattering processes. One
can question, however, whether this assumption does
not also throw out the cases where agreement is found.
A crucial point is the nonrelativistic nature of the
bound states. Since quark masses should be high to
explain the failure to observe them, the binding energy
of mesons and baryons in a quark model must be of the
same order as the masses of the constituent quarks; this
implies that the bound state is highly relativistic. How-
ever, there are two independent parameters which
characterize the degree to which a particular bound
state must be considered as relativistic. One is the ratio
of the binding energy to the total rest mass of the con-
stituents; the other is the velocity of the particles. It
is the velocity which is relevant to the neglect of the

'M. Gell-Mann and Y. Xe'eman, The Eightfold H'cy (9'. A.
Benjamin and Company, Inc. , New York, 1964).

"symmetry-breaking" eGects of Dirac propagators.
This velocity can be small in a quark model for mesons
and baryons, provided that the size of the bound state
(i.e., the range of the forces) is large in comparison with
the Compton wavelength of the quark. ' For this case,
the spin-orbit coupling can be considered to be small.

If a "low-velocity —tight-binding" quark model is
assumed to underlie the relativistic SU(6) theories, an
important difference should be noted between such a
model and the "low-velocity —weak-binding" which
characterizes atoms and quantum electrodynamics.
Although the tight binding does not a6ect the use of
the symmetry in treating the low-velocity bound state,
it is important in dynamical calculations of all processes
in which virtual free quark-antiquark pairs can appear
in intermediate states. The high quark mass drastically
reduces the contribution of such diagrams.

Consider, for example, Compton scattering in quan-
tum electrodynamics and its counterpart meson-baryon
scattering for elementary particles. In Compton scatter-
ing calculated by second-order perturbation theory,
summation over all electron intermediate states in-
clgdes those of negative energy These r. epresent the con-
tribution of virtual pair production. In meson-baryon
scattering calculated to second order with a Yukawa-
type three-point vertex, summation over a/l three-
quark intermediate states includes, in addition to the
bound baryon states, also states in which one or more
of the quarks is in a state of negative energy. This can
be interpreted as including contributions from virtual
quark-antiquark pairs. Such contributions are auto-
rnatically included in some calculations which do not
form the sum explicitly but obtain the result by using
closure relations or symmetry properties. These calcu-
lations can be expected to give erroneous results if the
formalism used is one of "low-velocity —weak-binding"
and includes exaggerated contributions from the quark-
antiquark pair states. Examples of such calculations are
meson-baryon scattering in the SU(12) theory, which
use only symmetry properties and no dynamical model. '0

If the dominant contribution to these processes involves
an intermediate baryon state, the assumption of com-
plete SU(12) symmetry includes contributions from
states which do not satisfy the Bargmann-signer
equations. These can be interpreted as three-quark
states in which one or more quarks have negative energy.
If these contributions are to be considered as those in-
volving quark-antiquark pair production, by analogy
with Compton scattering, then their magnitudes are
highly erroneous, since the quark mass does not appear
explicitly in the theory and is electively assumed to be
of the same order as the baryon mass in the propagators
for these states. One should not be surprised if predic-
tions from such calculations are not in agreement with

9 The author is indebted to Y. Nambu for 6rst pointing out the
possibility of a tightly bound system which is nonrelativistic."J.M. Cornwall, P. G. O. Freund, and K.. T. Mahanthappa,
Phys. Rev. Letters, 14, 515 (1965).
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experiment. "A similar argument holds if the contribu-
tion is due to one-meson exchange.

MIxzXfG OP PHYSICAL AND NONPHYSICAL
STATES

Another problem which arises in the U(12) descrip-
tions arises from the redundant description of states
and the use of transformations which mix physical and
nonphysical spinors. A 12-component spinor describes
a quark which has six possible states, a 143-component
object describes 36 meson states, a 364-component
object describes 56 baryon states. For each value of
the momentum, there are 6 quark spinors, 36 meson
spinors, and 56 baryon spinors which describe physical
particle states; while there are 6 quark spinors, 107
meson spinors, and 308 baryon spinors which are
orthogonal to the physical spinors and which do not
describe physical particle states. In a quark model
the latter are states containing negative-energy quarks.
These nonphysical states are removed by some pre-
scription, such as the requirement that physical states
satisfy the Bargmann-signer equation. However, the
U(12)-symmetry operations transform spinors repre-
senting physical states into those representing non-

physical states.
The nonphysical transformations cannot be avoided

here as was done for isospin by replacing the continu-
ous group by a judiciously chosen 6nite set of operators.
For particles at rest the nonrelativistic SU(6) genera-
tors can be de6ned to have nonvanishing matrix
elements only between physical states. For particles
moving in a single direction, the W spin and SU(6)s
generators can be de6ned. "However, the generators of
the full SU(12) group include operators having non-
vanishing matrix elements between physical and non-
physical spinors. An 5 matrix which is invariant under
SU(12) can have nonvanishing matrix elements con-
necting physical and nonphysical spinors. The restric-
tion to physical states of all intermediate states arising
in unitarity relations causes diflicultities. '

One very simple and peculiar manifestation of these
difficulties is the behavior of the vacuum under SU(12).
The vacuum is not invariant under SU(12).The vacuum
state satisfies the relations

b, *(0)=0,
where bI, ~ is a creation operator for a quark in a
negative-energy state. These relations (1) are not in-
variant under those SU(12) transformations which mix
positive and negative energy states. Thus if G is an op-
erator which generates such a transformation, then
G~Q) does not vanish and does not satisfy the relations
(1).This gives rise to the following consequences:

1. If a limit of exact SU(12) symmetry exists (i.e., the
symmetry-breaking can be neglected in a consistent
way), the vacuum is infinitely degenerate in this limit.

"H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670
(1965).

Successive operation on the vacuum with operators
which are generators of SU(12) give other states dif-
ferent from the vacuum. Thus in this limit the theory
probably contains zero-mass bosons. " Inelastic boson
production processes are therefore always present, and
must be included in any calculations of unitarity. Note
that in the real world, bosons of essentially zero mass are
indeed present, namely pions. The pion mass is small
compared to energies characteristic of synnnetry break-
ing (i.e., the y-ir mass difFerence). Thus, scattering
amplitudes can be expected. to satisfy relations ob-
tained. from the symmetry to a good approximation
only at energies where inelastic pion production chan-
nels are open. Thus inelastic channels must always be
considered in any discussions of unitarity.

2. The physical particle states are not members of
simple SU(1Z) multiplets oven in the limit of exact SU(lZ)
symmetry. The 6eld operators which create the par-
ticles have simple SU(12) transformation properties,
but neither the vacuum nor the particle states are
simple. Thus the standard type of Clebsch-Gordan
analysis must be used with care to verify that the
results only depend upon the assumption of simple
transformation properties for the particle-creation op-
erators and not for the states themselves. The situation
is very similar to that arising in the many-body prob-
lem, where simple elementary excitations are treated
although neither the ground state nor the excited
states is simple. '

CONCLUSIONS

The present indications are that SU(6) predictions
agree with experiment for static properties and for
"one-dimensional" relativistic properties which are
natural generalizations of nonrelativistic SU(6) by the
use of W' spin. The latter include two-body decays and
forward scattering processes. " In other processes, dis-
agreements are found and should be expected. Detailed
studies and comparisons with experimental data should
reveal where symmetry-breaking is important and per-
haps indicate how it should be taken into account.

The introduction of symmetry-breaking into cal-
culations of processes should be diGerent from the case
of SU(3). There is no evidence for a particular sym-
metry-breaking interaction having definite SU(6) or
SU(12) properties which should be added as a spurion
in 6rst order, by analogy with the octet symmetry
breaking of SU(3). The mass splittings in the SU(6)
multiplets are not in agreement with the assumption
of a 6rst-order symmetry-breaking interaction trans-
forming like a member of a single representation" of

"J.Goldstone, Nuovo Cimento 19, 154 {1961).
"D. Pines, E/smeary Excitutions in Solves (W. A. Benjamin

and Company, Inc., New York, 1963).
'4 K. Johnson and S. B. Treiman, Phys. Rev. Letters 14, 189

(1965).
"M. A. B. Bhg and V. Singh, Phys. Rev. Letters 13, 418

(1964); H. Harari and H. J. Lipkin, ibid. 14, 570 (1965}.
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SU(6). The kinetic energy spurion which is a member
of a 3S in SU(6) and a 143 in SU(12) does not explain
ie any order important symmetry-breaking properties
like the p-m mass diGerence. A better approach to sym-
metry breaking might be to assume a specific dynamical
model and to use the correct propagators for the inter-
mediate states, while retaining the symmetry in the
vertex functions. An important and easily calculated
eEect would be the removal of contributions from non-
physical intermediate states which do not satisfy the
Bargmann-Wigner equations. Such a prescription is
not equivalent to the introduction of a spurion with
specific transformation properties.

General arguments regarding the unitarity of the
5-matrix must take into account the possibility of
infrared divergences in inelastic channels in the limit
of exact syDUnetry. Such effects of zero-mass bosons
are probably irrelevant to the practical use of the
syDunetry. The presence of obvious syrlnetry-breaking
effects such as those discussed above must also be
interpreted before drawing conclusions about apparent
violations of unitarity.

(H i8/8t)P =—0. (Al)

Let G be any generator of the homogeneous proper
Lorentz group. Then if the dynamics of the system are
Lorentz invariant, a state obtained from P by a Lorentz
transformation is also a solution of the equation (A1).

(H i8/8t) e'No& =0—,
where 0. is any real c number.

Let us now write
G=G,+G. ,

(A2)

(A3)

where G acts only upon the space-time variables and.

G, acts only upon spinor indices.
The assumption of Lorentz invariance (Eqs. (A1)

and (A2)] is equivalent to the assumption of the vanish-
ing of the commutator

DH i8/8t), G]=P—(H i8/8t), (G,+G—,)]=0. (A4)

We now make the further assumption that the com-
mutators in Eq. (A4) vanish individually for the space-
time and spinor parts,

P(H—i8/8t), G,]=f(H —i8/8t), G,]=0. (AS)

We shall see that the assumption (AS) is sufficient to
give the desired results of Z)&Z invariance, but does
not lead to the in6nite multiplets commonly associated
with the direct product of two noncompact groups.

From the relation (AS) we can construct multiplets

APPENDIX: AÃ EXAMPLE OF AÃ
ZXZ VHEORV

Consider a quantum-mechanical system having a
Hamiltonian H and states P satisfying the time-depend-
ent Schrodinger equation,

of states which are degenerate eigenfunctions of the
Hamiltonian. Since G, does not act on space-time, it
commutes with the time derivative. Thus

I H,G.7=0. (A6)

Let f be a stationary state of the Hamiltonian, with
the eigenvalue E. Then, it follows from the vanishing
of the commutator (A6) that successive operation on

P with the various generators G, generates a set of
degenerate eigenfunctions of B.Let us now investigate
the structure of these multiplets generated by operating
with the operators G, which constitute a Lie algebra
isomorphic to that of the noncompact homogeneous
proper Lorentz group.

We shall see that the multiplets generated by
the operators G, are Pnite, and that they are not
the in6nite-dimensional unitary representations of the
Lorentz group. Their character is determined by the
positive definiteness of the quadratic Casinur operator of
the lie algebra, as defined by the action of these opera-
tors within the Hilbert space. The Casimir operator is
a quadratic form in the six generators of the Lorentz
group. If we consider the six generators G, acting only
on the spinor indices, we see that the three which
generate spatial rotations are Hermitism, while the
three which generate Lorentz transformations are unti-
Hermiticn. Since the square of a Hermitian operator
is positive definite, while that of an anti-Hermitian
operator is negative definite, the Casimir operator
turns out to be positive de6nite. Thus, for any set of
states of the physical system corresponding to a given
irreducible multiplet of this Lie algebra, the square of
the eigenvalue of any generator must be smaller in
absolute magnitude than the eigenvalue of the quadratic
Casimir operator. The eigenvalues of the generators are
therefore bounded within a given representation and
only the 6nite representations occur.

The algebra of the operators G, is better described
by a redefinition of the operators of the Lie algebra,
choosing the phases fo make all operators Hermitian
One then obtains the Lie algebra of the real Euclidean
four-dimensional rotation group and everything follows
simply.

We now see that the two vanishing commutators of
Eq. (AS) and the designation 2XZ indicate a formal
similarity which is misleading. The multiplet structures
obtained from these two apparently isomorphic algebras
are different One is compact, the other is noncompact.
The physical reasons determining the compactness are
completely different in the two cases. The operators
G, generate transformations in space-time. The phases
of the generators are determined by the requirement
that they transform real space-time into real space-
time; i.e., x and t are real variables in a Minkowski
space. The operators G, generate transformations in a
Hilbert space. The only guide to the choice of phases
for the definition of the algebra and the correct multi-
plet structure is the Hermiticity of the operators.


