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Pion-Nucleon Scattering Amplitudes in the Range 300-200 Mev
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The cross section for the scattering of m+ and m by nucleons in the energy range 300—700 MeV has been
analyzed in terms of energy-independent parameters. The parameterization is based on a dispersion relation
satis6ed by the partial-wave amplitudes, by replacing the left cut by a superposition of poles and the in-
elasticity function R~=o.~(tot)/crl(el) by a ratio of polynomials in the momentum. Detailed results are pre-
sented for the real and imaginary parts of the phase shifts with l &~3. The structure of the "second reso-
nance" is more complicated than has heretofore been thought, pt~, sj ~, and d~g waves all playing an important
part. The width of the d» resonance is found to be considerably smaller than previous values from total
cross-section measurements. The role of the (possibly resonant) amplitudes p~t and s~~ is discussed.

1. INTRODUCTION function of energy contain systematic errors, then
6tting the data at individual energies too closely with-
out regard to the smoothness of the energy variation
may result in distortions due to having fitted the noise
as well as the signal.

The most promising way of reducing the number of
solutions and in addition smoothly connecting the
different solutions at difI'erent energies is to analyze
the data over a range of energies simultaneously in
terms of energy-independent parameters. Extensive and.
successful work based on these ideas in the case of
nucleon-nucleon scattering has been reported by Stapp,
Noyes, and Moravcsik. ' In the pion-nucleon case such
a program has only been reported by one other group, 4

in which the real and imaginary parts of the phase
shifts are either expressed as polynomials in the mo-
mentum or in terms of Breit-signer forms. In the
present work an entirely diferent method of parame-
terization is used, suggested by the analytic properties
of the partial-wave scattering amplitudes. The first
application of this parameterization has been to the
energy interval from threshold to 700 MeV, covering
the region of the "second resonance. "'

In Sec. 2, notation is established and necessary
formulas connecting the phase shifts and the various
cross sections are collected for references. In Sec. 3,
the general method of parameterization that we have
adopted is given, while in Sec. 4 the choice of data and
its normalization is discussed. The phase shifts in the

'HE cross sections for the elastic scattering of
pions by nucleons exhibit considerable structure

over the whole energy range from threshold to 2 or 3
GeV. This structure has been interpreted in terms of
the existence of resonant states. The analysis of the
cross section in terms of partial waves, which allows
the quantum numbers of the resonant states to be
assigned, is complicated, except at the lowest energies,
first by the number of partial waves concerned and
secondly by the presence of a high degree of inelasticity.
At present, because of these complications, many
assignments of quantum numbers are in considerable
doubt; but the existence of accurate data in several
energy intervals and promise of a rapid accumulation
of new data in the near future from experimental teams
at Chilton, Saclay, and Berkeley makes it possible to
hope that a phase-shift analysis without too much
ambiguity can be achieved. The experimental situation
is that not all three independent elements of the spin-
density matrix are measured: differential cross sections
have been measured to the order of Sgo statistical
accuracy; polarization, at fewer energies, to less ac-
curacy; and the E. parameter has not been measured
at all. In this situation, taking account of statistical
errors only, phase-shift analyses at one energy lead to
a number of difI'erent solutions among which it is
difFicult to distinguish. In addition to statistical errors,
there are unknown systematic errors, such as errors in
normalization of the cross section, which can distort
solutions. An example of overt systematic error is the
well-known difference in total pion-nucleon cross-section
measurements at Berkeley' and Saclay. ' It is clear that
if the experimental measurements considered as a

' T. J. Devlin, B. J. Moyer, and V. Perez-Mendez, Phys. Rev.
125, 690 (1962).' J. C. Brisson, J. F. Detoeuf, P. Falk-Vairant, L. van Rossum,
and G. Valladas, Nuovo Cimento 19, 210 {1961);P. Bareyre,
G. Bricman, G. Valladas, G. Villet, J. Bizard, and J. Sequinot,
Phys. Letters 8, 137 (1964).

' H. P. Stapp, H. P. Noyes, and M. J. Moravcsik. , in ProceedAzgs
of the 196Z Annua/ International Conference on high Energy
PIIysics at CERN, edited by J. Prentki (CERN, Geneva, 1962),
p. 131.

4 B.T. Feld and L. D. Roper, in Proceedings of the Sienna Inter-
national Conference on Elementary Particles, 1963, edited by G.
Bernadini and G. P. Puppi (Societa Italiana di Fisica, Bologna,
1963),Vol. 1,p. 400; L.D.Roper, Phys. Rev. Letters 12, 340 (1964).
L. D. Roper and R. M, +alright, University of California Radiation
Laboratory Report No. 7846, 1964 (unpublished).' Some preliminary results have been reported in B. H.
Bransden, P. J. O'Donnell, and R. G. Moorhouse, Phys. Letters
11, 339 (1964).
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energy interval of interest, 300—700 MeV, must be
connected with those at lower energies and this con-
nection is exhibited in Sec. 5, while in Sec. 6 the actual
searches carried out between 300 and 700 MeV are
described in detail. A summary of our conclusions will

be found in Sec. 7.
Future reports will describe further extensions of the

energy range to cover first the region of the third
resonance at 900 MeV and ultimately to the highest
energies for which well de6ned resonances are observed.

2. NOTATION

In this section we define the partial-wave amplitudes
and give the connection between these and the cross
sections both to establish notation and for ease of
reference.

The relations between the center-of-mass energy m,
the pion laboratory energy T and the momentum q are'

zzi'= (m+1)'+2m' (2.1)

zg(8)=singfz(8). (2.13)

The polarization J'(8) of the final nucleon spin is
defined as

(da/dQ)I'(8) = 2[Ref (8)g~(8)] sing. (2.14)

The amplitudes for zi P scattering and charge ex-

change are obtained from those for the pure isospin
channels T= 2 and T=—,'.

For zr +P~ zr-+P, the combination of the f r is

i (f ziz+2f. iiz) (2.15)

and for zr +p~ zr'+zz, is

If we write

(-'~) (f zn —f i") z= 1, 2. (2.16)

where the no-flip amplitude f(8) and the spin-flip
amplitude g(8) are given by

f(8)= fi(8)+cos8fz(8), (2.12)
and

q'= [w' —(m+ 1)'][ul'—(m —1)'](2w') '

where m is the mass of the nucleon.
In the center-of-mass system the differential
section can be written

(2.17)i i~——exp(2zbz~),

and

(2.2)
then the total cross section Og+ and the elastic cross
section ai+(el) for the l+ partial waves are given by

cross
+=(2 /q')(i+l)(1 —Rei +), (2 1g)

—=r (fJ+ J~) (2.3)

(2.20)

«+(el)= (~/ q)z(f+ )zI1 i'i+Iz, —i = (1+z) (2.19)
gaga

The inelasticity coeKcient E~+ is related to 0~ and
where zli (qz) denotes the initial (final) pion momentum, n&(el) by the optical theorem
and the matrix element is taken between two component
spinors. Im(f, ~)

The amplitudes fi and fz are related to the phase
shifts in the appropriate eigenstate of isotopic spin by

(2.4)

(2 3)

where

and

fi~=q ' exp(ig&+) sinbi+.

(2.6)

(2 7)

When gi~ is complex we write Eq. (2.7) explicitly as

fig= (2iq) '[exp( 2Pi~+2—zeta 1], —(2.8)
= (2zq) '[pi~ exp (2zetiy) 1], — (2.9)

where

(2.10)

d~/did=
I f(8) I'+

I g(8) I',
6 Natural units with m„=c=A=1 are used.

(2.11)

&i~=«y+@4y
The difFerential cross section (2.3) becomes, on

summing over spins,

so that Ri+&~1.
In the analysis of pion-proton experimental scattering

data a modification has to be introduced to take into
account the eGects of Coulomb scattering, For the
energy range, we consider in this paper the separation
of Coulomb and nuclear effects that have been achieved
by using the results of Solmitz. '

In this approximation, an amplitude for Coulomb
scattering correct to first order in n= (e'/hc) is added
to the nuclear amplitudes f(8) and g(8). Explicitly,

f(8)=f.(8)+f(8),
g(8)=a.( )8+x( )8, (2.21)

where

f.(8)= We'(2q(ii. +ii„) sin'-'8)-'

X[1+z z'-&~(1+«»8) —~&~'(2z n
—1)

X (1—cosg)] (2.22)

g. (8)= +e'(2q(v +i~) sin'(-'8)) —'

X[-,'zz e z +~s '(2zz„—1)]sing.

7 F. T. Solmitz, Phys. Rev. 94, 1799 (1950).
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In these expressions, e and e~ are the pion and proton
velocities in the center-of-mass system and p, ~ is the
magnetic moment of the proton in nuclear magnetons.
At low energies, nuclear and Coulomb scattering can
no longer be separated accurately in this way, but at
300 MeV, our lowest energy, the error arising from the
approximations of Eqs. (2.21) and (2.22) is negligible.

Ref(~ '(q) =—(q' —qo')
"

xRi~(x)
dx2

(x'—q') (x'—qo')

(q2 q 2) —s

+
6f —'(x)

dx
(+—q') (+—qo')

+2 l./q'", (3.2)

where
a= (1—1/4rs, ')/(1+1/2rs, ') (3.3)

and the X are constants. Df~+ ' denotes the discon-
tinuity of 2i f&+

' across t—he left-hand cut. For those
cases in which the amplitude has a zero for physical
values of energy additional poles may be added to the
right-hand side of Eq. (3.2) for otherwise the expression
is too restrictive.

Since in the great majority of our searches for solu-
tions we are concerned with energies which are well
away from the threshold region, we consider delta
functions for hfg+ ' to be a reasonable form of parame-
terization and accordingly set

(3.4)
n~1

where rg+" and q„' are our parametric constants. The

~f~+ '= E «+"b(q'+q ')

'N. F. Mott and H. S. W. Massey, Theory of Atoesk Col-
luioes (Oxford University Press, London, 1948), p. 302. See
also Ref. 10.' J. W. Moffat, Phys. Rev. 121, 926 (1961).

3. PARAMETERIZATION —GENERAL
PROPERTIES

In making an analysis of experimental data at many
energies simultaneously, the energy dependence of the
partial-wave amplitude poses a problem, especially if,
as in the pion-nucleon case, the scattering process soon
becomes very inelastic as the energy is increased. Our
method has been to make use of the analytic properties
of the partial-wave scattering amplitude and, in par-
ticular, to make use of the unitarity relation at physical
energies, between the imaginary part of the inverse of
f~+ and the inelasticity coeflicient R~~, viz,

Imf)~ '———qR(~(q). (3 1)

Our parameterization scheme will be based on this
equation and on the foBowing dispersion relation' for
Ref(~-'.

value of E may be diGerent for diGerent l since for a
given energy the number of poles needed increases as
we describe lower angular momentum states. Apart
from this consideration, there does not exist any a priori
method of Qxing the value of E.This choice of parame-
terization which replaces the left cut by a series of poles
has found many applications, but in dealing with 8&+
on the right no such standard technique is available.
Any parametric form chosen for this function. must be
of a sufBciently Qexible form to allow quite di6'erent
kinds of behavior to take place, since the inelasticity
coefficient is virtually an unknown function. In the
absence of any real knowledge about the behavior of
Eg~, we have considered the ratio of polynomials, whose
energy-independent constants are taken to be the
parameters, to be a suitable form. The polynomials
were chosen in such a way as to help keep computing
time at a minimum while retaining the Qexibility noted.
above. In our searches we used particular cases of the
following general expression:

q(q —q~)
Ri~(q)=1+8(q —

qg) ai~
(1+q'/~')

(q—
q~) q(q —q2)

+b~~ +8(q—q2) o~+
(1+q'/&') (1+q'/~')

q(q2 q
2)1I2

+&i,Jig—,(3.5)
(1+q'/D')

where ug+, b~~, cg+, dg~, A, 8, C, and D are constants,
qj. is the 6rst inelastic threshold, and q2 is the threshold
for g production. This form allowed analytic expressions
to be derived for the integral in Eq. (3.2).

This form of R~+(q) does not exhibit the correct
behavior at each inelastic threshold, and indeed there
are many inelastic thresholds in our energy range, but
the threshold dependence holds only over a small energy
where, most probably, the contribution of the new
process to the reaction cross section is completely
unimportan. t. The only exception to this in our energy
range appears to be in the T= ~ s wave at the g-pro-
duction threshold. For this state we have introduced
the last term in Eq. (3.5), which has the correct
behavior at this threshold. The parameterization of the
inelasticity is discussed further in Sec. 6.

4. DATA FITTING

A list of all the experimental data used is given in
Appendix A. As explained in later sections the results
oi analysis of low-energy data (energy less than 98
MeV) by Hamilton and Woolcock" were taken into
account in determining the s and p scattering lengths.

Above 3j.0 MeV most of the data used are the recent

J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 237
(1963).
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diiferential-cross-section (and polarization) data from
experiments at Berkeley and Saclay. " Older experi-
ments of low accuracy were omitted; we did not make
use of experiments where the results were presented
solely as codEcients in a cos8 expansion.

Having adopted these general criteria we attempted
no further selection of data. In particular we did not
exclude individual data points, as this might have
introduced an unwarranted subjective element into the
analysis. Where the authors of an experiment have
given a forward point involving a dispersion relation
calculation, we have included it.

As explained in Secs. 2 and 3, the cross sections and
polarizations at the energies and angles for which
experiments exist can be calculated in terms of certain
parameters. We then form the sum

M = (iV —n) ' P ((0,—C~)'/&;2), (4.1)

where 0; and d„are the observed quantity and error,
respectively, and C; is the corresponding calculated
quantity. E is the number of data points and n the
number of independent parameters. The best values of
the parameters are now found by minimizing M.

This formulation, while used in most of our fits, does
not take account of normalization errors in the data.
One standard method of doing this is to have a nor-
malization parameter for each complete differential
cross-section experiment. Unfortunately, this would
introduce too many extra parameters and lead to
excessive computing time. In some runs an attempt to
compensate for possible "common errors" in the data
was made following a method due to Davidon, "which
replaces Eq. (4.1) by the more general form.

where

1 ~ (0;—C;) (0;—C,)M= QH, ,
(X n) ', — (4.2)

(4 3)

"See Appendix A for references.
"See U. E. Kruse and R. C. Arnold, Phys. Rev. 116, 1008

(1959).

This expression takes into account the possibility of
common errors e; with the result that oG-diagonal
elements do not necessarily vanish as in Eq. (4.1).
Experience has shown that the fits obtained using
either method are not significantly diGerent, so that in
the future we propose to use merely the simpler Eq.
(4.1).

To find the parameters pertaining to the T= 2
amplitude it is sufficient to fit the a+p data. Having
thus fixed best values of these amplitudes we use them,
along with the still variable T=2 amplitudes, to cal-
culate the C; for the a p data. The T=-,' parameters

and amplitudes are then found by minimizing M for
the a p data, . The whole process may be performed
repeatedly to find many possible sets of T=-,', 7=-,'
solutions, out of which the best are selected with
reference to the relative M values.

S. PHASE SHIFTS AT AND BELOW 300 MOV

There is a natural boundary zone in pion-nucleon
scattering from 250 to 350 MeV; for below 250 MeV
inelasticity can be neglected and pion-nucleon scat-
tering analyzed using real phase shifts only, while at
350 MeV, inelasticity is already important and analysis
in terms of rea.l phase shifts only is no longer possible.
With the consequent proliferation of parameters above
this energy, it is important to use a method such as ours,
or information from the peripheral pion-nucleon inter-
actions, or both, in order to limit the number of solu-
tions. In conducting our searches above this energy
zone we could in principle proceed with no a priori
information from within or below it. But our task is
simplified if we can take some already known phase
shifts within the zone as approximate boundary values
in our searches, and it is fortunate that there are recent
w+p scattering experiments" "at 310 MeV accompanied
by extensive phase-shif t analyses. ""

Foote et al." have analyzed a+p'data, at 310 MeV,
and, on the basis of their results, Vik and Rugge" have
6tted m+p and s p diiferential cross sections, polari-
zation, total cross section, inelastic cross section, and
charge-exchange differential cross section (this latter
from an experiment" at 317 MeV). Phase shifts up to
f waves were included and the three final Vik-Rugge
solutions are shown in Table I; spdf I is the best fit
while spdf II is somewhat better than spd f III.

However, doubts have been cast" on the stability
of the method when f waves are included; it could be
that there exist not only these three, but many more,
solutions with a g2 of the same order. Kane and Spear-
man" have attempted to resolve this possible dilemma
in the following way. From an analysis'9 of low-energy
pion-nucleon scattering they are able to obtain the
long-range forces acting on the pion-nucleon system,
in the form of the branch-cut discontinuities nearest
to the physical region in the cos8 plane of the invariant
amplitudes. The higher partial waves can then be ob-
tained from these nearby discontinuities (that is, long-
range forces) and 310 MeV is a low enough energy for

"E. H. Rogers, O. Chamberlain, J. Foote, H. Steiner, C.
%eigand, and T. Ypsilantis, Rev. Mod. Phys. 33, 356 (1961);
J. Foote, O. Chamberlain, E. Rogers, H. Steiner, C. Weigand,
and T. Ypsilantis, Phys. Rev. 122, 948 (1961)."H. R. Rugge and O. T. Vik, Phys. Rev. 129, 2300 (1963)."J.Foote, O. Chamberlain, E. Rogers and H. Steiner, Phys.
Rev. 122, 959 (1961)."O.T. Vik and H. R. Rugge, Phys. Rev. 129, 2311 (1963).' J. C. Carris, R. W. Kenney, V. Perez-Mendez, and %. R.
Perkins, Phys. Rev. 121, 893 (196)).' G. L. Kane and T. D. Spearman, Phys. Rev. Letters 11, 45
(1963).

'9 T. D. Spearman, Phys. Rev. 129, 1847 (1963).
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TABLE I. The spdf solutions of Vik and Rugge, Ref. 16, at 310 MeV. 5 is the real part of the phase
shift in degrees; p is the inelasticity parameter.

Ib

II s

III s

S3,1

—14.9
1.00

—21.1
1.00

—15.4
1.00

P3, 1

+0.4
1.00

—11.8
1.00

—0.4
1.00

P3, 3

135.1
1.00

137.0
1.00

135.6
1.00

d3, 3

5.1
1.00

—3.1
1.00
44
1.00

—6.5
1.00
1.2
1.00

—6.2
1.00

0.8
1.00

—1.7
1.00
0.7
1.00

f3,7

—1.8
1.00
3.1
1.00

—1.4
1.00

$1,1

—5.9
1.00

10.9
1.00
3.7
1.00

P1, 1

—5.5
1.00

23.0
0.94

26.4
1.00

P1,3

1.7
0.99

—3.6
1.00
8.6
0.98

d1, 3

—5.5
0.99
5.9
1.00

—0.3
1.00

15.3
1.00
0,3

1.00
3.1
1.00

—0.1
1.00
1.8
1.00
0.6
1.00

2.3
1.00

—0.7
1.00

—0.1
1.00

the f waves to count as "higher partial waves" and
to be obtained in this way. With the calculated f waves
a search can be made for a fit to the data varying the
s, p, and d waves only. So far the results have only
been published for the m.+p, 2'=2, state and are given
in the first row of Table II, labeled KS.

Donnachie, Hamilton, and Lea" have made a similar
calculation predicting p, d, and f waves (with the
exception of p») up to 400 MeU. Again they take the
long-range, or peripheral interaction, from phenomeno-
logical studies" in pion-nucleon dispersion relation but
in calculating the p, d, and f waves they use partial-
wave dispersion relations rather than the fixed-energy
dispersion relation used by Kane and Spearman. Their
results at 310 MeV are to be found in the second row of
Table II, labeled DHL.

It is evident that both these calculations strikingly
disagree with the solution spdf I and spdf III of Vik
and Rugge, but are in fair over-all agreement with
spdf II. The agreement is particularly good for the
calculations of Donnachie, Hamilton, and I ea (as these
authors have remarked), except for da~ and the mag-
nitude of the f waves. Thus from the peripheral inter-
action work a solution at 310 MeV with the general
characteristics of spdf II is strongly indicated. As a
note of caution it may be said that the two peripheral
interaction calculations under discussion are not totally
independent, as both are based on the same type of
method~ for extracting the peripheral interaction from
pion-nucleon scattering.

It should be remarked that spdf II is the only Vik-
Rugge solution with inelasticity in a T= 2, J= ~ state,
which appears to be required by other analyses. "'4

A fit by the present authors to m+p data in the range
100 to 350 MeV also gave support to the general

~ A. Donnachie, J. Hamilton, and A. T. Lea, Phys. Rev. 135,
B515 (1964}."J.Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,
Phys. Rev. 128, 1881 (1962);J.Hamilton, Proceedings of the 1063
Scottish Universities Summer School in Strong Interactions and
High Energy Physics (Oliver and Boyd, London, 1964), p. 281.

'3 J. Hamilton, P. Menotti, and T. D. Spearman, Ann. Phys.
(N. Y.) 12, 172 (1961};J. Hamilton, P. Menotti, T. D. Spearman,
and W. S.%'oolcock, Nuovo Cimento, 20, 519 (1961};J.Hamilton,
T. D. Spearman, and %. S. Q'oolcock, Ann. Phys. {N. Y.) 1?, 1
(1962); and Refs. 10 and 21.

~ P. Bareyre, C. Bricman, G. Valladas, G. Villet, ].Bizard, and
J. Sequinot, Phys. Letters 8, 137 (1964).

'4 P. Auvil and C. A. Lovelace, Nuovo Cimento 33, 473 (1963).

correctness of spdf II. This search for a fit was per-
formed mainly as a test for the viability of our method
and was subject to the following restrictions;

(i) As a lower boundary condition, the s and p
scattering lengths were 6xed to the values given by
Hamilton and Woolcock. "

(ii) The d waves (d33 and d») were restricted by the
negative as indicated by the peripheral interaction
work of Donnachie, Hamilton, and Lea."

(iii) The pgg phase shift was forced to pass through
90' at 200 MeV. Under these conditions the amplitudes
were expressed as a function of a total of 10 parameters,
1 in each of the d and f amplitudes and 2 in each of the
s and p amplitudes.

Starting from zero values of the parameter, one
search for a minimum yielded a reasonable fi.t to the
data. In particular it was found that the pole positions
and residues of the p~a inverse amplitude have adjusted
themselves so as to yield the p» amplitude in essentially
the Layson" generalized Breit-Wigner form:

2m+gG

(qg2 —q') (1+ (q'a') ') 2m' Ii—qa

where m is the mass of the nucleon and qg is the
momentum at resonance. With resonance at 205 MeV,
Layson's values were" a=0.714, y&=0.133; our values
with resonance at 200 MeV were a=0.707, yL, =0.127.
The phase shifts at 310 MeV are given in the third row
of Table II, labeled SMO, and agree very well with the
spdf II solution of Vik and Rugge. It may particularly
be noted that the d3~ phase shift, which is constrained
to be negative, is, at 0', as close as it can get to the
1.2' of spd f II; and that the f waves agree in sign with
both the results of Donnachie, Hamilton, and Lea and
spdf II, and in magnitude with spdf II.

These results could be taken as further support for a
solution at 310 MeV of the type spdf II. However, in
view of the constraints, and the fact that there was only
one search, the skeptical reader might consider that the
result was partly forced and for the rest coincidental.
%e do not think that there is any force in the objection
on the grounds of constraints; constraints (i) operate

"W. M. Layson, Nuovo Cimento 20, 1207 {1961).
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TABLE II. Phase shifts at 310 MeV. '

Sg 1 P3, 1 P3, 3

Phase shifts in degrees

fa, e f3,7 S1,1 P1, 1 P1, 3 d1,3 d1, 5

KS, 6 —19.5 —63 134.4 1.0 —3.1
DHL, 6 —13.0 137.4 —1.3 —2.1
BMO, 5 —20.52 —13.5 135.9 —2.6 0.0

0.49—0.6
3.2

5.7 0.7 0.8 —0.1

a KS—results of Kane and Spearman, Ref. 18; DHL —results of Donnachie, Hamilton and Lea, Ref. 20; BMO—results of preliminary ten-parameter searches
over energy range 100—350 MeV discussed in Sec. 5.

strongly at the lower energies ( 100 MeV) only, and
are designed to provide a smooth join to pion-nucleon
scattering below 100 MeV; constraints (ii) operate
one for and one against spd f II; constraint (iii) must be
(nearly) obeyed by a,ny correct result and is not so
much a constraint as an aid to quick solutions.

Nevertheless, we ourselves prefer to invert the force
of the argument, considering that spdf II has already
been chosen as the correct type of solution. So given
already the correctness of the type spdf II, the result
of the search from 100 to 350 MeV shows that our
method, provided additionally with lower boundary
conditions and the fact of resonance in one partial
wave, is likely to produce the correct solution.

6. PION-NUCLEON AMPLITUDES:
300 TO 700 MeV

A. Form of Parameterization

To use in our searches (for pion-nucleon scattering
amplitudes between 300 and 700 MeV) we obtained in
Sec. 3 a rather genera, l analytic parameterization. The
least physically possible number of parameters is large
(with consequent long computing time involved in
search for a minimum value of M), so that we used all
available information to minimize the number of
parameters and limit their range of variation. Three
general limitations were imposed on the parameteri-
zation:

(i) In the last section we gave reasons for believing
that the spdf II solution of Vik and Rugge is sub-
stantially correct. Consequently, in the range 300—700
MeV, we principally searched on those parameteriza-
tions, and those regions in the subsequent parameter
space, which, at 310 MeV, give rough agreement with
spdf II (and also represent a reasonably smooth com-
bination of our own fit to the m-E experiments from
0 to 300 MeV). This is not regarded as a strict limitation
on our searches and we have performed one or two
searches which do not conform to this condition.

(ii) It seems lilcely'6 that the d» wave resonates
near 600 MeV at the "second resonance. "Our parame-
terizations, with one exception, have maintained a d13
resonance between 550 and 650 MeV with the exact

2' R. Omnes and G. Valladas, Proceedings of tire Aix-en-Provence
International Conference on I,"lementary Particles, 1061 (Centre
d'Etudes Nucleaires de Saclay, Siene et Oise, 1961),Vol. 1, p. 467.

position and the width being determined by the search
for the minimum of M, that is by the ht to the
experiments.

(iii) It is a reasonable physical assumption that, for
a given partial wave, the energies for which inelastic
scattering is important are greater that those for which
elastic scattering dominates. We have assumed that
there is no T=~3 f wave i-nelasticity up to 700 MeV;
this assumption, while probably never too far wrong,
is open to question between 600 and 700 MeV.

These are the general limitations imposed on the
parameterization. However, there are more particular
limitations, which may vary somewhat from one search
to another, and whose object is to obtain the maximum
physically reasonable variation in each partial wave for
the minimum number of parameters. Consider erst
o.„,/a. ,i which as described in Sec. 3 is parameterized as

v(v —c~) (c—v~)
E(y(g) = 1+tt(g —

(jan) Giy +b(y
(1+V'/~') (1+V'/&')

where q1 is the first inelastic threshold and I|f2 the
threshold for g production. u~+, b~~, c~~, dq+ are variable
parameters in each search while (so that the search
program does not require the computer to calculate a
complicated expression very many times) A, 8, C, and
D are the same for each partial wave and axed at the
beginning of each search. A-, C-, and D-type inelasticities
each rise to an asymptotic maximum (approximately
attained for q))A, C or D) while the 8 type rises to a
maximum at q greater than 2q~, (which corresponds to
about 530 MeV), the exact position depending on the
magnitude of 8. It is of course important to remember,
now and later, that the behavior of g~+ is not like that
of RI+. In particular, 8 is likely to remain constant or
slowly varying over a resonance, while p may exhibit
a sharp minimum at that point. Now, with this general
parameterization, for all d and f waves except the dq3,
one type of inelasticity, either A type or C type, was
chosen; for the lower waves two types of inelasticity
were allowed.

Secondly, consider the rest of the parameterization
which consists of the winding-point parameters X„Lsee
Kq. (3.2)] and the residues and positions of the left-
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hand poles. The coeKcient X~ of the leading winding-

point singularity is just the inverse scattering length

for that partial wa, ve. For the s and p waves these
parameters were either hxed at the values given by
Hamilton and Koolcock" or allowed to vary somewhat

from them. In all partial waves the nonleading winding-

point parameters were almost always put equal to zero
and not varied. Usually, the 1eft-hand singularities were

I 2.0"

II 0

I 0,0"

9.0 '

I.O.

20.0.. 7.0

I 6.0

I 4.0

I 2.0, . 3;0

1;0

I .0

6.0.,

+ 0.5 0
Ceg 8

w 0$ I.O

2.0.

1'ic. 3. The fit of solution 1 to the m+-p differential cross section.

+ I.O +0.5 0
boa 0 -O.S

l''ll'. 1. The fit of solution 1 to the 2I-~-p differential cross section.

9.0.-

I3.0'

I 2,0'

d,O ~

V.O"

IT+ 4I0 Mc&

SO

I I.O la

6 O.

9.0. 4.0-

1.O.

K

$I ( 6.0.

sr+ SIO &c&

X=f4 3.0 "

2.0

I.O

+ I.O + 05 0
Oo e

—I.O

4;0
E'sG. 4. The ht of solution 1 to the 2I-~-p differential cross section.

2 0

Cos e
I 0

1'K'. 2. The fit of solution 1 to the 2r+-p differential cross section.

represented by two poles of fixed Position, one at q'~ —, 1
and the other at q'~ —20 (units of pion mass) and
M,riable resurge. In some partial waves, for example, the
p» amplitude, more poles were necessary. In all partial
waves the pole positions were regarded as potenti;~lly
variable, and in some searches actually varied.

%e give in Appendix 8 the form of the partial-wave
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B. Solutions

6.0",

5.0'

As explained in Sec. 4, our procedure is erst to
determine the T=-,'amplitudes by a fit to the m+-p data
and then to use these T=~3 amplitudes in a determi-
nation of the T=~ amplitudes by a 6t to them -p data.
Two solutions (I, I') have already been described' ~r;

4.0'

4.0

2.0

I,O

0
I.O 0.5 0

Co+ 4
-0.5

FIG. 5. The fit of solution 1 to the m+-p differential cross section.

4.O-

2,0'

5.0 "

I.O

4.0'

%1,0 +0.5 b
qos 4

0,5 I.O

FIG. 7. The fit of solution 1 to the m+-p differential cross section.

3.0. 4.0

2.0 3.0'

I,O' s 2.0.

-0;5+0.5 b I.O
Cos 4

Fro. 6. The fit of solution 1 to the ~+-p differential cross section.

I.O

amplitude that appeared in our computing program
together with the particular application of it in the
search that led to solution 1, described below. It should
be emphasized that even with the limitations described
above, our method of parameterization was capable of
giving very diferent types of energy-dependent be-
havior. In particular a resonance in a partial wave
(either pure or of the type background and resonance)
does not need any special form of the partial-wave
amplitude.

0 ~-

+I,O 0
Caa 4

0.5

FIG. 8. The fit of solution 1 to the 5I-+-p differential cross section.

~B. H. Bransden, R. G. Moorhouse, and P. J. O'Donnell,
Rutherford Laboratory Report No. NIRL/R/79 (unpublished).
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4.0

3.0.

so that the good agreement with the Saclay total-cross-
section measurements" is noteworthy.

The phases, b~+, and absorption parameters, g~+',
for solutions 1 and 2 are shown in Figs. 34—37 and Tables
III and IV. The T= -,' solution 2 is just a small per-
turbation of the T= ~~ solution 1, but the two solutions
for T=-2 apparently diGer strikingly in the s wave. In
solution 2 the real part of the s~~ phase shif t goes
through —,'m, but in solution 1 it does not. This and other
aspects of solutions 1 and 2 are discussed and compared
in Sec. 7 below.

2.0

+ I,O +0,5 0
Cos e

O,5

X *~i
I.O 8 MeV

FIG. 9. The 6t of solution 1 to the m ~-p differential cross section. I.O.

0"
5

K

-I.O .

+'I.O +0.5 O
Cos0

-0.5 -I.O

FIG. 11.The 6t of solution 1 to the x+-p diRerential cross section.

I.o

I.2

0
Cos 8

II'
I.O

I.O. -

FIG. 10. The 6t of solution 1 to the m+-p diBerential cross section.

these solutions have been superseded by solutions 1
and 2 which contain a term in the s-wave inelasticity
(term "d") with correct behavior at the threshold.
Solution 1 corresponds to the old solution I and solution
2 to the old solution I'. The 6t to the experimental data
for solution 1 is shown in Figs. 1—33. The 6t to the

-p total cross sections is particularly interesting
since there are only 5 w -p total cross sections in the
data to be Gtted (out of a total of 396 data for the
determination of the T=-(, amplitudes). This means
that they have negligible weight and that our m -p
total cross section is predicated from the assumptions
of our method and the differential cross section only,

E

l)c'.

O.a "

0.6"

0.4
I.O 0,5 0

Cos e
-I.O

FIG. 12.The 6t of solution 1 to the m -p differential cross section.
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TABLE III. Solutions 1 and 2 for states with T= y. ~

Energ

S11

d15

d13 5

y (MeV)

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

2
1
2
1
2

310

9.3
10.9
0.998
0.985—6.0—5.4
0.983
0.997

16.9
19.42
0.952
0.296—0.29
0.4
1
1
4.2
4.3
0 999
0.994—0.47—0.5
1
1
0.9
1.1
1
1

370

10.9
12.7
0.995
0.977—6.5
6.8
0.969
0.993

34.7
36.38
0.767
0.725
0.53
0.63
1
1
7.1
7.3
0.994
0.981—0.78—0.8
1
2
1.7
1.8
1
1

410

12.4
14.S
Q.992
0.970—6.8—7.8
0.950
0.988

46.2
45.1
0.559
0.584
0.74
0.9
1
1

10.0
10.2
0.987
0.963—0.94—0.97
1
1
2.4
2.3
1
1

14.5
17.1
0.987
0.957—7.2—8.8
0.947
0.981

55.2
50.7
0.461
0.480
1.0
1.3
1
1

14.3
14.3
0.968
0.928—1.0—1.0
1
1
3.0
2.8
1
1

490

17.8
21.4
0.978
0.935—7.3—10.0
0.934
0.9?2

61.8
53.3
0.365
0.410
1.4
1.8
1
0.999

20.8
20.0
0.926
0.861—1.1—1.0
1
1
3.5
3.4
1
1

533

24.7
30.3
0.953
0.877—7.4—11.4
0.919
0.959

64.3
53.4
0.297
0.364
1.9
2.4
1
0.997

32.3
293

Q.813
0.725—1.1—1.0
1
1
3.9
4,0
1
1

572

37.9
48.2
0.657
0.591—7.6—12.8
0.903
0.942

64.2
51.5
0.259
0.342
2.7
3.4
1
0.994

50.0
42.7
0.613
0.504—1.1—0.97
1
1
4.1
4.6
1
1

39.6
63.7
0.428
0.336—7.7—13.8
0.889
0.927

623
49.4
0.241
0.338
3.5
4.3
1
0.990

70.0
56.5
0.449
0322—1.1—0.97
1
1
4.2
5.0
1
1

650

27.0
127.7

0.159
0.276—7.8—16.1
0.861
0.890

56.3
44.6
0.236
0.351
5.7
6.8
1
0.975

112.9
108.3

0.412
0.170—1.0—0.91
2

1
4.3
5.9
1
1

698

—1.6
147.8

0.186
0.520—7.9—18.8
0.822
0.837

48.5
39.4
0.267
0.393

10.8
11.7

1
0.928

133.2
133.8

0.535
0.299—1.0—0.91
1
1
43
6.7
1
1

a g =real part of phase shift in degrees; y =absorption parameter.

TABr.z IV. Solutions 1 and 2 for states with T=$.

Energy (MeV)

S31 5 2
2
1
2

pals 8 1
2
1
2

P31 5 1
2
1
2

d35 5 1
2
1
2

d33 8 1
2
1
2
1
2

f36 8 1
2

310

—20.7—2Q.9
1.0
1.0

137.4
137.5

1.0
1.0—11.7—11.4
0.965
0.972—0.3—0.3
1.0
1.0—1.2—1.4
1.0
0.999
2.8
2.1—0.9—1.3

370

—23.2—23.5
1.0
1.0

146,3
146.5

1.0
1.0—12.7—12.5
0.937
0.949—0.6—0.6
1.0
1.0—0.6—0.7
1.0
1.0
3.8
3.1—1.0—1.1

420

—24.5—24.9
1.0
1.0

150.2
150.4

1.0
1.0—13.1—13.Q
0.917
0.932—0.9—0.8
0.998
0.999—0.5—0.5
1.0
10
3.9
3.5—1.0—1.0

450

—25.S—25.9
1.0
1.0

153.2
153.4

1.0
1.0—12.2—13.3
0.898
0.916—1.3—1 ~ 1
0.994
0.998—0.4—0.4
1.0
10
3.9
3,6—1.0—0.9

—26.1—26.5
1.0
1.0

155.6
155.8

1.0
1.0—13.4—13.5
0.879
0.898—1.7—1.4
0.998
0.996—0.4—0.4
1.0
1.0
3.8
3.5—0.9—0.8

533

—25.9—26.4
1.0
1.0

157.6
157.8

1.0
1.0—13.4—13.6
0.837
0.879—2.3—1.9
0.974
0,992—0.3—0.4
1.0
1.0
3.6
3.4—0.8—0.7

—23.6—24.2
0.982
0.981

159.2
159.4

1.0
1.0—13.4—13.8
0.835
0.860—2.7—2.4
0.953
0.985—0.3—0.3
1.0
1.0
3.4
3.3—0.8—0.7

—22.5—23.0
0.898
0.897

160.2
160.4

1.0
1.0—13.5—13.9
0.818
0.845—3.0—2.8
0.930
0.977—0.3—03
1.0
1.0
3.3
3.2—0.7—0.6

650

—213—21.8
0.762
0.759

161.7
161.9

1.0
1.0—13.6—14.1
0.783
0.814—2.6—3.7
0.880
0.952—0.3—0.3
1.0
1.0
3.1
3.1—0.7—0.6

698

—19.4—20.0
Q.624
0.617

162.9
163.1

1.0
1.0—13.7—14.5
0.736
0.773—1.1—4.5
0.845
0.905—0.3—0.3
1.0
1.0
3.0
3.Q—0.7—0.6

a 8 is the real part of the phase shift in degrees; rz is the absorption parameter.

C. Goodness of Fit

The y"s for the fit of solution 1 to each set of experi-
mental. data are given along with the corresponding
graphs in Figs. 1—33. (Solution 2 6ts the experiments
rather better. ) These x"s are somewhat larger (up to
about a factor 2.5) than those obtained in orthodox

phase-shift analyses at a single energy, which is not
surprising since we have a small number of parameters
(15 in the w+ case, 26 in the m ) to Gt the data at all
energies; our y' are comparable with those obtained by
Roper. 4 Nevertheless, the goodness of Qt requires some
discussion.

In principle, our method of parameterization is
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y' because of our paucity of parameters, In this 1'~tter

case, however, we would still expect our results to
reproduce the grosser features of the amplitudes while

ignoring the fine structure.

IT 370 hl» Y
'es

I.Q

2,5"

2,0"

+ I'eO + QS 0
Cos s9

-I.O
l.5 ~

FrG. 13.The Gt of solution 1 to the 7I-+-p differential cross section.

I,O

2.0 ..

0,5 ~

l, 5-

TT 4 I0 Me V

+ 1.0 + 0,5 0
Co» 8

I.O

I;0'-
FIG. 15. The Gt of solution 1 to the ~+-p differential cross section.

O.S"

4;Oi a

+ I,O 0
Cos O

FIG. 14. The Gt of solution 1 to the 7I-+-p differential cross section. 2.0"

TT 490 M»Y

capable of reproducing behavior of any degree of com-
plexity; in practice we can only reproduce a reasonably
smooth behavior with energy of each partial wave since
we are limited by computer speed in our number of
parameters. If the partial waves in fact have such a.

smoothness, then we have here a strong feature of the
method, for our parameterization cannot follow even
slightly wrong or inconsistent excursions by the ex-
perimental data. In that case our larger y„' would repre-
sent faults in the data such as errors of normalization,
assignment of too small "errors, "etc. On the other hand,
if the physical partial-wave amplitudes are not smooth
in their energy dependence, then we must have a larger

24.

lO

+ I.O
Co» e

I.O

Fro. 16.The Gt of solution 1 to the 7I-+-p differential cross section.
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'7. DISCUSSION AND CONCI USION

In the neighborhood of the "600-MeV resonance"
we obtain three large amplitudes with T=2 (si|, di3,

5.0'

5.0.~

5.0.

1 O.

I

2 ~

3.0.

2.0

+ t'.0 6
Cos e t.o

FIG, 19. The fit of solution 1 to the ~+-p differential cross section.

I.O
N.O-

V.Oj

0
Cos e

I

taO ~ tt.o-

FM. 17.The fit of solution 1 to the m+-p differential cross section.
5.0-

5'0 ~ ~

3'0

2'

Tl 550 Ma V

a 55

1.0.

3:0 +0.5 0
Cos Q

G.S

FIG. 20. The fit of solution 1 to the w+-p differential cross section.

I.O.

and pzi). In Figs. 38 and 39 we plot Lg Imf(q)) versus

Lq Ref(q)) for these amplitudes in the case of solutions
1 and 2, respectively. In such a complex amplitude
diagram, if a certain partial-wave describes an anti-
clockwise circle with increasing energy, then we say
that partial wave has a resonance and we provisionally
ascribe the energy at the top of the circle as the reso-
nance energy. "The circle may be displaced and even
distorted by background, and the smaller the radius of

+0.5 t.o+t0 0 0.5
Cos 0

"See the article by R. H. Dalitz, Ann. Rev. Nucl. Sci. 13,
FIG. 18. The fit of solution 1 to the g+-p differential cross section. 346 (1964) for a general discussion of resonant states.
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the circle the more inelastic is the resonance. Among

other eGects of background the resonance position
(defined as that energy where the point tracing the
circle moves fastest as a function of energy) may be
displaced from the top of the circle. A completely
elastic resonance is represented by the circle of radius
0.5, center (0,0.5i) which bounds (qf(q) j

The diagrams show, as expected, that both solutions
have an inelastic d~3 resonance. In 1 the resonance

energy is 625 MeV with a full width of 170 MeV while

& op"

0.%

0-'

523

' L
$.0"

O.s

7.0"

6.0* -&.0J.O 0
Cos 8

0.5

S.O Flc. 23. The fit of solution 1 to the polarization in zr+-p scattering.

4,0. I 0

3,0.

2.0' O.s -.

572 Me V

1.0.

+l.O + 0'5
Coa 0

0

Fro. 21. The fit of solution 1 to the x+-p differential cross section.

a.o-

-05

7,0--

6.0-.

—1.0
lop 0

Coo 8.
-0.5 -l.O

sop-

6 4.0-

3.0

698 Me V
2X =7g

Fn. 24. The fit of solution 1 to the polarization in x+-p scattering.

a more inelastic resonance v ith resonance energy 630
MeV with a full width of 180 MeV is found in 2.

&These correspond to masses and mass widths of

Solution 1: M=1527 MeV/c', I'=105 MeV/c'.

Solution 2: HE=1530 MeV/c' 1'=111 MeV/c2

+ i.o + 0.5 0
Co% e -0.5 I—I.O

FIG. 22. The fit of solution 1 to the 7l-~-p differential cross section.

The indication is that the mass of this resonance is
greater, and the width considerably smaller, than
values obtained by inspection of total cross sections. "'
The reason for the unreliability of the estima, te from
total cross sections is evidently the occurrence of large
pyy and spy amplitudes.

~9 If we draw a line from the center of the circle to the amplitude ' See, for example, A. H. Rosenfeld et al. , University of
point qf, then the length of this line is q and it makes an angle 2b California Radiation Laboratory Report No. UCRL 8030, 1963
with the downward radius. (unpublished).
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0.'5

cation extremely doubtful. It could be a resonance with

fairly rapid variation of background and inelasticity,
and if the resonance were placed at the point of fastest
energy variation this mould be at T,—,~-380 or &~1370
MeU/c'. The inelasticity in this state is probably
associa, ted with the reaction

m+X —+ x+x+S
with the two pions in a relative s state. "

In both solutions the dr5 and f~~ waves are becoming

I.O--

O.s--
5/3 McV

I.O
Iso 0;5 b

coo e
—0.5 O. -

FiG. 25. The 6t of solution 1 to the polarization in ~~-P scattering.

lV 3I0 Lkt V

Pe 4+
0.5--

+0.5
I

0
coa e

-0.5 I 0

FiG. 27. The nt of solution 1 to the polarization in w~-p scattering.

O 04

F&G. 26. The Qt of solution 1 to the polarization in m+-p scattering.

Both the sj j solutions show the g-threshold cusp at
558 MeV; unfortunately, as this cusp is in an s wave
in a region where other waves are strongly va.rying,
direct experimental observation of it is almost im-
possible. The Argand diagrams reveal that, despite 8
passing through ~x for the solution 2 s~~ wave and
through 0 for the solution j. s~~ wave, the two solutions
are qualitatively similar. The circular form is strongly
suggestive of resonance (particularly for solution 2)
though consideration is complicated by the cusp a,t the
y threshold. It is probably desirable to examine these
solutions in a multichannel formalism, using the q-

production data, " to decide whether or not an s-wave
resonance exists."'

The P~~ amplitude is similar in both solutions and in
neither is it easy to interpret. It has some characteristics
of a resonance, but the distortion and slowing down of
energy variation after 410 MeV make such an identifi-

O.

0".5' '

-I.O
+I;0

TT S&2 Mc V

c SO

0
co e -I,O

"F.Bulos et a/. Phys. Rev. Letters 13, 486 (1964)."' Such an analysis has been carried out by A. W. Hendry and
R. G. Moorhouse, Phys. Letters 18, No. 2 (1965), and it divas con-
cluded that such a resonance exists,

FIG. 28. The fit of solution 1 to the polarization in m-+-p scattering.

"M. B.Watson, M. I'erro-Luzzi, and R. D. Tripp, Phys. Rev.
131, 2248 (1963).
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+loO .

There is a good measure of general agreement with
the results of the analyses of Roper and Wright' and
of Auvil et al. ,34 the agreement with the latter authors
being better. One of the most interesting diGerences is
in the pqq wave, the real part bqq of the phase shift for
which Roper and Wright 6nd to pass through 90',

+0,5--

O. -

b89 Me V

2.0 "

600 M~
X'= 56

-0 5-.

-l aO
+ l,o 0

Cog 49

-0.5 la 0

1.0"

FIG. 29. The fit of solution 1 to the polarization in 91-+-p scattering.

40"
581 MeV

x'= ]]4
+1.0 0

Cos e
-1.0

FIG. 31.The fit of solution 1 to pion-nucleon
charge-exchange cross sections.

2.0
E

2,0.

m' 650 MeV
g'= 53

1.0 "

+1.0 0
Cos e

-1.0
1.0

FIG. 30. The fit of solution 1 to pion-nucleon
charge-exchange cross sections.

appreciable at 700 MeV, and it is certainly not possible
to say for example that the f» will resonate at 900 MeV
and the dI5 will not. Both amplitudes may well be large
at 900 MeV; for example, the f» may resonate while
the d» amplitude may be large (mainly imaginary) and
slowly varying. Such a behavior is compatible with the
latest charge-exchange results" (which indicate d» f»-
interference rather than d3~ f» interferenc-e) and with
the rather rapid rise of our dI5 phases round 700 MeV.33'

~ R. J. Cence (private communication); F. Bulos et al. , Phys.
Rev. Letters 13, 558 (1964).'" Further differential cross sections and polarizations in the
region of 750-1450 MeV are now available; P. J. Duke et al.
Rutherford Laboratory Report No. RPP/H/8 (unpublished).

0
Cos 9

FIG. 32. The fit of solution 1 to pion-nucleon
charge-exchange cross sections.

4

-1.0

From inspection of the coefBcients of the Legendre expansions,
P. G. Murphy (private communication) suggests that both waves
are resonant, the d» being very inelastic. Preliminary results of
the extension of the work of this paper, by the present authors,
confirm this.

'4 P. Auvil, A. Donnachie, A. T. Lea, and C. A. Lovelace, Phys.
Letters 12, 76 (1964).
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YVe list here references to all data considered for our
analysis. The type of data given in each reference is
indicated by the appropriate symbol (defined below)
and numbers given in brackets give the energy at which
the observation was made.

Symbols used. We use the following: ~+, ~, and ~"
indicate that the reference gives results of 7r+p, ~ P,
and charge-exchange differential cross sections; a
subscript "T" denotes total cross sections, subscript
"el" denotes total elastic cross section, and a su%x
"p" denotes polarization measurements of the out-
going nucleon. Thus, rrr (310) would indicate that a
measurement was made at 310 MeV of the total cross
section for the scattering of negative pions on protons.
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FIG. 37. The absorption parameters g of solution 2.
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FIG. 38. The Argand diagram of qf= (1/2i)(ge"' —1) for the
s11, P11, and d13 amplitudes of solution 1.
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FIG. 39. The Argand diagram of qf= (1/2i) (qe"' —1) for the
s11, P~1, and d1,~ amplitudes of solution 2.
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APPENDIX B

The following expressions for the real and imaginary parts of the inverse partial-wave scattering amplitude are
those used in the computer program:

where

IDlfi~ = —qadi, (q),
(q'- qo')

kefi~ ' ——— xEi, (x) 1 di~ i X—+E —,
(x' —q') (x' —qo') n- q'+q ' ~ q'"

(81)

(82)

q (q qi) — (q q) —
q (q qo) —

q (q' —qo') '"
Ry(q)=1+0(q —qi) «, +bi~ +e(q qi) —«+ +biodi~ , . (83)

(1+q'/~ ) (1+q'/~ ) (1+q'/~ ) (1+q'/D')

Equation (82) is a modihed form of Eq. (3.2). The second (left-hand-cut) integral of (3.2) is evaluated by
approximating Dfi+ by a sum of poles (3.7) and absorbing part of the integral in ) o. In the erst (right-hand-cut)
integral of (3.2) the upper limit of x' has been replaced by a finite cutoff Q, where Q is larger than any center-of-
mass momentum in the energy range to be an;~lyzed, as explained in Sec. 3.

De6ne
(q' —q ')

Ii+ (q', qo",Q) =— xE~ (x)
dx

(x' —q') (x'—qoo)

P31) P13 ~

p 11 .

di do(q' —2.8157)
Refi4-'(q) =Ii+(q', qo', Q)+&o+—+ +

q' (q'+1+ lail) (q'+1+ la. l)

«fi~ ' (q) =Ii+ (q', qo', Q)+),o+—,+ +do(q' —4.23)/(q'+
I
ao

I ) )(q'+1+
I oi I)

, (q'+q-')
Refi '

(q) = F(q') F( q„')— —
(q' —3.0)

The forms of (82) (for each partial wave) that were actually used in the computer program are as follows:

di doq'(q' —qP)
'(q) =I,(q', q

' Q) —I (O,q,',Q)+)„+
(q'+I+ la I) (1+ la I) (q'+1+ Iaol)

diq' doq'(q' bi) (q—' bo)—
s,i. Refo+ '(q) = Ip+(q', qo', Q) I~(0,qo', Q—)+)o+ +

1+q' (q'+
I oi I ) (q'+

I
ao

I ) (q +
I
aol )

(85)

(86)

(87)

where d i (q' b,)—
F (q) =I, (q', qo', Q)+),o+—+ (8g)

(q'+ 1+
I
ai

I )
This is a special form which, by means of the pole in Ref ', ensures that the p» amplitude has a zero at 200

Me V.
d and f amplitudes:

T=—,
' Parameter~zati on.

ii =0 251 xo
I / (1+ I

xo
I ) b =0 '

& = 2
I xo

I /(1+ I
xo

I ) '

Xo= —11.36; di= —9.04+4xi4/(1+ lxi4I);
0 2S3 di=»/(1+ I»l); o.=20.

d1 d, (q' —4.23)
Ref + '=I (q', qo', Q)+ + +——+

q' (q'+1+ lail) (q'+1+ laoI)
The units in (84)—(88) are pion-mass units. When the maximum power of qo in a numerator is greater than or
equal to the maximum power in the corresponding denominator, as in (85), it may appear that we have departed
from our prescription of poles on the left-hand cut. However, for the energy range 300—700 Me& considered
q & 13, so that the situation is in fact that of the quite harmless approximation of putting distant poles at i~nit@.

The various quantities, such as Xo, ~1 . , are diferent in each partial wave. The computer program contains a
subprogram which expresses the quantities above in terms of the parameters x1 $2 ~ which are actually varied
in the search for a minimum. YVe now give the actual expressions for these quantities which were used jn the search
leading to solution 1.
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P33:

P31 ~

f37:

a=0; b= 0; c=2(x,3)'/(1+ [x13[');
Xo= —1142; Xg =4.65; dg = 1 579 000
a1= 1381; d3= 1.8x3/(1+ [x3[); a3= 20.
u=0.5[x»[/(1+[x„[); b=O; c=O;

X3=3x13/(1+ [x13[); X1———26.32; d, = —20;
a1=0 0025; d3= 100x3/(1+ [x3[); u3=20.
a=4+3x13/(1+ [x13[); b=o; c=o;

~,=—1OOOO; ~,=O; d, =700y300x,/(ly[x, [);
a~=0; d2=0; @2=20.
u=0.4[x14[/(1+ [x14[) b 0 c—0;

'A2= —1000; X3=0;
d, =O; a, =O; d3=3000x3/(1+ [x3[); a, =2O.
c=b=c=0;

)g=0; )3=4098;
d1=0; a1=0; d3=400[x4[/(1+ [x3[); a3 ——20.
a=b=c=0;

Xg =0; X3= —12210;
d, =O; u, =O; d, =—15OO[*,[/(1+[x,[).

T=
~ I'urameterzza)zon.

a=O 25[»3[/(1+ Ix13[) ) b=07 c=o) d= Ix1ol/(1+ Ix1ol);
X =5.58; d =5.63(1+O.sx1/(1+[x [);
d, =4000+ sooox, /(1+ [x1[) &

b1 4.23; b3——2.0+O——.sx13/(1+ [x14[) &

ai= 21.0; a2=41.0.
P»: a=3[x14[/(1+Ix14[); b=o; c=o;

~,=—21.94' 18.0x,/(1.0+ [x,[); ~,= —34.4S;
d1=0; u1=0; d3= —30.0+180.0*4/(1+ lx4[) 7

«=21.0~

011 u=o 30[x»l/(1+ l»1[); b=4 ol»3[/(1+ l»3[);
Xo= 7,0x3/(1.0+x3); X1=—9.9;
d1 =—4.0+s.ox3/(1.0+ [ x3[) i b1= 4.23; a1= 20.0;
q =1.41.

d13: a=025[x13[/(10+Ix13[)' b=o' c=l»3[/(1+[x33[)
F3=9296.0+929.6xM/(1. 0+x33); X3=0;
d1=0; d3= 250 0+500 ox7/(1+ [x;[); a3= 20 0.

d„: a=0.075+0.075x„/(1.0+ x„[); b=o; c=o;
4=403.8+40.38x31/(1.0+ x31[); 4=0;
d1 =50.0+30.0x4/(1.0+ [ x4 ); u1 ——0;
d.=—» 91—0 445d1+7 0»7/(1o+ l

x» I)
I/(1+I I)

4= —18830.0+15064.0x33/(1.0+ [x33[); X3=0;
d, =1500.0x,/(1.0+ [x,[); a, =o.O; d, =O.

f„: a=O; b=O; c=[x„[/(1+[x,-. [);
X3=0; X3= 7324.0+7032.0x33/(1.0+ [ x33 [);
d1=280.0+120.0x3/(1+ [x3[); a1=0; d3=0.

Also A =7.194; 8=2 878; C=10 791; D= 10 791; gP=1.0; Q=3.8, F1= 1.53, F3=3 09.
The searches @&ere conducted in x space. We give here the values of x at the rnirumum corresponding to solution j. :
T=k
(x,,x„,x„)= (0.0028, —0.5702, —0.8609, —0.3477, —65.99, —2.006, 3.808, 1.273,

—0.0006, 0.002, 2.181, —2.000, —0.0027,—0.1892, 0.4965).
X=2
(x1 x3 x33) = (—2.9421, —0.1669, 2.7053, 14.343, 2.0110,0.0094, —5.2662, —101170.0, 0.9705, 0.2981,

0.3545, 0.1310,0.3080, 0.2505, 10.355, —131490.0, 440.0, 0.0003, 0.1682, 0.0913, —1.1633,
—1.0500, 11.7100, 33440.0, 0.0000, 0.0000) .


