
B1608 8 I RG E et a&.

compare this result with the results of the three-body
K,3 decays, '4 which proceed through the vector inter-
action, because of the 6nal-state interaction in E,4

decays. If we assume Eq. (1) to be dominated by the
axial-vector current, as predicted by most theorists,
and if there were no 6nal-state interactions, then the
violation parameter

&= I:~ (~~/~Q = —&)3/L~ (~/~Q=+ &)j
~R. P. Ely, W. M. Powell, H. White, M. Baldo-Ceolin, E.

Calimani, S. Ciampolillo, O. Fabbri, F. Farini, C. Filippi, H.
Huzita, G. Miari, U. Camerini, W. F. Fry, and S. Natali, Phys.
Rev. Letters 8, 132 (1962); G. Alexander, S. P. Abneida, and
F. S. Crawford, Jr., ibid. 9, 69 (1962); B. Aubert, L. Behr,
J. P. Lowys, P. Mittner, and C. Pascaud, Phys. Letters 1{j,
215 (1964); M. Baldo-Ceolin, E. Calimani, S. Ciampolillo, C.
Filippi, H. Huzita, F. Mattioli, and G. Miari, I'roceedkngs of the
Sienna International Conference on E/emewtary I'artides (Societa
Italionadi Fisica, Bologna, Italy, 1963); L. Kirsch, R. J. Piano,
J. Steinberger, and P. Franzini, Phys. Rev. Letters 13, 35 (1964).

corresponding to the parameter ao= 0 would be X(0.25.
On the other hand, if there is no T=2 Anal-state
interaction but the T=O s-wave enhancement factor
were as large as 4, then X&0.5.
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Tests of spin for an unstable boson which decays into three spinless particles, or into a spin-1 and a spin-
particle, or into two spin-$ particles, are presented. The proposed spin tests should be useful for the spin-
parity determination of the new boson resonances. Spin tests linear in the experimental test functions are
discussed in particular, in view of their general applicability independently of the production kinematics.
Explicit expressions of the test functions are reported for the lower spin assignments.

r. INTRODucnoN
'HE recent discoveries of many resonant states

which decay strongly or electromagnetically into
baryons and bosons have stimulated the search for
convenient spin-parity tests, which may allow for a
determination of the spin and parity of the unstable
particle, possibly avoiding dynamical hypotheses on
the mechanisms of production and decay. Particularly
useful have been the tests based on simultaneous
analysis of angular and polarization distributions. '

In this paper we consider some possible methods for
determining the spin of an unstable boson. We discuss
its modes of decay, into three spinless particles, into a
spin-1 and spin-0 particle, and into two spin-2 particles.
In each case we look for relations among the coeflicients
of the Anal distributions which do not depend on the
elements of the density matrix of the decaying boson.
%'e obtain a general method for spin determination

'R. Gatto and H. P. Stapp, Phys. Rev. 121, 1553 (1961);
N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963); M.
Ademollo and R. Gatto, Phys. Rev. 133, 8531 (1964); N. Byers
and C. N. Yang, ibid. 135, B796 (1964); S. M. Berman and
R. J. Oakes, ibid. 135, 81034 (1964).

which appears to be more powerful than methods based
on the reconstruction of the density matrix. The rela-
tions to be tested are in fact linear in the experimental
averages and independent of the production process,
making it possible to average on all the events, inde-
pendent of the production kinematics. Such a possi-
bility is especially useful when the number of events is
relatively small.

In Sec. II we discuss the decay of a boson into three
spinless particles. The spin tests we derive for this case
could be of use for the spin-parity assignments to
recently found three-body resonances such as 3~, g~m. ,
E~~, etc. The hnal distributions are irst expressed in
terms of a suitable set of parameters which are subject
to a number of constraints. Symmetry principles or
possible identity between two of the anal particles
produce further relations. The diGerent spin tests are
discussed in Sec. 2.3 and are written down explicitly
for spin one. Their explicit forms for spin two and three
are reported in Appendix A. In Sec. III we discuss the
mode of decay into a spin-1 and a spin-0 boson in view
of applications to spin-parity tests of the woo and +p
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resonances. The spin tests are elaborated in terms of
directly measurable quantities which must be expressi-
ble in terms of geometrical parameters. In Sec. IV a
very short account of possible tests applicable to decay
into two fermions is given.

II. DECAY INTO THREE SPIÃLESS BOSOÃS

1. AnguIar Distributions

Ke consider here the decay of a boson 8 of spin j into
three spinless bosons. Our results may be useful for the
spin assignment to recently discovered boson resonances
which decay into 3w, y~~, Eg g, etc. We shall not discuss
the properties of the Dalitz plots which have been
widely discussed in the literature. ' The spin tests that
we shall present are based only on the angular-distribu-
tion analysis, and are, in a certain sense, complementary
to the Dalitz-plot method.

We briefly describe the basic idea of the method. The
final state depends in general on 2j+1 dynamical
coefficients which depend on the energies of the 6nal
bosons. When we integrate over the energies, all inter-
ference terms appear, giving a total of (2j+1)' param-
eters that we can arrange in a matrix of dimension
2j+1. This matrix has the properties of a density
matrix. The number of' independent parameters is
greatly reduced by the possible symmetries (such as
parity conservation in the 8 decay, or symmetry under
the exchange of two final bosons) and in many cases the
parameters can be completely determined.

The 6nal state of the three bosons in the center-of-
mass system can be labeled by the following parameters:
the direction of the normal n to the decay plane; the
azimuth y of one of the 6nal momenta, say y~, around n;
and the energies coi and co2 of two anal bosons. Another
equivalent set of parameters is: the unit vector u~ along
pi, the azimuth f of p~ around nz, and the energies &0i

and ~2. According to the two choices we shall indicate
the 6nal-state vector by Ingrain»& or by luafa&i&em) We
denote by P the complete density matrix of 8 and by
M the transition matrix. The final distribution, for the
first choice of parameters, is

I(nv&0&&og) = (nycaico2I MI'M
I nqmia)g) (2.1)

and is normalized such that

I(npM&&o)&f(pd&di&IMglN = 1

I(nv»&d 2)
= (n=k «'~i~mlD(R)MI'M'D '(R)

I
n=k ~i~2&

(2.3)

where we have called

f (v»~2) (n k 'v~1» I Ml jv& (2 3)

By performing a rotation of X around z and using again
the invariance of M, we easily obtain

f~(0'+", »») =&' " f~(%~i») (2.6)

and therefore

f (~1&2)=e*""f(+ i~2) ='e'"'f (~i~2) ~ (2 6 )

Using the properties of the rotation matrices, we have

(iv IDI'D 'Ijv'&=2 &""'p- &" &" '
vv

=P ( 1)~'-"p„„,n „&~&S
vv'

=Z (—1)"' "'v- Z (ivy v'ILM')—
vv' LMM'

X (j v,j i 'I LM) nor—i&r& i, (2.7)

where we have denoted by p the spin-density matrix
of 8, (j p, ,j v,

'
I
LM') are t—he standard Clebsch-

Gordan-Wigner codBcients and X}M.M&L} stands for
S~ s&&zi(0,(,g). By virtue of (2.6') and (2.7), the final
distribution (2.4) can be written as

I(n~ico2) =
I (2j+1)/(Sx') j

X P p(L,M)P'(L, M', ~i~2) &jr sr&" (q, P,g), (2.8)
LMM'

where k is the unit vector along the polar axis, D(R)
=D(0,),q) follows the convention of Edmonds, ' and

$, g are the polar coordinates of n in the original frame.
By using the rotational invariance of M and inserting
in (2.3) complete sets of angular momentum states
of 8, we obtain

I(nqmicom) =P (n=k ~i~&IMI&v&(pv ID D 'liv'&

x(jy IM&ln=k v

=E f.(v i~2)f''(v i~2&

the corresponding normalization factor being included
in M. To evaluate the matrix element (2.1), it is con-
venient to make a rotation E of the frame of reference
such that the normal I is directed along the z axis of the
new frame. If D(R) is the corresponding operator, we

where

p(L,M) = (X/ j) P p„„(jv', LM
I jv),

vv'

V-= (2L+1)'"j (2 9)' An extensive analysis of the 3~-decay mode can be found in
the paper by C. Zemach, Phys. Rev. 133, 81208 (1964}.Many of
the results of this paper can be extended to other three-body
decays.

I A. R. Edmonds, Angular Momentum in Quantum Mechatucs
(Princeton University Press, Princeton, New Jersey, 1957},
chap. 4.
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F(L,M', ~t(u2) = (X/j) p F„„(tdttd2)

X (j p', LM'
~
jp), (2.10)

F*(L,M', tottd2)= (—1) 'F(L —M', cote) 2), ( . o')

Fwv' (~i~2) f. (ddt~2)f; (~i~2) (2.11)

From the normalization condition (2.2), and since p is
normalized to unit trace, we obtain

and the Schwartz inequalities

(2.22')

as it follows from (2.11) and (2.16). The same holds
for G. Furthermore F and G are related by a similarity
transformation. In fact by comparing (2.5) with p=0
and (2.18), we see that the final-state vector of (2.18)
is obtained from that of (2.5) by a rotation of the
reference frame of It.'=—( i,rs/2, i/r2) Th. erefore,

F&& (M Mt)2JQ) lAtd =21 . (2.12)

or

g„(cuttd2) =p f„(tdttds) X)„„&'&(R)

From (2.8) we obtain in particular the distribution of G=D FD,
the normal n by integrating over the other parameters: l D st nds fo ~(') ( /2 /2)

(2.23)

I(n)=g a(L,M)Vz~(n), (2.13)
2. Symmetry Properties

The energy distribution is

a(L,M) = 3 (L)p(I.,M), (2 14) The final angular distributions are thus dependent
on the matrix elements of F. Taking into account the

~(L)=L(2j+I)/4~]t" ZF»(jp, LOl jp), (215) Hermiticity of F and the condition (2.22), the matrix
elements depend in general on 4j(j+1) real inde-
pendent parameters. However, this number is reduced
in many cases because of symmetry properties.

Let us suppose, for instance, that parity is conserved
in the decay of B.Then from (2.5), calling c the product
of the intrinsic parities of the initial and final particles,

I(Q)tC02) =p F&&(tdttd2) . (2.17) we have

The calculation of the final distribution I(uilbcogo&) can
be carried out exactly along the same lines. In the
above equations we must only make the substitutions

n(p, tl) ~ nt(n, P); y ~ tt'; D(0,$,tl) ~ D(O,n,P);
fi (~i~&) ~ gr (~i~2) i

where

F„„=O, unless (—1)&= (—1)"=e.

The corresponding property for G is

(2.25)

f„(q )(ottdt) = of„(y+n)u), td, ) . (2.24)

and, by virtue of Eq. (2.6), we have the selection rule

(-1)~=~.

For the ma, trix elements F„„we thus have

gz(Mttd2) =(lli=lr, if=0,COiN2i Mi Jp). (2.18) G„„=e(—1)' "G „„=(—1)"+"G „„. (2.26)
For example the distribution of u~ will be In this case we see that F depends on j(j+2) real

independent parameters for e= (—I)& and on j'—1

parameters for e= (—1)&'+t.

Furthermore, in many cases, at least two of the final
particles are identical or are simply related by charge
conjugation or isospin rota, tions. We can then exchange
the two particles in the amplitudes (2.5). We can see
this in two examples. The resonance EE~ of 1410MeV4
with Q= 5=0 is supposed to decay strongly satisfying
charge independence. In each of the two observed
decay modes, E'E—~+ and E+E'w, the EE system is
in a pure triplet state of isotopic spin and therefore the
decay amplitude is even under the exchange of E and
E. %e also remark that since the resonance is neutral,
the final states of the two decay modes are related by
charge conjugation in a definite way and therefore, the

(2.19)I(ni) =P b(I.,M) Yr,~(ut),

b(L,M) =B(L)p(L,M), (2.20)

2j+] 1/2

B(L)= P G„„(jp,LO~ jp) . (2.21)
4'

In the angular distributions (2.13) and (2.19), the
coefficients a(L,M) and b(L,M) are products of a factor
p(L,M) depending only on the production process, and
of a factor depending only on the decay. The matrix
elements F„„orequivalently G„„play the role of decay
parameters and are unknown, apart from relations
among them, unless the decay process of 8 is speciaed.

The matrix F is a Hermitian non-negative definite
matrix and its elements satisfy the conditions

0&F»&1, TrF =1,
' R. Armenteros, et al. , Proceedings of the vienna Internat~onat

Conference on J3ementary Partic)es (Societa Italiana di Fisica,
2.22) Bologna, Italy, 19%), Vol. 1, p. 287.
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amplitudes are equal, apart from the sign. Next, let us
consider the m-+~ q resonance of 960 MeV~ called X'.
Charge conjugation exchanges the two pions and the
decay amplitude takes a factor of &1 under this ex-
change depending on the X~ charge-conjugation
number.

Now, if the final distribution is symmetrical under
the exchange of two 6nal particles, say j. and 2, we
must have

2.3. Spin Tests

There are different ways of using the results of the
preceding subsections to derive tests for the spin of B.
Let us consider for example the angular distribution of
the normal n given by Kq. (2.13).The conditions that p
and F be non-negative and of unit trace, give some
limitations on the angular distribution coefIicients with
M= 0. From (2.14), (2.15), and (2.9) we have explicitly

I(n~&zm) =I(—n, —~ e~~—,), (2.27) a(LM) =[(2L+1)/4s7'~' p F»(j p, ,LOIIy)

I (nx~,~,) = [(2j+1)/8~'7

X P p(L,M)C" (L,M', u&gcu2)X)~. ~&~&(x,g,q), (2.30)
I MM'

where

I ( L, Mco&co )2= (L/j) QC» ((v&co2)(jp', LM'IjII), (2.31)

4'»'(Mi~m)=8 " " F»'(&a~2).

From (2.28) we have for the new matrix C:

(2.32)

(2.33)

to which we must add the analog of (2.25) when parity
is conserved. These relations greatly reduce the number
of decay parameters. The number of real independent
parameters is now ~[2(j+1)'+(—1)&'—37 for e= (—1)'
and ~~[2j 2—(—1)'—37 for e= (—1)'+'.

The angular distribution of the bisector is given by
a formula analogous to (2.19) which is obtained by
replacing G in Eq. (2.21) with a matrix I' given by

r=a-leD, (2.34)

where D is the same as in Eq. (2.23).
~ G. R. KalbAeisch et al. , Phys. Rev. Letters 12, 527 (1964);

13, 349 (1964); M. Goldberg et al., ibid. 12, 546 (1964); 13, 249
(1964); P. M. Dauber et al. , ibid. 13, 449 (1964).

where 8=8(cu~co2) is the angle between the two particles
and co~,~2 are their energies. From (2.8), (2.10) we then
obtain the conditions

(~i~2)=~ " F—I —I (~2~i) ~ (2 28)

The same conditions could also have been obtained
directly from (2.5) and (2.11). However, when Kq.
(2.28) is integrated over the energies any symmetry
property of the nondiagonal matrix elements of F
disappears, and we get only

(2.29)

which in turn implies A (L)=0 for odd L in Eq. (2.15),
as necessary for I (n) =I(—n).

To exhibit simpler symmetries it is convenient to
consider the distribution of the bisector of the momenta
of the particles 1 and 2, instead of the two momenta
separately. Referring to Eq. (2.8) we label the Gnal
state by the azimuth of the bisector, p=p+-', 8, and
we have

X g p„(jv',LMIjv), (2.35)
vv'

and the stronger limitation

2 I
a(LM) I'&L(2L+1)/4x7 max.

I (j~ LoIj~) I'

Xmax„
I (jv, LIOjv) I, (2.35")

where max„, „means the maximum value of the argu-
ment with respect to the allowed values of p, and v in
(2.35). For example, if parity is conserved in the 8
decay, p must satisfy (—1)l'=e, as we know from
(2.25). Analogous limitations hold for the coefEcients
b(L,O) of Eq. (2.19).

More precise tests can be obtained by determining
the parameters F„„as we shall see in a moment. We
define the test functions

T(L,M,M') =
2m.

d y sin$d$
0 0

XI(k,rl, v')&M 3r' '(v' (rl) (2 36)

where I(),rhea) is the distribution (2.8) integrated over
the energies co~,A&2. As is clear from the derivation of
Eq. (2.8), the angles $, p, q have to be measured as
follows: $, y are the polar coordinates of the normal to
the decay plane,

n= (y&Xpm)/IyiXp2I,

in a B rest frame de6ned from the production reaction;
p is the azimuth of y~ measured in the frame obtained
from the B rest frame by a successive rotation of q
around the s axis and of f around the new y axis, in such
a way as to carry the s axis of the new frame in the
direction of n.

' For example, if B is produced in a two-body reaction such as
m+E —+ X+B, one Grst takes the reaction center-of-mass system
with the x axis along the incident pion and the s axis normal to
the production plane; then one goes to the B rest frame by a pure
time-like Lorentz transformation.

from which we easily obtain

I u(L, O)
I
&[(2L,+1)/4s 7'~' max„

I (jy,LOIjp) I

Xmax.
I (j~,LOI j~)l (2 35')
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From Eq. (2.8) we obtain

T(L,MM') =L(2j+1)/(2L+1)jp(L,M)F'(L, M').
(2.37)

The coefficients T(L,M,M') determine in particular the
angular distributions of a and of uj as given by Eqs.
(2.13) and (2.19), respectively. In fact, by comparing
(2.14), (2.15), and (2.37) we have simply

a(L,M) =
l (2L+1)/4s]'"T(L M 0) . (2.38)

Also using (2.20), (2.21), and (2.23) we find after some
manipulations

b(L,M) =Q T(L,M,M') Y ~1'( /s2 )s, (2.39)

where

Yi"(s/2, s) =cosL(l+m)z/2)

1 21+1 '" L(l+m)!(1—m)!J"
X— . (2.40)

2' 4 L-', (1+m)j!L-,'(l—m)]!

To determine the matrix elements F„„onecan proceed
as follows. One first determines the experimental values
of the ratios

R(L,M', M")= T(L,M,M')/T(L, M,M") (2.41)

for all the independent values of I., M', and 3f".These
ratios are independent of the 8 density matrix and are
given, from (2.37), by

R(L,M', M")=F'(L,M')/F'(L, M"). (2.42)

By virtue of Eq. (2.10) this is equivalent to a system
of linear equations in the F„„ofthe kind~

Q F„„(jp,LM'lj v) =R(L,M', M")

Xp F„„(jII,',LM" lj v'). (2.43)
p' v'

Let us briefly discuss the utilization of this method
in the diGerent situations. In the general case of parity
nonconservation, and provided that p(L,M)WO for all
the values of I., j.&1.&2j, the independent equations
are at most 2j(2j+1) (taking into account also the
complex conjugate of each equation) and they are not
enough to determine the 4j(j+1) parameters. A total
of 2j real parameters will remain undetermined and we
may choose them to be the diagonal elements F». The
test will then consist in the verification that a solution
exists such that the conditions (2.22) and (2.22') are
satisfied and the whole matrix is non-negative definite.
The situation is quite di6'erent for a parity-conserving
decay. In this case, because of (2.25), we have

Fr r=a/+6.
Since (2.22) and (2.22') imply

(2.49)

we have the condition

l~l &v'2 (2.51)

The coeKcients of the angular distribution of the
normal are given by

a(1,M) = (3/8s)'"(Fu —F g r)p(1,M), (2.52)

and the independent complex Eqs. (2.43) are j' or,
equivalently, 2j real equations, which will in general
be sufhcient to determine all the parameters. In some
cases the number of equations is larger than the number
of parameters and we have a number of consistency
relations to be verified. Finally, we consider the case of
parity-conserving decay with an additional symmetry
under exchange of two final particles, as discussed in
subsection 2.2. Here we may refer to the matrix 4
instead of F, replacing q in (2.36) by the azimuth of
the bisector y. From (2.31) and (2.33) we have now,
in addition to (2.44):

C(L, M)=—(—1)'4(L,M). (2.45)

The Eqs. (2.43) are therefore real and their number is

j(j—1)+1, (j&1).The parameters C„„can in general
be determined, except for special cases. The matrices F
and C constructed by the above method, must be non-
negative and have to sa,tisfy the limitations (2.22)
and (2.22').

We illustrate the method for the 3-body decay of a
j= 1 boson. For positive parity a=+1 (e.g. , co ~ 3~),
by virtue of (2.25), the only nonzero matrix element is
Fpp= 1. The angular distributions are completely deter-
mined from the density matrix and contain only the
even-L terms. From (2.14) and (2.15) we get

a(2,M) = —(3/1(hr)'"p(2, M) . (2.46)

From (2.26) the diagonal matrix elements of G are
Gu ——G ~ ~

———,
' and we obtain, by use of (2.20) and (2.21)

b( M)=2(3/ 0~)""~(,M) ( 47)

These results essentially coincide with those found by
several authors, ' using diferent techniques, for the
decay ra ~ 3n.. From (2.46) and (2.47) we also obtain

a(2,M)/b(2, M) = —2

independent of the production process.
Let us consider the case e= —1. F„„has now four

nonzero matrix elements, those with p, ,TWO. We have
only one ratio of the kind (2.41), namely, R(2,2,0) =n
and the corresponding Eq. (2.43) gives

T(L,M,M') =0, for odd M' (2.44) a(2,M) = —,
' (3/10')'"p (2,M) . (2.53)

7 The system of Eqs. {2.43) is actually nonhomogeneous because
of the condition Z„F»——1.

8 G. Feldman, T. Fulton, and K. C. Wali, Nuovo Cimento 24,
278 (1962); M. Jacob and A. Morel, Phys. Letters 7, 350 {1963);
see also Ref. 9, Eq. (3) and footnote 13.
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%'e can 6nd the limitation:

2 lo(1,3f)I'&(1/16 )(3—2l I') (2.53')

is the b~ angular distribution. Since M is invariant
under spatial rotations, its matrix elements have the
general expression

We notice that, if there is exchange symmetry, we have,
by use of (2.29), F&q=F r r

——2 and a(1,3f) vanishes.
The angular distribution of the momentum u~ can be
expressed in terms of the ratio a. From (2.39), (2.38),
and (2.40) we obtain

(v,vIÃIjp)=P T&(lm, ivljp)Y&"(v), (34)

where
I v), (—1(v&1), and

I jp) denote the spin state
of bj, and of B, respectively, and T~ are the reduced
matrix elements for B decay. They satisfy

b(2,M) =-,'a(2,M)L(/6) Ren —1j. (2.54)

The limitation (2.51) gives

Q IT(I'=1. (3.4 )

—2& b(2,M)/a(2+I) & 1 (2.55)

and the value of the ratio b/a is the same as for o=+1
when Ren=0.

In Appendix A the discussion is extended to j=2
and j=3. %e conclude this Section by the following
remarks:

(1) We have always disregarded the energy de-
pendence in the 6nal distribution. However, the same
analysis can be carried out for each value of the energies
cur, a&2. Of course Eqs. (2.22) and (2.22') will then be
replaced by (2.17) and (2.11), respectively. In this case
all the parameters F»(u», o») are expressible by the

MyQ)g

(2) Spin tests additional to those considered above
can be carried out from analysis of the density matrix.
Once the parameters P„„have been determined, the
density matrix itself can be obtained, by use of Eq.
(2.37), for events having a given production kinematics.

p(f, v)=(f/i) Z p- (ip', fv lip) (3.7)

o(k,a) = (k/v3) P o„„.(io', kxl iv). (3.g)

From angular-momentum and parity conservation we

have
l=j for o= (—1)&',

l=j+1 for o= (—1)&'+' (3.5)

having denoted by e the product of the intrinsic parities
of 8, bo, and b~ From. (3.2) we have, by use of (3.4)

I(v)o„, =P T&Tp' P p„„.P (lm, 1vIjp)
mm'

X (Pm', 1v'Ijp') YP (v) Yp""(v) . (3.6)

It is convenient to introduce the expansion of the
density matrices p and 0. in terms of irreducible tensor
operators, in analogy with (2.9):

III. DECAY INTO A SPIN-1 AND A
SPIN-0 BOSON

Ke consider the decay process

&~&o+4, (3.1)

I(v)o =3EpMt, (3 2)

where v is the unit vector along the bj momentum in
the B rest system and

I(v) =Tr(&3') (3.3)

' M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev. Letters
12, 462 (1964). See also S. U. Chung, Phys. Rev. 138, 31541
(1965). The coeKcients 0.3586 in the expression for A(42, 2y)
in Table II of the Grst paper should be replaced by 0.4811.%'e are
grateful to Dr. Chung for pointing out this error to us.

where B is boson of spin j, bo is a spin-0 boson, and bj
is a spin-1 boson. %'e also assume that parity is con-
served in the decay process (3.1). Our considerations
apply in particular to the mco resonance and to the xp
resonances. %e have already discussed the decay of
the B meson in a recent letter' and we shall mainly
refer to the results contained there.

%'e call p and r the density matrices of B and bj in
their respective rest systems and we denote by M the
transition matrix in spin space. Ke have

and we obtain, after s»~relation on the magnetic
quantum numbers in the standard way, the following
expression for the polarization distribution of b~ ..

I(v)o (k,x) = P a(k~,L3f)Yr~(v). (3.10)

e(k~,LM) = (4o) '"k(2j+1)
XZ p(f, t)(~x,L~lfv)

j 1

XP (—1)'TiTv'l/'(10, 1'OILO)X l' j 1 ', (3.11)
l l'

f
where X is the Wigner 9—j coefficient. Ke notice that
the angular distribution (3.10) contains only even-I.
terms, due to the presence of the Clebsch-Gordan
coefficient (N, l'Ol LO) in (3.11), as it must for a parity-

In (3.6) we also use the formula

Y m(v) Y,m (v) ( 1)m'g)&/(~)1/2j

1
X Q (10,1'OI—LO) (lm, P —m'I LM) Yr~(v) (3.9)

z,~g,
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&(Lk fq) = (127r)'" Q a(k«, LM)(k«)LM I fp),

the normalization being such that T(00,00) =1. From
(3.11) we have

2'(L»f~) = iB(Lkf)1 (f,v),

B(Lkf)=v3kj

(3.16)

XZ (—1)'TtTp 0'(lO, l'OI LO)X I' j 1 ',
L f k-

conserving two-body decay. For k=0, 0(0,0)=1/v3,
Eqs. (3.10), (3.11) give the bi angular distribution.

The coefFicients a(k«, LM) satisfy the relation

c*(k« LM) = (—1)~~a(k «L—M)—. (3.12)

They can be obtained directly from experiment by the
following procedure. To each event one associates a 8
rest frame and a b~ rest frame. These rest frames have
to be obtained from the center-of-mass system for the
reaction in which 8 is produced, by two successive pure
time-like Lorentz transformations, ' in order that our
noncovariant formalism be relativistically correct. In
the b~ rest frame one measures the polarization coefFi-
cients 0 (k,«) from the fii decay. In the B rest frame the
coefficients a(k«, LM) are obtained as the averages

a(k«, LM) = (0 (k,«)Fi ~(v)), (3.13)

over the bi angular distribution. The coeKcients a (k,«)
are also obtained as averages over the angular distribu-
tion of the b& decay products. We consider the examples
of p decay and ar decay. For p —+ 2m we have"

n(2, «) = —(1(hr/3) i (Y ~(u)), (3.14)

where u is the direction of any one of the 6nal pions.
For the decay cd ~ 3~ we can apply the equations (2.46)
and (2.47), respectively, for the distribution of the
normal and of the momentum. In both cases the
coefhcients vanish for k= 1. %'ith the aim of obtaining
spin tests independent of the density matrix, it is
convenient to introduce the test functions"

of j; (iii) the ratios T(Lk, fp)/T(L'k', fy) are known

numbers depending on j. If c= (—1)'+' it is convenient

to introduce the decay parameters

(3.18)

satisfying the condition

9+p9+ ~9 l (3.19)

IV. DECAY INTO TWO FERMIONS

In this Section we include for completeness a brief
discussion of the decay of a spin-j boson into two
spin- —, fermions. We write the density matrix of the final

fermions, in the rest frame of the boson 8, in the form

p' '=Z p-' '&i*&i" (siilk»h»)
)& (sp I 2 v, ')2»') (y v

I
Lm, sp) (g v

I
l'~n', sp')

X &i"(v) &i (v) I
«i»)(vi'~2'I, (4 1)

where p~~) is the boson-density matrix, v is the decay
direction, and T&, are the reduced decay-matrix
elements.

Ter.E I. The coefBcients B(l.kf) for e= (—1)&.

Equation (3.17) takes then the form

B(Lkf)=an+ibP+cy+d (3.20)

where u, b, c, and d are real geometrical coeS.cients
depending on L, k, f, and j. The symmetry properties
of the X coeKcients require that k=0 for f+k= even

and a=c=d=0 for f+k=odd. The ratios T(Lk,fq)/
T(L'k', fy) are independent of the production process
and give a set of linear equations in the decay param-
eters, in a way similar to that discussed in the previous
section. The consistency of the solution, taking also
into account the condition (3.19), indicates the correct
value of j, and the decay parameters themselves can
then be determined. The coefficients B(Lkf) for
j=0, 1, 2 are tabulated in Table I for ~= (—1)' and
in Table II for e= (—1)&+'.

Lthe normalization is B(000)= 1j.The spin and parity
assignment can be made by verifying the following
conditions: If e= (—1)' one has l=l'= j and

I
7;I'=1;

the B(Lkf) are known numbers depending on the
assumed spin j. The following conditions must be
satisfied by the experimental test functions T(Lk,fp):
(i) T(Lk,fp)=0 for f+k=odd, due to the vanishing
of the X coeKcients: (ii) T(22,00) = 1/v2, for any value

"M. Peshkin, Phys. Rev. 123, 637 (1961).
"The test functions defIned in (3.15) are slightly diferent

from the analogous test functions A (Lk,fq) de6ned in Ref. 9. The
relation among them is

T(l.k,fp) = {—1)j'+~A*(I.k, fp) = (—1)&A {I-k,f—y),

0+
1

B(000)= 1
B(000)=
B(2 2 0) = 0.7071
8(2 0 2) = 0.3162
B(0 2 2) = —0.5000
8{22 2) = —2.2136
8(000)= 1
8{22 0) = 0.7071
8 (2 0 2) = —0.2673
8 (0 2 2) = —0.5916
8{22 2) = —0.5051
8{42 2) = —0.2711
8(4 0 4) = —0.3564
B(2 2 4) = 0.2020
8 (4 2 4) = 3.3128
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TAaLE II.The coef5cients 8(I.kf) for ~ = {—1)&+'. Normalization in the solid angle is expressed by

(4.7)

0 8{000)= 1
8(2 2 0) = —1.4142
8(000}= 1
8 (2 2 0) = a+0.353&y—0.3536
8 (2 2 1)= —0.8660iP
8{20 2) = 0.4472a+0.1581'—0.1581
8 (0 2 2) = 0.450&y+0.5500
8 (2 2 2) = 0.5916a—0.0598y+0.0598
8 (4 2 2) = —0.4811y+0.4811
8{000)= 1
8(2 2 0) = 1.0392a+0.2121'—0.3536
8{22 1}= 0.8744ip
8 (2 0 2) = 0.1309a—0.4009y+0.0267
8 (0 2 2) = 0.2133y+0.3803
8 (2 2 2) = 0.5677a+0.1611y+0.0196
8 (4 2 2) = —0.2179a—0.2711y+0.2711
8 (2 2 3)= 0.2498ip
8 (4 2 3)= —0.3938ip
8 (4 0 4) = —0.4364a+0.0891'—0.0891
8 (2 2 4) = 0.0495a —0.4377' —0.4108
8 (4 2 4) = —0.3245a —0.3333y+0.3333
8 (6 2 4) = 0.2205' —0.2205

I(v)P vi ——P b(L,M)Yz" (v), (4.9)

b(L,M) = (—1)'C2pr(2 j+1)7 'I'Do(L)S(L,M),
I(v)P vo ———(o/&2)C p c, (L,M) n, or&z&(co)

An expression for A (L), quite convenient for spin tests,
is

A(I.) = (LO, jOI jO)CIApolo+ IA,olo]

+(Lo jil ji)CIA~'I'+( —1)'IA~ 'I'] (4 g)

In terms of the three orthogonal unit vectors

v~ ——v, vs= nX v/I nX vl, vo= viX vo,

(where n is the normal of the production plane), we
obtain

The polarization of one of the two fermions, say f&,
is described by the density matrix p&", obtained from
p(f} by taking the trace with respect to the variables
of fo. The angular distribution and polarization of f&
are given by where

—c &(L,M) n, or &'& (~)7, (4.1o)

+c g(L,M)$ gor~z&((o)7,

I(v)P vo ——(1/v2)C P cg(L)M)x)gsr (co)

One finds

where

I(v) =Tr[p&'&],

I(v}P=TrCjp&'&e&'&]

I(v) = P a(L,M)Yz~(v),

(4.2)

(4.3)

c~g(L,M) = (—1)&(v2/4n)

xC(2L+ 1)/(2 j+1)] ~ D„(I.)s(I.,M)

and S+&or&z&(op) are the well-known elements of the
rotation matrices, depending on the Euler angles
co=—(p,e,o), Cv—= (e, pp)]. The quantities D; appearing
in Eqs. (4.9) and (4.10) are defined as

a(L,M) = (1/(2 j+1))
XC(2L+1)/(4o)]' 'A (L)S(L M) (4.4)

S(L, M)=p v .&»(j~',LMI jv)
vv'

An explicit expression of these quantities in terms of
the matrix elements TE, is

A oo= T,p(2j+1)'";
A~o= T~-i, ~

j""—Ts+»(j+1)"
A~'= (1%&)CTs+~,~v'j

—Ts, ~(2j+1)'"+T~-~,~(j+1)'"7
A~

—'= (1/&2)CTs+1. ~V j
+T;,~(2j+1)'"+T; i,i(j+1)'"]. (4.6)

are the coeKcients of the multipole expansion of the
density matrix of 8; furthermore, we have put

A (L)=Q (io,st I jp)A, "A,""

with
A, =P lT&, (lo, sv, lj p).

ZA. (splo~i, o
—o)=o (4.12)

and the preceding equations become in this case

a(L,M') =2C(2L+ 1)/(47r) JioS(L,M)
XC(LO, jol jo) I T;oI'

+ (LO, j1Ij1)I T;,pl'], (4.13)

b(L M) 2C(2L+1)/(&)]z~oS(L M)
XC(LO, jol jo) I T' I'

—(Lo jil ji) I Ts, rl'] (4 14)

c,(L,M) = C(—1)~'/2o. ]C2 (2L+ 1)(2j+1)]'Io
X (jo,ji I Li)T,,Tsp S(L,M), (4.15)

c g(I.,M) = C(—1) +'/2o]C2(2L+1) (2j+1)7'Io
x (jo,ji I Li}T,;T,g(I.,M}.

D, (L) = (1/v2)C(jo, jolLO)2 Re(AoPAP')
—(ji,j—1ILO)(IA,&lo—IA;sip)],

D, (L) =D &(L)'= —(1/V2)(jo, jilL1)
XC(Ao'+AH)A i "+(—1)z(A op —A P)*A &']. (4.11)

When fo is a left-handed neutrino, one has the condition
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The results agree with those of Durand, Landovitz and

Leitner. ~ %hen parity is conserved in the decay, we

distinguish, according to the two values of P&Pf f„
between two cases:

=0 for even L. (4.22)

(—1)~'+'
t 2L+1~ 't'

c,(L,M)=
l l

s(L,M)
k 2j+ii

2i Im(AJAR') even L
x(jo,jilL1)

2 Re(APAa") odd L

c ~(L,M)= (—1) +'c~(L,M). (4.23)

From proper averages on the angular and polarization
distributions we can derive the various coeKcients

"L.Durand, L. F. Landovitz and J. Leitner, Phys. Rev. 112,
273 (3.958}.

(a) Peag, = (—1)&

The only nonvanishing amplitudes are T,o and T,~,

so that we have

a(L M) = [(2L+1)/4n]'"[(Lo jol jo) l
Tpl'

+ (Lo,jil ji) l r, , l']s(L,M)
for even I.,

=0 for odd L; (4.17)

b(L,M) = [(2L+1)/4nr]'to(LO, j1l gi) l T;xl'S(L,M)
for odd I.,

=0 for even L; (4.18)

ci(L,M) = [(—1)'/4 ]
X[n'(2L+1)(2j+1)]'I'(jo j1lL1)
X [T;,T;;—( 1)iT;p'T;QS—(L,M), (4.19)

c,(L,M) =[(—1)t/4 ]
x[k(2L+1)(2j+1)]'"(jojilL1)
X [Tgo'Tpi (—1)~T p—T i ]S(L,M) (4 20)

(b) PsPr~, = (—1)~'

In this case we have

a(L,M) = [(2L+1)/4n]'"[S(L,M)/(2j+1)]

x[(Lo,jol jo) IApln+2(Lo, jil ji) IApln]

for even I,
for odd L; (4.21)

b (I„M)= [(2L+»/4or]'t'[S (I„M)/(2j+1)]

X2(Lo,j1l ji) for odd L,

a(L,M), b(L,M), and c~~(L,M). Putting

P= lA 'l'+ lA 'l'
~o —lA xlo

fo lA -tip

a=(Ap+AP)Ag "
P= (Ao' —Ax')'Ai',

8=2 Re(Ap'A~"),

it is easy to show that in the general case

a(L,M) (n' f'n—)

b(L M) (n'+P)
for odd L, (4.24)

lnlo= (P+g)f'P,

I
pl'= (e-e)v.

(4.28)

(4.29)

These equations provide us with a general test for the
spin of B.

Note added in proof. We have received an unpublished
report by C. Zemach in which a similar analysis is de-
veloped. There is a strong correspondence in basic
formalism between the two approaches. In particular,
Eq. (2.28) of Zemach's report is essentially the same
as our Eq. (2.8), with s»nr corresponding to our
F*(LM,&o&pun), with Zemach's Eq. (2.25) corresponding
to our Eq. (2.10), and so on. Also do&nr. nr in Eq. (2.29)
of Zemach's paper is equivalent to our T(L,M,M') in
our Eq. (2.36). We thank Charles Zemach for sending
us this information before its publication.

APPENDIX A

Three-Body Decay of a Higher-Spin Boson

In this Appendix the method is applied to the three-
body decay of a boson of spin j and parity p (p denotes
the product of initial and final intrinsic parities) and the
relevant spin tests are derived. The case j= 1, for both
cases of parity, is discussed in the text (Sec. 2.3). The
discussion is here extended to j=2 and j=3.

a(L,M) ((Lo,jolj0) ta+ (Lo,ji lj1)(7p+ f'))

b(I,M) ((Lo,&ol&0)e+(Lo,»l j»(„—t ))
for even L (4.25)

From the solution of these equations one can obtain
the parameters P, vP, f'n and e. Furthermore we have

c~(L,M)/a(L, M) = (known number) X (a+P)
for even L, (4.26)

cq(L,M)/a(L, M) = (known number) X (a—p)
for odd I, . (4.27)

From (4.26) and (4.27) we can get n and P and test the
consistency of the spin assignment by the relations
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(Fop+F gp) =R(2 2,0) (1—2Fpp) (A20)

R(2,2,0) = —2.450F u,

R(4,2,0)=1.581F gg,

R(3,2,0) =R(4,4,0)=0.

(A1)

(A2)

(A3)

The nonzero matrix elements F„„are those arith
p, v= &1.There are four independent ratios (2.41), and
the Eqs. (2.43) give

Fop F po
——0.447R(3,2,0) (Fop F 2 o), (A21)

(Fop+F—po) =R(4,2,0) (0.259+1.289Foo), (A22)

F p, o=R(4 4 0)(0.120+0.597Fpp). (A23)

These equations together with the relation F00+P~~
+Ii ~2= j., are sufBcient to determine the matrix Ii„„
completely. The ratios R have to satisfy the limitations

From (A1), (A2), and (2.50) we have

R(2,2,0) = —1.55R(4,2,0),

I R(2,2,0) I
& 1.22.

(A4)

(AS)

IR(4,2,o) I
&3.87,

IR(4,4,o) I &42o,

I R(4,2,0)/R(2, 2,0) I
&3.87.

(A24)

(A25)

(A26)

The codEcients of the distribution of the normal
LEq. (2.13)]are

a(1,M) = L0.915/(4or)»'] (Fu —F, ,)p (1,M), (A6)

a(2,M) = —
I 0 600/(4n)'"]p(2 M) (A7)

a(3,M) = —
I
1.197/(4n)'"](Fu —F-1—1)p(3&1M) v (A8)

a(4,M) = —L0.800/(4n)'Io]p(4 M) (A9)

and those of the momentum distribution LEq. (2.19)]
are

The coeKcients a(I.,M) are

a(1,M) =I 1.823/(4or)'~'](Fop —F p p)p(1,M), (A27)

a(2,M) = L1.195/(4or)' '](1—2Fpp)p(2&M), (A28)

a(3,M) = L0.600/(4n)'~o](Fpp —F o p)p(3, M'), (A29)

a(4iM) =
I 1/(4pr)'~o](0. 200+Fop)p(4, M) ~ (A30)

The coeKcients b(I.,M) are given by

b (2,M) =a(2,M) L
—0.500+ 1.225 Re(R(2,2,0)}],

b(2,M)= —)a(2,M)(6ReF »+1),
b(4,M) = a(4,M) (0.375—1.250 ReF 11) .

For the Zpr la(l.iM) I' we can give limitations
gous to (2.53') by using

(2J.+1)2 lp(L M)I'& . ~x. I(ip,«lip)I'
(2j+1)

(Fu —F i-i)'&1—4IF~-~l'. (A13)
(4n) P la(2, M) I'&0.408, (A34)

(4or) P la(3,M) I'&0.144(1—4IFp pl'), (A35)

(A10) (A31)
b(4,M) =a(4,M) I 0 375 0 .791 R—e(.R(4,2,0)}

+0.956 Re(R(4,4,0)}]. (A32)
analo-

The a(L,M) are subjected to the limitations

(4or) Q I
a(1,M) I'&1.329(1—4IFp pl'), (A33)

(4 ) 2 I a(1,M) I'&0.335(1—4IF,-, IP), (4n) P I a(4,M) I'&0.741. (A36)

(4n) P la(2,M) I'&0.103,

(4n) P la(3,M) I'&0.573(1—4IFg &I') (A16)

We have also the limitation

6.6&b(4,M)/a—(4,M) & 7 4. .(A37)

(A17)(4n) Q Ia(4,M)l'&0. 329.
There are nine (eight independent) matrix elements

F„„for p, v=o, &2. The Eqs. (2.43) give explicitly:For the ratios b(I.,M)/a(I, M) we find the following
limitations

—2& b (2,M)/a(2, M) & 1,
—0.250&b(4,M)/a(4, M) & 1.

Fop+F—op=0.894R(2,2,0)(Fpo+F p p
—1), (A38)

(A18)
Fop —F—oo= —R(3,2,o)(Foo—F o o), (A39)

Foo+F-op= R(4,2,0)
X I

7.486(F22+F—p—2)
—3.457], (A40)

The nonzero matrix elements Ii„, are those with
p, v=o, &2. The Eqs. (2.43) give in this case:

F op= —R (4,4,0)
Xl 1.555(Fpo+F p p)

—0.718], (A41)
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Fog —F F0=0.755R(5,2,0)(Fgi—F i i),
Fo,+F io

———R(6,2,0)
)&[0.936(F2i+F a g)

—1.341],

(A42) The matrix F can be determined, apart from one rela-
tion among the diagonal matrix elements. The following
consistency relations have to be satisfied among the
coefficients R:

F pi= —R(6,4,0)
)&[0.556(Fig+F i g)

—0.796], 0.043R (4,2,0)+0.611R (2,2,0)+0.929R(6,2,0)

1.632R (2,2,0)—0.066R(4,2,0)+0.868R (6,2,0)and also
R(5,4,0) =R(6,6,0) =0. (A45)

1.034R(6,4,0)—0.155R (4,4,0)

0.966R (6,4,0)+0.308R (4,4,0)

R(5,2,0)/R(3, 2,0)= —1.324,

Equations (A38)—(A44) are, in general, sufhcient to
determine the matrix elements I'„„. Furthermore the
following consistency relations have to be satisfied

0.611R(2,2,0)+0.586R(4,2,0)+3.427R(6, 2,0)

(A46) 1.632R(2,2,0)—3.378R(4,2,0)—1.936R(6,2,0)

R(4,4,0)/R(4, 2,0) = —2.9R(6,4,0)/R(6, 2,0),

0.894R (2,2,0)—3.457R (4,2,0)

0.894R (2,2,0)—7.486R(4, 2,0)

1.341R(6,2,0)+3.457R (4,2,0)

0.936R (6,2,0)+7.486R (4,2,0)

In addition, we have the following limitations:

lR(6,4,o) l
& 2.12,

lR(6 2 0)/R(2, 2,0) I
&0 63

lR(6,2,0)/R(4, 2,0) l
&10.

je—3-

(A47)

(A48)

(A49)

(A50)

(A51)

%'e have in this case 15 independent matrix elements
F„„with p, i odd. The Eqs. (2.43) are

F ii+0.644(F i—i+Fii)
=R(21210)[1.632(F„+F i i)—0.611),

F 3 i Fi3——R(3,2,0)[0.707 (Fig F—i i)
+ (F—11 F—ii)]—F ii+1.161(F i i+Fig)

=R(4,2,0)[0.316(Fgg+F i i)+0.159),
F—ai+F—ia=R(4&4,0)[0.308(Fii+F i i)+0.155),
F i,—F„=R(5,2,0)[0.267(F„—F i,)

+1.129(Fii—F i i)],
F gi—Fii=R(5)4,0)[0.307(Fig—F i g)

+13oo(Fii—F i i)],
F ii+0.259(F-a-i+F ia)

=R(6,2,0)[0.731—0.683(Fii+F g g)],
F gi+F ig=R(6, 4,0)[1.034—0.966(Fii+F i i)],

F gg
——R(6,6,0)[0.5—0.460(Fgg+F „)].

1.034R (6,4,0)—0.155R(4,4,0)

0.966R (6,4,0)+0.308R(4,4,0)

Ke add a few remarks for the case of exchange sym-
metry, considered in Sec. 2.2. It is convenient to
consider the matrix 4 instead of F. The matrix elements
C„„satisfy the same conditions that F„„and, in addition,
the symmetry condition of Eq. (2.33). The test func-
tions T(L,M,M ) will satisfy Eq. (2.44) and, in addition,

T(L,M,O) =0 for odd L,

deriving from (2.37) and (2.45). The ratios R(L,M,M')
must be real. For the specific cases of j&3, the equa-
tions for the C„„can be obtained as particular cases of
the corresponding equations for the F„„,by taking into
account the preceding considerations. Some of the
limitations on the ratios R are actually stronger.
Specifically, we have

for j'= 2+, instead of (A24), we get

lR(4, 2,o) l
& i.i2;

for j'=3+, in addition to (A49)—(A51), we have

lR(6,2,o) l
&o.96;

for j'=3, the limitations are the following—

lR(4, 4,o) l
& 1.84,

lR(4, 2,o) l
&6.3,

IR(62 0)
I
&143,

lR(6,4,o) l
& 1.86,

lR(6,6,o) l
& is,

0.15&
l R(6,4,0)/R(4, 4,0) l

&6.5. (A55)


