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A model is proposed, according to which a "deuteron, " consisting of two identical particles, interacts
with a "core nucleus, "taken as an infinitely massive point particle which can form a bound state with either
of the two particles. Assuming factorable interactions between the particles of all the three pairs, exact
expressions for the scattering and stripping amplitudes are obtained. A comparison with the corresponding
distorted-wave Born approximation (DNA) amplitudes, which can also be obtained in the model, shows
that DWBA is valid within the model. The model also predicts that the partial-wave scattering amplitudes
ai are small compared with the corresponding stripping amplitudes bf, . An (indirect) experimental test of
this result is suggested on the basis of large angular momenta, which are needed to overcome the difBculties
of finite nuclear size in actual situations.

1. INTRODUCTION

HE distorted-wave Born approximation (DWBA)
for the treatment of direct nuclear reactions"

and, in particular, (d,p) reactions' has been one of the
most successful tools in nuclear theory. D%'BA calcula-
tions which have been carried out by a large number of
workers have found very impressive agreement with
observations. The theory is continually being made
more sophisticated in order to include more and more
physical restrictions on the calculations, the latest being
the inclusion of 6nite-range effects. ' The DISA ap-
proach, which has a strong intuitive appeal, was moti-
vated mainly from considerations of practical interest,
viz. , to obtain improved 6ts to the data on nuclear
reactions which the ordinary Born approximation could
not provide. This might explain why a comparable
degree of attention to the formal mathematical founda-
tions of D%3A has not accompanied the development
of the practical aspects of the theory during the last
decade. In other words, the experimental success of the
theory has generally tended to obscure the question as
to precisely what effects are being ignored. under this
approximation. From a logical point of view, an estima-
tion of the neglected effects could in principle lead to
an understanding of DWBA. On the other hand, from
a practical point of view, the mathematical formulation
of a (d,p) reaction with a sizable nucleus, e.g. , Zn~, with
all its size and structure effects, would be an almost
impossible task. An "exact" formulation can at most
be made for a highly idealized situation in which many
effects must necessarily be neglected. The limitations
imposed by such ideal conditions would of course tend
to move the problem away from reality. Yet models
have frequently provided very useful backgrounds for

' N. Austern, in Fast Neutron Physics, II, edited by J.B.Marion
and J.L. Fowler (Interscience Publishers, Inc. , New York, 1962).

~%. Tobocman, Theory of Direct nuclear Reactions {Oxford
University Press, London, 1961).

3 S.T. Butler, Nuclear Stripping Reactions (John Wiley R Sons,
Inc. , New York, 2957).

4 N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler,
Phys. Rev. 133, 83 (1964).
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testing the validity of various approximations, the Lee
models being a good example. Such considerations have
motivated us to consider a model stripping process
which is essentially soluble, so that it may provide the
necessary background for comparison with the results
of a corresponding D%BA calculation within the same
framework. In other words, the "experimental material"
for such a situation is represented by the exact expres-
sions for the amplitudes, against which the "theo-
retical" DWBA amplitud. es can be tested. The model is
of course not meant for application to actual stripping
processes, though certain general features emerging
from the model may be discussed in relation to experi-
mental conditions.

Our model consists of an infinitely massive point
nucleus A, with no internal structure, playing the role
of the "core."A "deuteron" d, consisting of two identi-
cal spinless "nucleons" n~ and n2, interacting with A,
can lead to any one of three possible processes of
elastic scattering, stripping, or breakup reactions. For
simplicity, it is further assumed that the core A can
form only one bound state A' with either of nI, or n2,
brought about by the potentials VI or V2 acting be-
tween the pairs (An~) or (A em), respectively. ' Similarly,
a potential VI2 acting between nI and n2 leads to one
bound state, viz. , the deuteron (d). The problem is thus
reduced to that of a three-body system under the in-
fluence of the three potentials VI, V2, and VI~. If these
potentials are assumed to be factorable, our experience
with the three-nucleon bound~ and scattering problems8
shows that an exact solution can be obtained in terms
of certain single-parameter "spectator functions" satis-

' T. D. Lee, Phys. Rev. 95, 1329 (1954).
'This model has some points of similarity with a soluble one

proposed by Amado t R. D. Amado, Phys. Rev. 132, 485 (1963)j,
in connection with n-d scattering and stripping processes. How-
ever, Amado considers the force in only one of the pairs A „A„,
(corresponding to the nudeon that is being captured), and ignores
the force in the other pair. The present model takes account of
potentials in both the pairs A„, and A„» and is thus capable of
generating many more connected graphs of higher order.' A. N. Mitra, Nucl. Phys. 32, 529 (1962); referred to as I.

A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963);
referred to as II.
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fying as many one-dimensional integral equations, and
appropriate boundary conditions. The mathematical
validity of such potentials, when a two-body system is
dominated by bound states or resonances, has been
established by the work of Lovelace, ' on the basis of
Faddeev's three-particle theory. ." The numerical ac-
curacy with which such potentials can represent the
effect of static potentials has been found to be rather
close by Sugar and Blankenbecler" on the basis of their
theory of upper and lower bounds for scattering
problems.

Our three-body model thus automatically takes into
account certain features of the stripping process, viz. ,
the inhuence of the target on the deuteron internal wave
function, the deuteron polarizability or breakup, and
the residual proton-target interaction. The most serious
drawback of the model in simulating the actual physical
situation perhaps lies in the assumption of a point
nucleus and. (factorable) s-wave interactions between
pairs. In an actual stripping calculation, on the other
hand, the optical potentials that are used for the calcu-
lation of the (Ad) a,nd (A p) wave functions are not only
dependent on the finite size of the nucleus, but strongly
affect many partial waves in any pair of particles.

In Sec. 2 we spell out the model in some detail and
obtain the exact amplitudes for stripping as well as
elastic d-3 scattering. A partial-wave analysis of these
amplitudes is also carried out. In Sec. 3, the
DW'BA is first defined within the model and then
used to calculate the corresponding scattering and
stripping amplitudes. It is shown that it is possible to
obtain the DQBA amplitudes without explicit refer-
ence to any optical potential, unlike the customary
procedures. ' ' In Sec. 4, a comparison of the two results
leads to a simple condition on the validity of D%BA
within the model. A possible way of testing this condi-
tion on actual physical systems is suggested.

2. EXACT AMPLITUDES ON THE MODEL

Let P» and P2 be the momenta of the two nucleons
n1 and 222 (distinguished only by the magnitudes of
these moments„but otherwise identical) in the labora, -

tory frame in which the infinitely heavy nucleus .4 is at
rest. The separable interactions V~, V~, and V~~ in this
3-particle space, have the following structures

(P1P2
I
V1

I
F1'F2'&

2 (~1/M)g(F1)g(F1 )11(P2 P2 ), (2 1)

with a similar expression for V2, and

(F1F2I V12l F1 F2 )= —(~/M)f(p)f(p')l1(P —P'), (2 2)

where
2P= P1—P2, P= P1+P2) (2 3)

with corresponding definitions for y' and P'. The binding
energy n2/M of the deuteron is given in terms of (2.2),
in the usual way" by

1 4~ q2dq f2 (q) (q2+&2) 1 (2.4)

Simils. rly, the binding energy ap/2M of either nucleon
in the (single) bound state A' of A and 22 is given by
the solution of the two-body equation

whence

(F1 +121 )4(P1)=~1g(F1) dqg(q)4 (q), (2.o)

y
—1 4~ q2dq g2(q) (q2+&P)

—1 (2 6)

Itq (Pl)P2) 1fQld02(P1P2I It
I 0102&q (01,02) (2 9)

Following the techniques of I, the solution of (1.8)
which is symmetrical in the momenta P& and P2 may
be read oR as

D(E)q =g(P, )G(P2)+g(F2)G(P, )+2f(p)F(P), (2.10)

where

p1-' —12, (P2)]G(P2) =2 dqK(P2, q)F(q)

D(F) = Fp+F22 2FM= -12P'+2p2 —2FM—. (2.11)

The single-parameter functions 6 and Ii satisfy the
equations

+ qgd(P ) 2( g)Gq( )(q+q2P 222ME, 22) ', (2.12)—

In terms of these binding energies, the total energy
E of the full three-body system is given by

(2 7)

where k is the separation momentum between A and d,
and k~ is the corresponding quantity between the
stripped nucleon and A'. The three-body wave function
+(P1,P2) can now be determined from the Schrodinger
equation

(2M F1 + 2M F2 +Vl+ V2+ V12 +)q 0
p (2 g)

where, for any operator E,

C. T.ovelace, Phys. Rev. 135, 81225 {1964).This paper also
contains a very complete list of references to calculations with
scparat~le potentials."j . D. Faddeev, Zh. Eksperim i Teor. l.'iz. 39, 1459 {1960)
$F.nglish transl. :Soviet Phys. —JETP 12, 1014 {1961)j."R. Sugar and R. Blankenbecler, Phys. Rev. 135, 8472 {1964).

Ll1-' —i1 (P)jF(P) = 2 dqK(q, P)G(q), (2.13)

"- Y. Yamaguchi, Phys. Rev. 95, 1628 {1954).
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where substitution of (2.19) and (2.20) in (2.12) and (2.13)

l, (Pz)b(Pz) =4zr K(Pz, k)
hi(Pz) = dqg'(q) (Pzz+q' 2M—E ie—) ', (2.14)

and

h(P) = dqf (q) (qz+ 'Pz— ~E i—e) i — (2.15)

+ dqKo'(Pz, q)b(q)

+2 dqE(Pz, q)a(q)(q' —K'—ie) ',

(2.22)

K(x,y) =g(x- y)f(x- ly)
X (y' —2x y+2x' 23IE— ie) —' (2.16)

Using (2.4), (2.7), and (2.15), it is easily seen tha, t the
factor X '—h(P) multiplying F(P) in (2.13) vanishes
when P'= k2 so that one may write

l(P)a(P) = 2 dQK(Q P)b(Q) (ez —kiz —ze) i (2.23)

where K(x,y) is already de6ned as in (2.16), and
Ke'(Pz, q) is a pure s-wave kernel given by

1~
'—h(P) —= (P'—k') l(P) .

Similarly, the de6nition

lil hl(P2) = (P2 kl )il(P2)

(2.17)

(2.18)

Ko (Pz, q)=g(Pz)g(q)(q' —kiz —ze) '

X (qi+Pz'+Qi' ki' i e) ' (—2.24)

A partial-wave decomposition of Eqs. (2.22) and (2.23)
now goes through in the usual way according to

extracts the zero of the corresponding factor on the
left-hand side of (2.12).

The meaning of the poles in the functions F(p) and

G(p) becomes clear in terms of their respective inter-
pretations on the lines of I. Thus F(P) is the wave
function of d with respect to A, and G(Pz) that of zzz

with the composite A' of A and n~. The internal wave
functions of the composites d and A' are of course
described by the factors 2f(p)/D(E) and g(Pi)/D(E),
respectively. The pole of F(P) at P'=k' therefore in-
corporates the physical condition that at inhnite sepa-
ration, the momentum of d with respect to A is k.
Similarly, the pole of G(Pz) at Pz'=ki' is associated
with a momentum k~ at infinite separation of n2 from
A'. For an incident deuteron of momentum h. we have
thus the boundary condition

F(P) = (2 )'b(zPrk)+4zra(—P) (Pz k' ie) —', —(2.1—9)

K (x,y) =P Ki(x,y) (21+1)P&(9 g), (2.25)
0

b(Pz) =P bi(P, ) (2l+1)Pi(Pz k),
0

(2.26)

a(P)=g ai(P)(2l+1)Pi(P. k),
0

(2.27)

q dq K, (P„q)b, (q)

+4zr Ki(Pz, k)+8zr q dqKi(Pz, q)

A

where k, the direction of the incident deuteron, is taken
as the polar axis. The corresponding equations for the
lth partial-wave amplitudes bi(Pz) and ai(P) are

li(Pz) bi(Pz)

where a(P) with P'= k' is the elastic scattering ampli-
tude of d by A. The deuteron stripping amplitude
b(ki) is similarly defined by the boundary condition 1(P)ai(P)

Xai(q) (q' K' ie—) ' —(2.28)

G(P2) = 4zrb(Pz) (Pzz kiz ie)— —(2.20) e'de K (e,P)b(e)(e -k"-')-. (2.29)
in conjunction with (2.19). Similarly, the elastic scat-
tering amplitude b(Pz) with Pzz= kiz of a nucleon by A'
is incorporated, in the boundary condition

G(Pz) = (2zr)'b(Pz —ki)+4zrb(Pz) (Pz' —ki' —ze) ' (2.21)

where the plane wave term of (2.19) must now be
absent from F(P).

These results, being all exact within the model, enable
the elastic scattering t a(P)) and stripping fb(iti))
amplitudes of d with respect to A to be calculated from
the following integral equations obtained from the

The physical partial-wave amplitudes for d-A scattering
and stripping are now, respectively, a&(k) and bi(ki).
The functions Ki(x,y) can be explicitly calculated for
simple shapes of f(p) and g(p). For example, with

f(p) (ez+pz) —i
g (p) (8 2+pz)

—1 (2 30)

the formulas for Ki, l(P), and li(Pz) are listed in the
Appendix. "
"Similar formulas have been given by R. Aaron, R. D. Amado,

and Y. Y. Yam, Phys. Rev. 136, B650 (1964).
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3. THE D%BA STRIPPING AMPLITUDE

To simulate the distorted-wave Born approximation
within this model, we may again appeal to the inter-
pretation of the various terms of q, as given by (2.10).
Thus, the term

4 "'=2f(p)D '(~)~(P) (3.1)

represents the part of the wave function which takes
full account of the distortion of the deuteron wave
function in the field of the nucleus. However, (3.1)
still contains some effect of the coupling of the internal
motion of d with its bodily motion, through the P
dependence of the factor

2D(~) = ~(I k')+(—P'+n'), (3 2)

which goes against the spirit of D%BA. This P de-
pendence may be dropped through the approximation
of putting P' on the "energy-shell, " viz. , P'=k' in
(3.2), so that the (unnormalized) DWBA wave func-
tion of the deuteron is finally given by

lt'w(d) =A(P)L(2~)'~(P —")
+4 a(P)(~—k' —i~) "j, (3 3)

where

X((2z.)ab (P2—ki)+4irb'(Pp) (P2' —kp+ iE) '$

X$(2s)'8 (.P k)—+4sa(P.) (P' k' —is)—'],-
(3.10)

y= ~P—P2) P~= P—P2.

The constant C must be adjusted so that the lowest
Born approximation to (3.10) normalizes to"

b~ (ki) =47r'/i-'(ki) K (ki, k), (3.11)

stripping calculation with a medium-sized nucleus, most
of the contribution to the optical potential arises from
the finite size and internal structure of the nucleus, and
the latter has no analog in this model.

To proceed further, the D%BA stripping amplitude
which is defined by

b'(~ ) =C(0 (I )I I' l4'w(d)), (3 9)

is after some trivial integrations reducible to the form

9'(k,)=C dPdP, g(P,)f(P)(PP+nP) '

where
(3.4)

in agreement with the inhomogeneous term of (2.22).
This gives, according to Eqs. (2.4) and (2.16),

is the deuteron internal wave function and the boundary
condition (2.19) has been incorporated in (3.3). In a
similar way„ the distorted wave function of the nucleon
n2 with respect to the bound state of A and N~ is ob-
tainable from the term

C= (2z.) 4/i '(ki)

A straightforward integration of (3.10) yields

/1(kl)b (kl) 1/( kl) b(kl)

(3.12)

where
where

QA'(+1) g(2 1)(+1 +ni ) (3.g)

g &"=g(Ei)D '(E)G(P2) . (3.5)

The decoupling of the internal motion of A' is again
effected through the replacement

D(E)=ni'+I'P+ (I'2' kP) =ni'+I'P— (3.6)

so that using the boundary condition (2.21), we have

(u2) lj5A (Pi)t (2'n)'b(P2 kl)—
+4nrb(Pg) (PP—kP —ie) 'j (3 7)

+2 dP E(ki, P)a(P)(P' —k' —ie)-'

+2 dP~" (P2, k)b*(P,)(PP—k '+zc) '

d Pd P2E" (Pg, P)b*(P.)a (P)

X (PP kP+ic—) '(P" k-' i c)—'—(3 -13)

is the internal wave function of 2'.
The foregoing considerations show how the present

model can accommodate DKBA without explicitly in-
voking an "optical model" for each of the deuteron and
nucleon motions, in the sense that it is traditionally
used for practical stripping calculations. The "optical
potential" in this approach is of course present, but in
a highly implicit form. Thus the inelastic eGects on the
distorted deuteron wave function t(P) are taken into
account to the extent of inclusion of the stripping and
breakup reaction channels, in addition to the elastic
channel. Similarly, the "optical potential" for the dis-
torted function G(P2) of u2 with respect to A' includes
the (inelastic) efFects of the pickup and breakup re-
action channels. On the other hand, in a practical

/, (k,)b(ki) — dqKO'(ki, q) b (q) . (3.15)

As for the last two terms of (3.13), their meaning be-

'4 The reason why a normalization is required in Eq. (3.9) is
that the functions Pow(d} and P w(n) dered by (3.3) and (3.7),
respectively, are not normalized as they stand. On the other hand,
the exact stripping amplitude b{P2) delned by (2.20) is a fully
normalized quantity, whose Born term, (3.11) can be read off
from Eq. (2.22). The constant C in Eq. (3.9) which expresses the
normalization of the DWBA amplitude is most easily determined
from the requirement that the Born approximations to the exact
and DWBA amplitudes agree.

E"(x,y) = f(x——,'y)g(x —y)L(x —y)'&nP) ' (3.1—4).

Using Eq. (2.22), the first two terms on the right of
(3.13) are re-expressible as
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comes slightly more transparent if an approximation is
made in the E" functions. A comparison of (2.16) and

(3.14) shows that the "propagator factor" in E"(Pm, k)
differs from the corresponding factor in E(P2,k) to the
extent of an additive term (P22 kP—) which is present
in the latter. The same additive term accounts for the
difference between E"(PI,P) and X(P2,P). Replace-
ment of K" by Z in the last two terms of (3.13),
therefore, amounts to a modification of the propagators
of E" to the extent indicated, thus making them dif-

ferent only off the energy shell for P2. This may not be
a serious error since (1) P~ is an integration variable in
these terms and (2) the poles of the modi6ed propaga-
tors of X" that would now be present in the region of
integration are far removed from the poles of the other
factors (F22 kP+—ie) ' or (I k' —ie)—' which produce
the dominant eGects. Making these replacements, the
resultant: expressions can be simplified with the use of
Eq. (2.23), so that (3.13) reduces to the more trans-
parent form

l& (k&)bn (k&)

=l&(k&)b(k&)+l(k)a*(P) I (r' &'&

dq Xo'(k&,q)b(q) (3.16)

A partial-wave analysis of this equation as in (2.25)-
(2.29), yields the DWBA partial amplitudes b&n(k&) in
the form

l&(k&)bP(k&)

= l&(k&)b)(k&)+l(k)ai*(k)

—4 b~ dA &0'(k& V)bi(V) (3.1/)

+2&r 'b&, Q'&Q l*(Q)o,&(Q) (P—k' —je)—&

where

e.&(Q) =Q(21+1)(«(Q) (' (3.1g)

may be interpreted as the total elastic scattering cross-
section og the energy skell. This is obvious sinceaccord-
ing to Eq. (2.29) the quantities a~(Q) of Eq. (3.18) are
de6ned off the energy shell except when Q'=k'. The
analogy of the last term of (3.17) with a dispersion
formula is thus only a formal one.

4. VALIDITY OF D%8A FOR THE MODEL

The relations (3.16) and (3.17) express the deviations
of the DWBA amplitudes from their exact counterparts.

The "correction terms" in these formulas are therefore
convenient for a discussion of the validity of DWBA
within the model. The first correction term of either
equation is the one that is proportional to the complete
elastic scattering amplitude a(k) in (3.16) and the one
with the corresponding partial amplitude in (3.17). The
last two corrections are pure isotropic effects (l=0), as
is clear from (3.17). Of these the last one involves an
integration over the total elastic cross section on and
oB the energy shell. An interesting feature of this term
is that it does not involve the potentials at all Lexcept
through the normalization factor l(Q)j, so that this
part of the "correction" may well be independent of
the particular model considered. On the other hand, the
third term on the right of Eq. (3.16) or (3.17), is a
model-dependent "correction. " Indeed, the latter may
be interpreted as arising from an o8-shell exchange
scattering of an s-wave nucleon (em) by the bound state
of A with the other nucleon (N~). While the appearance
of the s wave in this term is traceable to the assumption
of factorable potentials between pairs, the isotropy of
the last term in (3.16) or (3.17) is a more fundamental
eGect, involving, as it does, the to/al cross section.

As for the magnitudes of these corrections, it is in-
structive and indeed possible to draw certain qualitative
conclusions based on the mere assumption of usual
short-range potentials. For this purpose, it is useful
to recall the numerical results obtained recently by
Bhasin, Schrenk, and Mitra" for low-energy e-d scat-
tering. The e-d system, which represents a true three-
body problem, can be counted upon to provide im-

portant information as to the nature of the results
expected from "three-body approximations" to more
complicated systems. The present model has some ob-
vious points of similarity to the n-d system except for
the neglect of recoil eGects and nonidentity of the
nucleus A with either nucleon. For an e-d system of
course, stripping and elastic scattering are formally
identical processes, and cannot be distinguished experi-
mentally. On the other hand, there is a profound
diGerence in their physical mechanisms, a correct in-
terpretation of which should be of great value in the
present context. Indeed, it was shown in III that n-d
scattering proceeds via either of two mechanisms, (1)
exchange of a nucleon line (Fig. 1 of III), termed as
"exchange scattering, " and (2) a "triangle diagram"
(Fig. 2 of III) in which two nucleon lines are simul-
taneously exchanged, between the two particles, termed
"potential scattering. "The matrix elements of poten-
tial scattering are characterized by the appearance of
integrals with a greater number of "shape factors"
Llike g(p) or f(p)j than those of exchange scattering.
Because of the short range of the forces concerned, the
former are expected to be much smaller than the latter.
This was indeed found to be the case in III, where the

"V. S. Bhasin, G. L. Schrenk, and A. N. Mitra, Phys. Rev.
137, M98 (1965); referred to as III,
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contribution of potential scattering to the quartet
sc Lttering length turned out to be almost entirely
negligible (« l%%uo) compared with that of exchange
scattering which already gives beautiful agreement with
experiment. ""This result has a direct bearing on the
present model when it is recognized that our stripping
amplitude b(k&) corresponds precisely to the n d-ex-
change scattering amplitude, and the elastic 3-d scat-
tering is the exact analog of "potential scattering" in
the n-d problem. Now, since the Yamaguchi-type po-
tential shapes" listed in the appendix are essentially
the same as those used in III, except for recoil eGects,
it is clear that for such shapes at least, the relative
numerical magnitudes of the various terms in the pres-
ent problem should have a close parallel to the corre-
sponding estimates in the n-d case. Thus it should be
possible to estimate the order of magnitude of each
term in (3.16) or (3.17) simply by examining the
structure of the integral in each (in terms of shape
factors). The stripping amplitude b(ki) involving the
smallest number of shape factors must be the dominant
term. The elastic scattering amplitude a(k) which, ac-
cording to (2.23), is given by an integral involving
b(Q) as well as the shape factors, must, on the three-
body model, be an order of magnitude smaller than the
stripping amplitude. The same remarks apply to the
third and fourth terms on the right of (3.16), vis-a-vis
the stripping amplitude. Thus we conclude that mithin
the fram+cork of the three body model, D-S'BA is a calid
approximation. An identical result holds for (3.17) ex-
pressing the corrections to the D%'BA partial ampli-
tudes, including the (algebraically worst) case of /=0.

The next question is whether this model has any
bearing on the validity of D%BA stripping calculations
in actga/ nuclei. The principal difhculty of confronting
this model with experiment lies in the absence of size
or structure in our model nucleus. A direct manifesta-
tion of nuclear size in the context of experiment is the
appearance of elastic cross sections several orders of
magnitude larger than the stripping cross sections. "
Even for a d-d reaction, the elastic cross section bears
a ratio of 10—12 to the stripping cross section. " To
understand this fact it must be remembered that most
of the elastic cross section is a result of di8raction scat-
tering from the rim of the nucleus, a process to which
many l values contribute. This feature is absent in our
model, not only because of the assumption of a point
nucleus but also because of the assumption of s-wave
interactions in pairs. As a result of these assumptions,
the conclusion in the previous paragraph, concerning
the relative magnitudes of the elastic and stripping
cross sections, is the exact opposite of what holds in

'~A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, 15
(1963); see also, R. Aaron, R. D. Amado, and Y. Y. Yam, Phys.
Rev. Letters D, 574 (1964).

"See, for a recent reference, J. Testoni et al., Nucl. Phys. 50,
479 (1964)."e.g., L. Lyons et al. , Phys. Letters 3, 359 (1963}.

practice. This is a formidable handicap which must be
overcome before any conclusion bearing on the actual
situation may be attempted on the basis of the model.

A possible solution may lie in the consideration of
the partial wave amplitudes rather than of the complete
amplitudes. For this purpose we must fall back on Eq.
(3.17) which, for l/0, takes a, particularly simple
form, viz. ,

bio(kg) =b)(kg)+%PE 'ag(k), (4.1)

—2 —l (k ) dQ g2(Q) (Q2+~ 2)
—2 (4 3)

From (4.1), the criterion for the validity of DWBA is
deduced as

X-'i (k) i
«X ib (k,) ), (4.4)

i.e., the lth partial amplitude for elastic scattering
should be small compared with the corresponding
stripping amplitude. Of course, within our three-body
model, the inequality (4.4) is valid. However, we now
want to explore the possibility of using (4.4) as a probe
in actual physical situations. A particular advantage of
this form lies in the appearance of physically measurable
quantities only (possible only for l/0). Moreover, un-
like the conditions on the complete amplitudes (which,
as we have just seen, can never be satisfied for physical
situations), condition (4.4) involves amplitudes for only
a particular l state, and it should be useful to see if this
condition can be reconciled with the difhculties of finite-
size effects. Now a basic di8erence between the strip-
ping and elastic-scattering mechanisms is that the
former depends on the shape of the wave functions in
the nuclear interior while the latter depends only on
the logarithmic derivatives of the radial wave functions
at the nuclear surface. One may therefore expect that
the l dependence of a partial scattering amplitude is
much stronger than that of a partial stripping ampli-
tude. Thus it is likely that elastic-scattering amplitudes
die ofI' faster with l than do the stripping amplitudes. In
this way one may try to overcome the size eGects by
choosing a suSciently large l in (4.4) before putting it
to "experimental test. " The precise magnitude of the
critical l needed for a particular case must, of course,
depend on the nuclear size, the larger the nucleus the
larger the l value required. Of course, it might then be
argued that since, for large l, the partial-wave scattering
amplitude falls oB rapidly anyway, the condition (4.4),
which would, be automatically satisfied at some stage,
would hardly serve the purpose intended for it. To
answer this objection it should be remembered that the
eGects due to the size and structure of the deuteron,

where E' and X&' are just the normalization constants
for the internal wave functions of the d and A' states
according to

(4.2)
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which have been fully taken into account in our model,
have also played a role in the derivation of (4.1)—(4.4).
Indeed, in a sense our model is largely complementary
to the assumptions made in normal DWBA calcula-
tions, where the greatest emphasis has generally been
on the proton or deuteron optical potential with respect
to the (6nite-sized) nucleus, with successive refinements
like spin-orbit, tensor, 6nite-range, nonlocal, collective,
etc. , e6ects. On the other hand, conventional DWBA
calculations have hardly taken account of the deuteron
internal structure and polarization eGects on the strip-
ping and scattering amplitudes. Our purpose in choosing
a large / is just to overcome the nuclear size eGects but
not the e6ects of deuteron structure which in fact we
want to test. We claim that this is possible through the
artifice of partial-wave amplitudes if we consider a
fairly snsaL/ and tight nucleus. A good example might
be provided by the o. particle, for which scattering and
stripping data are available, "~ though much more
data exist for medium-heavy nuclei.

Having decided on some reasonably large / values, in
relation to a particular nucleus, an indirect experimental
test of (4.4) may be suggested on the following lines.
Suppose that a "good" optical potential has been 6tted
to each of the data for elastic deuteron and proton
scattering by a given nucleus. Suppose further that a
successful DWBA 6t, using the same potentials, has
been found for the (d,p) reaction data on the same nu-
cleus. The partial wave DWBA amplitudes (with the
above restrictions on /), which can now be calculated
for both scattering and stripping, may be taken to
represent the "experimental data" for testing (4.4).
While such a program is not in the conventional DWBA
spirit (DWBA calculations have been generally con-
cerned with diGerential cross sections rather than
partial waves), it can certainly be regarded as well
within its scope. A possible snag could arise out of the
ambiguities in the optical potential parameters all of
which 6t elastic-scattering data equally well. The sensi-
tivity of the stripping results to such ambiguities was
studied for medium and heavy nuclei by Smith" who
found that these could cause deviations in the so-called
"spectroscopic factors" to the extent of as much as
200%. A second source of ambiguity is that in many
cases the available data are incomplete, leading, e.g.,
to uncertainties in the normalizations chosen for the
scattering data. "A point in favor of a condition like
(4.4), however, is that it is a highly qualitative state-
ment, not likely to be strongly affected by such varia-
tions. As such it may yet be worthwhile to confront it
with experiment in the sense described above.

To summarize, we have shown that within our three-

"See, e.g., H. J. Erramuspe and R. J. Slobodrian, Nucl. Phys.
49, 65 (1963), which gives references to the earlier experimental
papers.

~ For a three-body optical potential approach to scattering,
see J. L. Gammel, B.J. Hill, and R. M. Thaler, Phys. Rev. 119,
267 (1960).

"W. R. Smith, Phys. Rev. 137, B913 (1965).

aiid

~1(xD') x +y +pi
A2(x, y) =x'+xiy'+p',

Aa(x, y) =2x +y 2MP. ie—, —

a,=-',A,/xy,

(A1)

(A2)

Eqs. (2.16) and (2.30) of the text yield

4x'y'&(x, y)=Z(a' —a~) '(a' —a.) '(a' —u) '

where

The expansion
p, —i y

(i, J, k=1, 2, 3), (A3)

(A4)

6nally leads to the expression

IC&(x,y) =x-'y-' g(A;—A,) '(A, —A&) 'Q&(a;). (AS)

Here only Q, (a~) has a branch cut on which it must be
evaluated in the sense (A1). The remaining functions
are evaluated as

l(P)=~~'P '(~+y+2P)(~+P) '
&&(P+v) '( +v) ' (A6)

Ii(P2) = 7r'P (a,+y i+2Pi) (+i+P,)-'
X (Pi+xi) '(oi+vi) ', (A&)

where
y=y(k2/jg) =

I o2+i (P2 k2 j$)j»—2 —(Ag)

Yl rl(kl +$6)= ttQp+P2 ki teJ" (—A9)—

thus specifying how these functions are de6ned on
their respective branch cuts.

body model of stripping, DWBA is a valid approxima-
tion. The model also predicts a condition (4.4), in terms
of partial-wave amplitudes for scattering and stripping,
which is amenable to an indirect experimental test for
actual situations. A possible way of overcoming the
nuclear size eGect in actual cases is suggested through
the use of large l values in the above condition, which is
most likely to remain unaffected by ambiguities in the
conventional DWBA parameters.
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APPENDIX

The results of this appendix refer to the form factors
deaned by Eq. (2.30) of the text.

With the notation


