
Qif jonrnal of experimental and theoretical physics established by E L Nichofs in 1899

SECQND SERIEs, Vol. 139, No. 68 ZO SEPTEMBER 1965

Ayplication of the Goltlberger-Tretman Relation to the Beta Decay of Cornylex Nuclei*

C. %. KHK AND H. PRIMAKOPP

Department of Physics, University of PennsyLvania, PhiladeLphia, PennsyLvania

(Received 5 May 1965}

The theory of the beta decay of complex nuclei, N; —b Xf+e +P„is developed on the basis of a treatment
which considers the nuclei involved (g; and Nf} as "elementary" particles and applies the hypotheses of the
conserved polar-vector hadron weak current (CVC) and the partially conserved axial-vector hadron weak
current (PCAC) to determine the effective polar-vector and axial-vector weak coupling constants
Gy(N; —b Nf) and Gg(N' + Nf) the numerical values of Gy(N; —+ Ny) and Gg(N; —b Ny} reflect in this
treatment the complexity of internal nuclear structure. Using CVC, and supposing that ~X;) and ~Xt)
are suKciently pure isospin eigenstates, we can immediately calculate Gz(N; —b Nf), while PCAC, together
with a suitable pion-pole-dominance assumption, implies the Goldberger-Treiman (G-T) relation which
expresses Gz(N; —b Ny) in terms of the pion-initial-nucleus —6nal-nucleus coupling constant f &,.zf this
coupling constant can be found from a polological analysis of n+Nf —+ p+N; nucleon charge-exchange
scattering experiments. Since such experiments are not as yet available, we calculate the values of the

f &,.z& in terms of the known magnetic moments of N; and Ny by means of a very crude theory, and compare
these values with the values of the f &;z& calculated by means of the G-T relation from the Gz(N; —+ Nf)
deduced from observed beta-decay rates. The agreement is, in general, somewhat better than that found
between calculated and observed rates in the customary impulse-approximation theory of beta decay.

I. INTRODUCTION

' 'N the customary theory of nuclear beta decay:
~ ~ rV, —+ E~+e +v„the weak-interaction Hamiltonian
is taken as that of a collection of mutually isolated
physical nucleons while the initial and final nuclear
states,

~
1V;) and

~
Xt), are described by wave functions

+~,. and 0 N~, dependent on the position, spin, and iso-
spin of these nucleons. As a consequence, an impulse
approximation is employed to relate the transition
matrix elements in nuclear and nucleon beta decay;
moreover, the calculated matrix elements are in general
rather sensitive to the details of the wave functions used.
Thus, no very high precision has ever been attained
in the prediction of nuclear beta-decay rates and
several serious discrepancies still exist between theo-
retical and experimental ft values (e.g. , in isAlis" ~
isMgts"+e++v, ); these discrepancies seem too large
to be due to a failure of the impulse approximation
(i.e., to be due to pion-exchange efFects') and probably

~ Supported in part by the National Science Foundation.' J.S.Sell and R. J.Blin-Stoyle, Nucl. Phys. 6, 87 (1958);R. J.
Blin-Stoyle, V. Gupta, and H. PrimakoG, ~bid. 11, 444 (1959);
R. J. Blin-Stoyle, Phys. Rev. Letters 13, 55 (1964); R. J. Blin-
Stoyle and S. Papageorgiou, Nucl. Phys. 64, 1 (1965); R. J. Blin-
Stoyle and S. Papageorgiou, Phys. Letters 14, 343 (1965).
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arise from inadequacies which still afHict even the best
available 0'~,. and 0 ~~.

In the theory developed in this paper we attempt to
avoid the above difIiculties by treating the nuclei X;and
lV~ which participate in the beta decay as "elementary"
particles and by applying the hypothesis of the con-
served polar-vector hadron weak current (CVC) and
the hypothesis of the partially conserved axial-vector
hadron weak current (PCAC) to determine the effective
polar-vector and the effective axial-vector weak coupling
constants, Gr(X, ~ &VS) and G~(1V;~ Nt). The cou-'
pling constants Gv(cV, —+ iVt) and Gx(iV, ~ A' t) are
characteristic of the X,~ Xj nuclear beta-decay transi-
tion; their numerical values reQect, in the present treat-
ment, the complexity of internal nuclear structure. In
spite of this complexity, Gr(iV; ~.Vt) and G~(.V, ~ iV&)

may be found explicitly in many cases since the CVC
hypothesis permits identification of the polar-vector
hadron weak current with the isospin current while the
PCAC hypothesis, together with a suitable pion-pole-
dominance assumption, implies the Goldberger-Treiman
(G-T) relation. Thus Gz( V, ~ iVt) is immediately given
If

~
iV;) and

~
Xt) are sufficiently pure isospin eigenstates

while Gx(iV, —+ 3 t) is proportional to the pion-initial
nucleus-final nucleus coupling constant, f tt, ttt, which
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can be found, e.g. , from a polological analysis of n+.Vf ~ p+X; nucleon charge-exchange scattermg experi-
ments or can be expressed (as we show below by means of a very crude theory) in terms of the magnetic moments
of ) X;) and

~
Ãr).

II. FORMULATION

We recall that neutron beta decay: n ~ p+e +v„ is phenomenologically described by the transition matrix
element

6
(e "P I ~(0) In) =—Lu ty4y-(1+y~)u-*jf(PI j-'"(o)In)+&PI j-'"'(o) In)),

W2

fraPg P

&Pl j &(0) In)= uvtr+y4 y Fv" "(q') —Fu" '(q') u„
2mB

iq (m„+m.)
&Plj.t»(0)ln)= u. ..y, y.y~„-- (q2)+ y F " (q) u„,

7nx'

&P I ~i -'"'(0)i»-
I n) = ~q-&P ij—'"'(o) In) = (m.+m.)9'~" "(q')+(q'/m-')F v" '(q') j(uv"+y4y~u. )

(m„+—m.)4"-v(q') (uvtr+y4ygu„);

G=1.0X10 '/m ' q—= —(p+p-)=(p —p )

vrhere, on the basis of the CVC hypothesis, '
Fv" v(0)= Gv(n~ p)=1——0=1, Fu" v(0)=Q(p) —1]—Lu(n) —0]=(2.79—1)—(—1.91—0)=3.70 (2)

and, on the basis of the PCAC hypothesis, '

m. 'a.f,, 1 " ImC "-'(—m')
C "-v(q') = +— d(m'),

f/' +g 7l (3m )~ fg +g
m'af „1

F e~v(q2) — +
m '+q' 3m )

ImF&""v(—m')
d(m');

m'+q'
(3)

1
m. 'a.f..„+— ImF p—"-v( m') d(—m') =0

(3m' )~

so that
1 " Ime--v( —m2)4" (0)=F " (0)=—Gg(n p) =a.f...+

(3m ) m'

Ime "-v(—m')d(m')
(3m~)=a f„„1+

(m')c, ""va.f,„
1 " ImFv" v( —m') m '

Fp""v(0)= a f,„v+ — — d(m') = a.f.„, 1——
1l (3m~) ~ fS (m')~"-

(4)

In Eqs. (1)—(4), u„u„-, uv, and u are electron, antineutrino, proton, and neutron spinors; j 'v' and j '"' are
polar-vector and axial-vector hadron weak currents; Fv" "(q'), Fu" v(q'), F~" "(q'), and F&" v(q') are polar-
vector, weak-magnetism, axial-vector, and induced-pseudoscalar neutron~proton weak form factors; p(p) and u(n)
are proton and neutron magnetic moments (in units of e/2m„); a =F~ ~~0(p '= —m ') is the axial-vector pion —+
vacuum weak form factor determined numerically from the observed a+-+ p++v„decay rate as

~
a

~

=0.95&0.01';
f«„=f~~v(P '= —m ', P—v'= —mv2, P '= (P —P„)'=—m ') is the Pion-neutron-Proton vertex function evaluated
at p '= —m„', p„'= —mv', p '=(p„—p„)'= —m ', i.e., f „„is the pion-neutron-proton coupling constant, given

~ See, e.g., H. PrimakoB, Proceefings of the International School of Physics "Enrico Fermi, " 1064, Course 3Z: 8"eak Interactions and
Ebgh Energy Neutrino Physics (Academic Press Inc. , Neer York, to be published).
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on the basis of dispersion-theoretic analysis of rr++p —) &r++p elastic-scattering experiments or, somewhat less
accurately, on the basis of a polological analysis of 22+p ~ p+ &2 nucleon charge-exchange scattering experiments,
by f „=vlf r»=V2(4&r)'(2(0. 081&0.003)')2= 1.43&0.03.2

We note that 2&2 2/&m2&»n a~2&2 2/(32&2 )'=0.11 so that Fp" n(q2) is indeed dominated by the pion-pole term
2I—'(2rf nr/(2N '+q') fOr —

2&2 2~q2~0. If We aSSume that

&2)22&
n~n &~2& n~p Imc "-"(—2&22)d(2&22) = Imps" 2 (—2222)d(2&22) (5)

and use Eqs. (3) and (4), we see that a similar pion-pole dominance also characterizes @n 2 (q2) and we can write,
up to errors =10%%u(),

G~(22 ~P)=(2-f- —F~"—'(o) (6)

Equation (6) is the Goldberger-Treiman (G-T) relation; since on the basis of the measured ()222' and 20()" beta-
decay rates one obtains Gz(22-a p) =1.19~0.03,' and since, as mentioned above, I (2, I

=0.95+0.01,2 the value of
f .2 deduced from the first equality in the 6-T relation of Eq. (6) is

f „=(1.19&0.03)/(0.95&0.01)= 1.25&0.04.

(8)

with

p{a)qp
P n~n(q2) eiq r(o&

2mB

iq (2)2,+2)2„)J (A) —P r (a)+ (a) + (a)+ (a)P n~n(q2)+ + (a)P n~n(q2) ei2 r(a&

2

This value divers by 13%%uo from the above mentioned pion-nucleon elastic scattering value: f „„=1.43&0.03;
the relatively small discrepancy is presumably due to the neglect of the contribution of higher mass states in
passing from Eq. (4) to Eq. (6). In addition, analysis of the measured muon-capture rates in &H(&' and 2He22 indi-
cates that F„" "(0) lie—s between 1.0 and 1.7' so that the second equality in the G-T relation of Eq. (6) is also
consistent with available experimental information.

We proceed to extend Eqs. (1)—(6) to nuclear beta decay: 1V;-+ 1Vy+e +&,. The customary theory assumes

&e &', Vil @(.0) IE'&=(G/v2)LN. yap (1+ye)N; j{&Xilj ' '(0) IE'&+&X~l j '"'(0) IX'&)

&x, lj.«&(o)l v,&=&+„,("'(.& e,&.&.,&.&, )I J «&le,f(" r& &,(-&.,&.& ")&
&x~l j-( &(0)l,v&=(e„,(" r,~, ,„.")IJ.& &le~,.( "r&'~,".2' "

)&

q= (P.+p.), ——-
whence, in the "allowed" approximation,

A

J ' '= Q r+"I i& aG&(22 —) p)j, J.&"&= + r+& &I (1—b.a)2(r. & &G&(22~ p)j. (10)

( )
' See e.g. , J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737 {1963).' See A. Ashmore, Vf. H. Range, R.T.Taylor, B.M. Townes, L. Castillejo, and R. F.Peierls, Nucl. Phys. 36, 258 (1962).The method

was originally suggested by G. F. Chew, Phys. Rev. 112, 1380 {1958)and is rather fully discussed by M. J. Moravcsik in Dispersioe
Relations, 1NO Scottish Universities Sunnier School (Oliver and Boyd, Edinburgh, 1961),p. 117.' C. S. Q'u, as quoted in A. Halpern, Phys. Rev. Letters 13, 660 (1964); our Gz(o —+ p) is the negative of the conventionally definedaxial-vector neutron —+ proton weak coupling constant.

'The 6-T value of —Fp" ~(0) given in Eq. (6): —Fp" &(0) =a,f „„=1.36 corresponds to an efFective-for-muon-capture
induced-liseudoscalar neutron~proton weak coupling constant:

Fp" &(q'=0.%n„')— "
~

" —, , Fp" &(0) = —8.93=7.5t —G~(e —+ P)$.

In Eq. (8), 4'2(, , +&)(~ are wave functions describing the nuclear states
I
cV;& and

I Xr), and r' ', cr2(', r2& ' are posi-
tion, spin, and isospin coordinates of the ath physical nucleon. The above mentioned impulse approximation
corresponds to the representation of J &"', J '"' in Eqs. (9) and (10) as a sum of terms each one of which refers to
the beta decay of a physical nucleon within the nucleus with a weak-interaction Lagrangian identical with that of
an isolated physical nucleon. Actually, pion-exchange terms of the form

p 2 2 &-~ Ir(a)—r(»tJ o ) — Q (r ( —r ))(Lp ( &p )p & )jei2 tp ('2)p ( )p (&))je2 ) p n n(q2)
4&r a " '

2&2 Ir&a& —r&"
I

11
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should be adjoined to the J (r&+J '"& of Eq. (9). It can be shown that in the "allowed" approximation we have'

f 4 2 2 — 08 ——3

&O'N~I J ' '") I4'N;&= 4A m A')3
4m m2r

(+Nfl g r+"I(1—6-4)2~-"G~(u~ p)]I+N'& (»&

so that the impulse approximation should be accurate to something like 10%.
We now set down the basic equations of the theory outlined in the Introduction where the nuclei which partici-

pate in the beta decay are treated as "elementary" particles. Confining ourselves for the time being to nuclear
beta-decay transitions of the type

PT, . (J( ) ~ T),— (+) ~ ] PT ~ (J( ) ~ T) — (+) ~ ]+e—+p

we have, on the basis of the validity of the CVC and PCAC hypotheses, and analogously to Eqs. (1)—(4),

&z "V~l &(0) I
&'&= (G/~»t u'»-(1+~ &u *]&Pf

I
j--("(0)

I
&*&+&A'f

I
j-(")(0)

I &'))
&X,lj. (0) I)V;&=(uN, "r+~4L~.F,"'- (q') (~.sq, /2—m,)Fu '-" (q'&]uN, ),
&A'slj '"'(0&

I
iV'&= (uNitr+y4Py y3F&N' N'(q2)+P~q (m fN+m 'N)/m 2]y&2 N' N'(q'&]uN')

(13)
&~'r I ~j-"'«)/»-I &'& = —'q-P'~

I
j-'"'(o)

I V'&

= (mN, +mNI) [F&"'" f(q')+(q'/m. ')F2 ' f(q')](uNI T++4ysuN, )

(mN,
—+mN, )C N'-N&(q2) (uN, 'r+y4y3uN, );

G=(1 0&('10 ')/m'; q= (P.+P.—)=—(PNy P-N;), —
with

Fr N*"»(0)=G'r(x, —)—,vr) =z(ivf) z(A';) = 1—, F24"'-N&(0) = L)4(xr) —z(ivf)/A] —L)4(lv, )—z(A', )/A] (14)
and

1
"

ImC "'-"I(—m')
Ng(0) F ¹ Ny(0) —G (iV .~ iV )—(2 f d(m')

2

ImC"' Nf( m')d—(m')

&m'&4, "* "a.f.N, N,

N; Ny( m2)
Fr N' "'(o)= (3 f.N;fN, + — — d(m') = (2-f-N;Ng —1—

m', n tn2 ~2 Ns~Nf

(15)

In Eqs. (13)—(15), »r and uN, . are spinors describing the motion as a whole of the final nucleus and the initial
nucleus; FrN' N&(q2), F)2(N'"NI(q2), F~N* N((q2), and FrN' N&'(q2) are polar-vector, weak-magnetism, axial-vector,
and induced-pseudoscalar X,—+ Xf weak form factors; )4(.Vf) and u($, ) are magnetic moments of the final nucleus
and the initial nucleus (again in units of e/2m2, );

f N;N, =f N;N, (PN =——mN, P»'= mN, ', P.'=(PN,—PNI) m )—
is thepion —initial-nucleus —final-nucleus vertex function evaluated at pN, '= —mN, .', pN~2= —mN~2, p, '= (pN,.—pNI)'= —m ', i.e., f N, N~ is the pion —init. ial-nucleus —final-nucleus coupling constant; m', „ is the anomalous threshold
squared mass value associated with the possibility of the process (z)V& z"), ) (z.V& z i" ')+23 ~ (z)V& z i" ')
+p+e +f,~ (z+)V& z 2")I+e +), and is given by formula m, „'=L8A/(A —1)]m~3=(1.7m )' where 3—8
MeV=0.057 m is the binding energy of a nucleon to the nucleus. On the basis of the impulse approximation of
Eqs. (8), (9) we can then write an equation connecting F ' ~(q2) with F" 2'(q2)

G (mN, +mN, )
[u,'y4y.—(1+F3)u„*7 iq -FpN'-Nf(q2& puN, 'r+y4y3uN, ]

v2 nz, '

G (m.+m„) A=—Lu.'V4V (1+F3)u-.*] 2q F~" "(q') &+N~l 2 r+"V4"V3"z*""I+N;&I, (16)
W2 ups

2 a~I

' See R. Karplus, C. M, Sommerfield, and E. H. Kichmann, Phys. Rev. 111, 1187 (1958).
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whence, using also Eqs. (15) and (4),

1
a~fxN&Ny+

&+~i I 2 r+& &v4& &»& &

I +N;)ImF~¹-"&(—m'), m. +m„ a=i
d(m') —a.f-,,'

m gn 5$ ~N;+~Nf NNf T++4+SQN;

1 " ImF&" "(—m'), m~+m~
d(m') i

(3m~) m' SSN +mNf

A

I 2 r+"v "v "I+~)
a=i

(I&&&/ r+74»+Ni)

Clearly, a similar equation connects C ¹ ~~ with 4" &. Equation (17) shows that the contribution of the pion-pole
term and that of the higher-mass cut term are multiplied by the same factor in passing from the e ~ p to the
.4;—+.Vf case so that the extent of pion-pole dominance should not be appreciably di6'erent in these two cases.
Thus, the pion-pole-dominance assumption for C ~'"~&'(q') and Fr ~' &(q') may be expected to hold about as well
as for 4" ~(&t') and F~" ~(&i') so that, analogously to Eq. (6), we have the Goldberger-Treiman relation

G~('V, ~ .'&&f) a f.~—,&r Fp~—¹—(0) . (18)

Equation (18) is fundamental in what follows.
We close the present section by appending formulas for ft values in the "allowed" approximation for nuclear

beta-decay transitions of the type [iV;: (J&~&; T),=~~&+&; 2j~P'f, (j& &; T)~ ~~&+&; 2']+e +&,. Thus, using
Eqs. (13)—(15), we can write

+LG~(&'; ~ -&l'r)]'{ 2 I (~x,; ~, '+arN¹".; ~; )I')".
= 1X1+LG~(iV;~ IVY)O'X3

GA(QT. ~ &yf)- 2

= 1+(1.19)' X3
G~(n ~ p)

so that, expressing G~(&&';~ ~Vq)/G~(n ~ p) via the G-T relations of Eqs. (6) and (18),

G~(&', ~ »&I)/G~(~ ~-p)=f.zr, x,/f. ..
and substituting into Eq. (19),

(19)

(20)

I (ft)N,. »&~j '(2&r3 ln2/G') = 1X1+jGg(n ~ p) j2(f ~,xf/f „&)'X3
=1+(1 19)'(f-~;~g/f-n)'X 3. (21)

On the other hand, on the basis of the impulse approximation of Eqs. (8)—(10) together with the pion-exchange
correction of Eq. (12), we have

Gg(,1,~.'&& g)

G~(n ~ p)

A

(1+5)&+~,; ~, IZ r+&'&.a"& 'I +¹;"»r;" )a=i

t
(s&&&( ...Mr. .. 1+&vI¹;...&&&;...)

Gg(E, +sYg)—
Gg(» ~ p)

A

(1+8)' 2 I&+~i ~i "I 2 r+& &~& 'I+¹:"~;")I
(22)

a=1

= 1.10,
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whence, substituting into Eq. (19),

2'' ln2 A

[(f&)~;-Ni] ' =IX1+[G~(&~P)7'(I+()'{ & I(+~i; ~r~ "IE r+&')~& )I+~;;"~;" )I')
G2 Mf =+) a=1

=1+(119)'(I+i)'{ 2 I (+~i: -~~"
I & r+& )~& )

I +~;:"~' ")I
') .

Mf~+)

Finally, combination of Kq. (20) with Eq. (22) yields

(23)

A

(I+))(+~i;- ~i".
I 2 r+& )~&') I+~';- ~'" )

xÃsNf a=i

(NNq; "a'y" r+&rgn;; }&r; ")" (24)

which is consistent with an impulse-approximation expression for the transition matrix element of nuclear pion
emission

[&V, (J(p) ~ T),—). (6) ~ x]~ [}Vf (J()') ~ T)f—& (+) ~ &]+)r-

with the pion-exchange correction factor (1+() acting to renormalize the snp vertex.

IIL ESTIMATES FOR THE RATIO (f,~,~~/f „„)'
Values of ft in the "allowed" approximation for nuclear beta-decay transitions of the type

[cV;: (J& } 2') =-'(+). -'] —+ [Vf. (J& ); T)g=-,'(+);-',]+e-+v, (e.g. , F2' —) 2Heg'+e +r,)—

are, as we have seen in the last section, calculable from Eqs. (19)—(21) which, for purposes of numerical work,
can be conveniently written as'

1+(1 19)'[G.&(X,~.}t,)/G„(n ~P)]'X3
[(f&)})&, }v,]-'=[(ft). „]-'

1+(1.19)'X 3

1+(119)'(f ~;&((~./f „)'X3= [(ft)--.7-'
1+(1.19)'X3

(ft)„~=1180sec '.

(25)

With this equation, and with experimental values of (ft)N, &~, we can o. btain (f z,zz/f „„)=.[Gz(X;-+~Vf)/
G~(N-+ p)]' and compare these "Goldberger-Treiman experimental" values of (f w, ~r/f „)' with values of
(f &)&,~~/f „~)' deduced from a polological analysis of n+Xr ~ p+X; nucleon charge-exchange scattering data or
expressed, by means of a very crude theory, in terms of the magnetic moments of 1V, and Xf (see below). Before
embarking on such a comparison we note that a treatment of nuclear beta-decay transitions of the type

cg) ~ (J(&) ~ Tl.—3 (+) 5 (+) 7 (+) . . . ~ &7 ~2 &2 )2 & i2U
[Xg. (J' 'T)g=-"+' -'&+' -"+' -']+&,-+v (eg. &)C&;"~ B "+e++v)

wholly analogous to that given in Eqs. (13)—(24) for (J&~));=(J&p))~=-,"+), yields (see Appendix I)

1+(1.19)'[G~( l, ~.Vf)/G~(n ~ p)]'X(J+1)/J
[(f~) .-,7-'= [(f~).-.7-'

1+(1.19)'X3

1+(119)'(f Nf ~f/f „.„)'X(J+1)/J= [(f~).-.7-'
1+(1.19)'X 3

(f()„„=1180sec '

(26)

A. N. Sosnovskii, P. E. Spivak, I. A. Prokofiev, I. E. Kutikov, and I.P. Dobrinin, Zh. Eksperim. i Teor. 1'iz. 35, 1059 {1958) /Eng-
lish transl. : Soviet Phys. —JETP 8, 739 {1959)j.
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2 2
G {N,~N( ) f~N. N

r a
e&(per. "p G-T e&(per,

I.O-

FIG. 1. Comparison of theoretical and experimental values
of t Gg($; —+ Xf}/Gg(e —+ p}j'.

0.5

IO 15 20

Mass Number A

45

which holds for J=—'„—'„—,', , and, in fact, reduces to Eq. (25) for J=-,'. Equation (26) yields "G-T experimental"
values of

(
f &r;!rr

' G~(!V'~tVr)

f,„, G„(n p)

for all nuclear beta-decay transitions of the type

(J(r) ~ 2').—i (+& 3 (6) s (+& 'l(k) . . . - L]~ Cgr ~ (J(p) ~ P)r —x(k) s(6) s (+) 7(+) . . . ~ 1]+o—+t

(27)

the results are shown in the fourth column of Table I and in the solid curve of Fig. 1 and exhibit a strikingly non-
monotonic dependence of (f,N, &rrif ~)' on th.e mass number!I of!V; and!Y!.

We now describe an extremely crude theoretical derivation of these values of (f &,&r,If „~)' our . deriva—tion
is in the spirit of the semiclassical meson-theoretic treatment of the isovector anomalous magnetic moment of the
isobaric doublet pair: proton and neutron. On the basis of such a treatment we can write,

(28)

where k is a numerical constant and t(&(((p) —1)—(((((n) —0)
~

=3.70 CEq. (2)].In a similar way we can set down an
expression for the isovector anomalous magnetic moment of the odd-3 isobaric doublet pair: cA; and 3, f,

Z(.Vr) Z(!V;)
ts(Ãr) —t((iV—,)— =kf'.)r, &r,g(!I); g(1)=1, (29)

where g(A) is a more or less smoothly varying function of A. We have been unable to devise a convincing (t priori
specification of g(A) and make the u posteriori choice: g(A) =2'(' in order to obtain a good over-all fit to the ex-
perimental values of (ft))v,. &((r. Equations (28) and (29) yield

and this equation, together with experimental values of t((.Vr) and ts(E,), yields "anomalous-magnetic-moment
theoretical" values of (f &r, ~,/f „)'shown in the fifth column of Table I and in the dash-dotted curve of Fig. 1—
the overall agreement between these values of (f &r, &rrif, „)', ,s,.

&&,„,and the corresponding values of
(f &r,~!if „~)'G T o~ (fourth column of Table I and solid curve of Fig. 1) lends some confidence to the calculation
of (f.~;~!If-.)' «om

I Ct (A'r) —Z(intr)i~] —
Ct (7(&'') —ZP'*)I~]

I 1(t (p) —1)—(t (n) —o) I
'~ '" LEq (30)]and

to the G-T identification of (f N, rr!If „)' with CG~(!V;-+. !Vr)/G~(n ~ p)]2 CEq. (27)]. It is also of interest to
calculate CG&(X;-+ Nr)IG&(n —+ p)]2 from the impulse-approximation based Eq (22) (gen.eralized to any half-
integral J) using appropriate nuclear models to specify 4'»(, , ...)&r,.... and 4)rr. ... &r... (see Appendix II); these values

See e.g., J. D. Jackson, The Physics of ElemenAwy Particles (Princeton University Press, Princeton, 1958), p. 44.
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of [G&(V,—4 sA't)/Gz(n-+ p)]2;mv»v„„,h„, [Eqs. (A19) and (A18) below] are shown in the sixth column of
Table I and in the dashed curve of Fig. 1 and agree no better (in fact, somewhat worse) with the [G~(1V;-+1Vt)/

G„(n~ p)]2~v„(fourth column of Table I and solid curve of Fig. 1) than do the (f+N, Nt/fxmv) anom ma&4 -mom -&hear

(fifth column of Table I and dashdotted curve of Fig. 1) with the (f Nf NI/f „v)2G r „v„(fourth column of Table I
and solid curve of Fig. 1).

We proceed to discuss nuclear beta-decay transitions of the type

[''V, : (J' '; T),=0' +'; 1]~ [1Vt. (J& &; T)t 1&+&——; 0]+e +v, (e.g., 2He4 —-& 2L44+e +v,);
the nuclei .V;, X~ are here again treated as elementary particles. We then have, on the basis of the CVC and
PCAC hypotheses, and with neglect of certain relatively small terms,

&e "'Vtl&(0) I1V*)=(G/~2)[n.'~4~-(I+»)n-*7(&1Vtl j-&v&&o) I1V'&+&1Vtl j-'"'(o)
I V'&)

&.'vt
I j.&v&(0)

I 1v;)= (NN—,'[e.p,s,(qp/2&nv)F»rN'"Nt(q2)]IN, ), .

&1Vt I
j~&"&(0)

I
1V;&= (uNrt[2S FzN' Nt(q2)+(tq (Spqp)/m ')FpN' N&(q2)]IN, ), .

&.Vtl &&1 '"'(0)/» I1V*&=—zq &1Vtl j '"'(o) I1V & (31)
= [F~"'""'(q')+( q/ 2n-') Fp"' '(q')7 [»t'(Spqp)»;)= @"'—'(q')[Nt'(Spqp)24N;7»

G= (1.0X10 ')/mv2; q—= (p,+p;—) = (pNt —pN, ),
with

F N' "'(o)=v2t ([0""1]~[I'+"o])
1

" ImC N'-Nt( —n22)

C 'N- f~N(0) =F~N'-"'(0)= G~(1V'~—1V t) =a-f-N;Nt+- d(2n2)
m2

=a f N;NI 1+

N;V~Ny ( 2n2)
Fp"' "'(0)= af N;Nt+- d(2n2)= a,f N;Nt 1 ——

2

ImC N' Nt( —n22)d(2n2)

&n22)eN*V"'a f N N

(n22& N&~NI

(32)

In Eqs. (31) and (32), NNI and NN, . are spinors describing the motion as a whole of the final (spin-1) nucleus A"t and
the initial (spin-0) nucleus 1V&, (I Nt;" 2' i,o,—i "S~»;;"2r;-o" ) is to be understood as [S(S+1)]'"($(Mt))*
where ( (3') is a spin-1-type polarization four-vector orthogonal to (pNt) and S=1,F~N' N~(q'), and FpN' N&(q2)

are weak-magnetism, axial-vector, and induced-pseudoscalar 1V;-4 1Vt weak form factors; N([0&+&; 1]—+ [1&+&; 0))
is the transition magnetic moment to the ground state of iVy from an excited state of Ey with the same quantum
numbers (except for T2) as the ground state of 1V;; as before, f N, NI is the pion —initial-nucleus —final-nucleus
coupling constant. Assuming further that the pion-pole-dominance assumption is also valid in this case [see
the analogous discussion after Eqs. (16) and (17) and also Eqs. (18) and (20)] we have the Goldberger-Treiman
relation

G„(1V,~ Xt)=a.f.N, N,= Fp"'-"t(0), G~(V—;~ Et&//G~(n ~ p)=f.N, VN,/f, „ (33)

wholly analogous to Eq. (18). From Eq (33) we .can calculate the ft values in the "allowed" approximation for
nuclear beta decay transitions of the type [1V;:(J& &; T);=0&+&; 1]~ [1Vr'. (1&;T)t= 1&+&;0]+e +v„viz. ,

(1.19)'[G~(1V;-+1')/G~(n —v p)7'X6
[(ft)N -Nt] '=L(ft).- ) '

1+(1.19)'X3

(1 19)'(f-N'Nr/f-v)'X6
=L(ft)-- ] '

1+(119)'X3
(ft)„v=1180sec '.

Similarly, the ft values in the "allowed" approximation for nuclear beta-decay transitions of the type

[1V;:(J& &; T),= 1&+&; 0]—4 [1V&&. (J& &; T)t——0&+&; 1]+e++v, (e.g. , 2F "—+ 202&&"+e++v,)

(34)
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are

[X4:(J( ); T);=1&+'; 1]~[Xr'. (J& '; T)f 0&+—)—;0]+e +P, (eg. , 4B)"—44C "+e +v,)

(1.19)'[G&(1V,—+ 1&lrr)/G~(n —+ P)]2X2
L(ft);-,]-'=L(ft).-.]-'

1+(1.19)'X3

(1.19)'(f.N, N, /f. .„)'X2
= (t)

1+(1.19)'X 3

(ft) „=1180sec '.

(35)

Use of Eqs. (34) and (35) and of experimental values of (ft)N, N~ pe.rmits calculation of "G-T experimental" values

of (f N, N~/f .„„)'=[Gg(,V; —+1l)'f)/Gg(n~ p)]' for even-A nuclei and these values are included in the fourth

column of Table I and in the solid curve of Fig. 1—it is seen that (f N, N~/f „„)'Gr p„has the same general

(strikingly nonmonotonic) dependence on A for even A as for odd A. On the other hand, particularly in the cases

4C&)"—4 rN7"+e +P„&)04"~ rNr"+e++) „and &4Sii«" ~ &4p&v"+e +P„[G~(1V;~.Vr)/G~(n ~ p)]'..„,
= (f N, NI/f, „„).'G.r „~„is very small and it may be doubted that the corresponding IN' N)'(q') and Fr N' N&(q')

are indeed dominated by a pion pole with residue proportional to f N, Nf [see. however the argument after Eqs.
(16) and (17)].

What can we say about a theoretical derivation of the values of f N, NI/f „„f. or the even-A nuclei? It is clear
that a treatment analogous to that described in Eqs. (29) and (30) for the odd-A nuclei cannot be given in the
even-A case if only because one of the two nuclei involved has zero spin and therefore zero magnetic moment.
Thus the f N, Nf/f „„fo. r even A can only be deduced from a polological analysis of n+ Xf~ p+1V; nucleon charge-

exchange scattering experiments (e.g. , n+4Li4' —+ p+4He4' or n+4C4" ~p+4Br"). In the absence of such

experiments, our sole recourse is an estimate of f N, NI/f „,on the basis of the impulse approximation [see the
analogous Eq. (24)]

A

(1+&)(+Nf; M/ IZ"r+&'')'~( 'I +N;; ..M;. .). .
NsNf a=1

ts(NN&;" Mr" ~
' NN;. ~ "M;" )

(36)

However, Eq. (36) yields no new information since, together with Eq. (33), it merely gives the usual impulse-
approximation expression for Gg(X; ~ cVr)/G&(n 4 p), viz. [see the analogous Eq. (22)]

G ( )
(1+()&+Nf; M~ I2 "r+""&r"

I +N;; Mf; )."".
G,(n~ p) ts(44Nr; ~ "Mg" ~ 44N;;" M;".)

%e conclude this Section by giving a brief discussion of nuclear beta-decay transitions of the type

(37)

P . ~ (J(P) ~ T) .— (6) ~ T] [,)' ~

(J( ) ~ T) — (9) ~ T 1]+e—+
(e.g. &

4&)Cd47'&4(~'+'; 19/2) ~ 44ln44'"(2' '; 17/2)+e +p,);

in contradiction to the cases previously treated, this last type of transition is not "allowed" but rather "parity-
forbidden. " Analogous to Eqs. (13) and (14) we then have, using the CVC and PCAC hypotheses and with the
same notation as before,

&e s.&i I ~(0) I&')= (G/~2)[N. 'v4v (&+vs)N-*](&&r I j '"(0)
I &')+&&r I j '"'(0)

I &')),

Zg~
N N'"(4) IK)= ~,'v -v.v —,(~ i+~,)v, F "'-"'&4')— Z "-"&4'))u„,

2mB

lim [FrN' N~(q )/q']=finite constant;
4' ~0

0 ex'(lpga (ntNf nlN;)
&&f I

J-'"'(0)
I &')= 44Nf'v v-F """'(q') F" '(q')+ — Fp"'- &(q') NN.

2mn m2
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(.~ r I ~f.'-4&(0)/».
I ~;)=-iq-(-~'fl f-'"'(0)

I
&.)

= (mN, m—N, )[FgN' N&(q ')+'-(q 'y'm-. ')F-z""N&(q ')]'-(uN, 'y4uN, )

= (—mN, m—N, )c N'-Nr(q')(uN, ty4uN, );
(3S)

1.0)& j.0 '
G= q= (P.—+P )= (P-Nr PN—')

m+f+mpf 1
Nf(0) F N; Ny(0)=G&(QT. ~ $Tr) — a f N N +

m~f m+s ~ mrs 2on

OQ

ImC N*-N&( —m ')-
d(m')

ImC '-"f(—m'-)d(m')
m~~+m g,

afNNr 1+
mNI mN, — . (m')4N' N&[(mN, +mN;)/(mNf mN, )—]a f N, N,

&&mNr+mN; 1 ImF~ ' ~( m )F,N*-N~(0) =
~

a.f.N, N, +- d(m"-)
(BSNr mN& m'

rn on

2m~m+f+ m+s

mN, mNf — (m') "'""&

whence, postulating also pion-pole dominance [see the analogous discussion after Eqs. (16) and (17)],we have the
Goldberger-Treiman relation

m ,+m, G &Ã; li'q) m ~+m)f, ,~~,
G~(~''~ -~'r)= a.f.N. N,= FPN' N&(—0),

mNJ mN, G~($1 ~ p) mNI —mN f.(39)

Here, however, f,N, Nf is a sc.alar-type, rather than the previously used pseudoscslar-type, pion —initial-nucleus—
final-nucleus coupling constant, i.e. , f N, Nf is her. e defined via the ver&.ex function

[(mNf+mN, )/mr]fxN, Nr(PN, ',PN,
'
,Pr')(uN, ' r4u-N, )

rather than via the previously used vertex function

[(mNr+mN, )/m ]f..N, N, (PN, .',PN,
'
,P. ,' )(u-N, y-4y4uN, .);

f N, N, /f „is deducible on the basis of a polological analysis of n+.'V~ ~ p+X, nucleon charge exchange scatter-
ing experiments (e.g. , 44+4&Inl'" ~ p+4«Cd4r"'). In the absence of such experiments our sole recourse is again
an estimate of f N, NI/f, „on t. he basis of the impulse approximation [see the analogous Eq. (36)]:

A

+ ~ ~ (1+~)(~
L~m~, +m~, ~/m ~~.~,~, @=1

( )
[(m„+ .)/m. ]f. , (uNr; ~ "Mf ~ ~ 'y4uN4; ~ ~ M4" )

However, and just as before, Eq. (40) yields no new information since, together with Eq. (39), it merely gives the
usual impulse-approximation expression for Gz(.'V; —+ .Vr)//Gz(n ~ p), viz. [see the analogous Eq. (37)]

(uNi';" hrr" ~ r4uN& " M, .")

(1+5)(+Ng: irf IZ "+'."V"r4"V4& i
~
+N;;."u, ...)

Gg(&V, —+ .Vr) m„+m 0 =1

Gg(44 +p) mN—, mN, —

(uNf; "MI " 'Y4u¹;"Mi" )
A

(1+5)(+N~;"..v~"
~ Z r+"V4& ill;; u; )".."

(uNf; ~ "My" ~ uN, ; ~ ~ .ir, ")

(1+$)[~q4~/(m„+m )5(4'N, irr ~ p, ...r+& &y4& &y4& &y4& i ~@N, , . ..44,. ...)

=-(::,':..)
(41)
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Equations (20), (24), and (22), Eqs. (33), (36), and (37), and Eqs. (39), (40), and (41) show that the Goldberger-
Treiman relation together with the impulse-approximation expression for f n, ~t/f „~ leads in all cases to the
impulse-approximation expression for G~(N;~ A ~)/G~(n ~ p). The essential reason for this consistency of the
G-T relation with the use of impulse-approximation expressions for both G~(N;~ Vr.)/G~(n &—P) and f N, ~s/f«„
can be seen particularly clearly if we cast the PCAC hypothesis together with the pion-pole-dominance assumption
into the form"

Bj &"&(x)/Bx =C q
& &(x)+ . =C [ (—B/Bx )(B/Bx )+m '5 'j ' '(x)+ (42)

where C is a constant, y&»&(x) is the pion-6eld operator which destroys a physical n. (and creates a physical x+),
j&»&(x)=[—(B/Bx )(B/Bx )+m 'jy& '(x) is the pion-6eld source-density operator, and the terms in . , which
are associated with higher mass 1+~~=0& meson-field operators, are supposed to give relatively small contribu-
tions for processes with hadron momentum transfers q' in the range —m '~q'~0. Equation (42) yields, using
also Eq. (1) and, e.g. , Eq. (13),

&vacI By.("'(0)/Bx-Ix )=t(P-)-[[1/(2E-)'"7t(P-)-m. F~ ' (P')3n.*=-.*
=[m 'a /(2E )'t'j—(vacIC»p( '(0) In. )=[C»/(2E )"'j (43)

te 'a —C

(A)(0)

&Pl In)=(m. +m.)~" "(q')(u'+v v u-)=&PIC-
X~

+m.' j& &(0)In)
BX~ BX~

C. ™~~~1
If- ( m-' —m', P-'=—(P- P.)'=q') —(u 'r+v veau-);

q+m» ~ m»

m. ' f...(—m. ', —m„', q') m. '
~" "(q')= a-f-. =— a-f-.&-.(q');

2+q2 f ( m2 m2 m2) m2+q2

4""&(0)=Fg" &(0)=G~(n~—p)=a f,„„K„„(0).

(44)

(A)(0)
&NsI IV.)=(m~+m~f, )C~ ~~(q')(uN, tr+y4yau~;) &NOMIC

BX~
+m-' j"(0) I V')

Xa ~Xa

C. ™f+m~;

q2+yg 2 m
f.N Ny( mw, mn''', —P—'=(P"; P")'=—q') (uvj r++4+SuN );'

(45)

m' — f ~, N( tm~, ', —m—~s', q') — m'

m»'+q' f , »sN( Nmn, ——m~s', m') —m '+q'
4"'-"~(0)=F~"' '(o)—=G~(N;~»r)=a f x;ns& w, Ns(0) &

where the G-T relations in Eqs. (44) and (45) diGer from those in Eqs. (6) and (18) by the presence of the
neutron~ proton and initial-nucleus~ 6nal-nucleus pionic form factors K „„(q) and K ~,.~'(q') evaluated at
q'=0 i.e., evaluated at zero virtual pion mass [by de6nition E „'( m') =E ",zs( m— ') = la. Thus, i—f the G T
relation in Eq. (44) is exactly correct, E „(0)=(G&(n~p))(a f „„) '=[1.19/(0.95)(1.43)j=0.87 [see Eqs. (6),
(7) et seq. j; on the other hand, nothing is known about the numerical value of E ~,ns(0). .

The G-T relation in Eq. (45) essentially consists of an equality between the N, ~ Ns matrix element of
Bj &~&(0)/Bx which givesG&(N, ~Nr) and theN, ~Nrmatrixelementof C,[ (B/Bx)(—B/Bx)+m'j 'j&»&(0)—
which gives a f N, nsK»N, Nt(0); this equality is not appreciably perturbed if each of the two matrix elements is
evaluated in impulse approximation. The last remark establishes the consistency in question.

IV. DISCUSSION

pre now discuss in a little more detail what appears to us as the most promising experimentally based method
for the determination of

f NNf=f Nf Ny(PN mN 'PNy= 'mNy P =(P". Pnt) = —m2)

"See M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (199));J. Bernstein S. Fubini, M. @el]-Mann, and ~ Thirring, ibA. 17,
757 (1960);Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. L. Adler, Phys. Rev. 137, B&022 ()965)
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this pion —initial-nucleus-final-nucleus coupling constant enters into the G-T relation of Eq. (18). As already
mentioned, f ~,&r can be found from a polological analysis of n+ Vf -+ p+.7, nucleon charge-exchange scattering
exPeriments. Thus, in the case that (J&P'; T)f= (J&~i; T),= (a &+i; —,')—e.g, 'Vf ——sHet', iV;= tHs', the differential
cross section for n+;Vf —+ p+ V; nucleon charge-exchange scattering can be v ritten as

d(r(COSH„p, E)= Imp&on-exch(COSHnp, E)+Amultipion-exch, etc (CO. SHnptE) I

+ pion-exch(COSHnpqE)

$(2m /m. )f „( m—' —m„' q')(stq')'&')$(2ms(/me) f.N, »( m—&,s, —m»"-, q')(-stq') t&')(1/4 irE)

g +fÃg

$(2m. /m. )(1/v2)(4x) '"f .p( m-', —m. ' 21 p. l
'(1—cosH")))

)& [(2m'/m, ) (1 /v2)(4x) t "fes(;rvf( mr—r, —m~r', 2
I p, I

'(1—COSH»)))
(46)

P(1+m '/2
I p„I ')—cosH„p)L(1/E)(1 —cos8„„)) '

m. s
~1+ I COSHnp +mutt&pion-exch. etc. (COSHnp, E) =0;-.e..-(t+,-',) —& 21 p-I'&

5$y—m~ ) SSN,—m~f —=5$~,

q'—= (P,—P~,)'=P.'=(P„—P„)'=2Ip I'(1—cos8„„), 8„=—cos '((p pp)/Ip IIp„I);

E=L—(P +P )')'"=E +E-f=(lp-I'+m ')'"+(lp-I'+m~')'"

where y„and y„are, respectively, the neutron and proton center-of-mass momenta and where the pole in
Ap;,„,h(cos8„„,E) associated with the exchange of the virtual (charged) pion occurs at an unphysical value of the
cosine of the scattering angle, viz. : cosH„„=(1+m '/2Ip„I'); as a numerical example, (1+m '/2Ip I')=1.06 for a
neutron with laboratory kinetic energy of 150 MeV incident on sHets. Equation (46) yields

m s

lim
I
1+ —cosH» +pion-exch(cosH„„, E)

2lp-I'
2iu. l'

which, supposing f „„known, determines f rv, rrf. In this co.nnection it should however be noted that
f iv, rrr$ mrr, ', —. m»—', 2I.p I'(1—COSH„p)) varies more rapidly with cosH„„ in the physical region than does
f „(t m', —m„',—2Ip„I'(1—cos8„„)7because of the relatively large size of a nucleus compared to a nucleon; in
addition, Ap;, ,„,h(COSH „,E)=0 at cosH p=1 because of the (1—cosH„„) factor. Unfortunately, each of these
circumstances, as well as the necessary multiplication of the above expression for A»o„exch(COSH„„,E) by

-z(lv) s. tip. i
(ns '+4m 'ip i')'").

exp — tan ' +i ln
137 Ip. I m. m '+q' (48)

to include the effect of the final-state p-.V; Coulomb interaction, will tend to make the isolation of the pion-pole
contribution to do(COSH„p, E)/dQ more difficult. "

An extrapolation of Ap;, „ch(COSH„„,E) to COSH„p=(1+m '/2Ip„I') has, in effect, been carried out in the case
1V&

——p, 1V,=n' and gives a value of f „„somewhat less precise than, but consistent with, the value of f „obtained

"It should be mentioned that
( f~tr;t&r) =v2(fe'err(er( =V2'~ f~at&;nr;) so that we can also obtain

) fx&v jvr( from a determ'ination of
~ f orr»

~
on the basis of a polological analysis of tt+IVr ~ tt+Xr neutron elastic-scattering experiments (any polological analysis of

p+Xr -+ p+lVr proton elastic-scattering experiments involves additional complications due to the presence of a relatively large Coulomb
term in the scattering amplitude at small scattering angles). However, the small scattering angle n+Nf ~ I+Nf elastic scattering
amplitude, in contradistinction to the small scattering angle n+Nf ~ p+N; charge-exchange scattering amplitude, necessarily contains
an imaginary part associated with the possibility of various inelastic processes (optical theorem) and this imaginary part will help mask
the pion-exchange pole term in the real part.
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from an analysis of s++p-+ s++p elastic-scattering experiments, viz. : ,'f.—„„'/4s=0 07.9+0 00.6 versus 0.081
+0.003; we should also mention that any determination of f ~,~f from a dispersion-theoretic analysis of )r +.( q ~
x++Sf elastic-scattering experiments would be very considerably complicated by the presence of + +Sf—+ .V;
pole terms in the forward ~++Sf—+ x++Ef elastic-scattering amplitud- here the E; are the various bound and
unbound excited states of the nucleus ~hose ground state is cV;. To our best knowledge, no experimental study of
I+Nf ") p+1V, nucleon charge-exchange scattering from the point of view of determination of the f &,))(~ has ever
been undertaken and we would like to take this opportunity to advocate such a study; it is important to note in this
connection that E=mw for all practical [y„~ so that, if f ~,N~= f „„,the right side of Eq. (47) is of the same
order in the N~, N, case as in the p, n case. If f ~,~~&&f „„,as one anticipates on the basis of the fourth column of
Table I, e.g. &

for ()CT", N;=~NO)3, A),;, ~(cos8 )„E) will be small compared to A „(„~;,„,h, ,(, (cos8 „;E)
for all physical values of cos8„~ and the determination of f ~,~~ from Eq. (47) will become extremely dificult in
practice. In general, it is of course clear that any experimentally based determination of those f ~,~, which are
small compared to f „„is bound to be a formidable task but this gloomy circumstance should not deter e8orts
to perform experiments from which the larger f &,.Nz can conceivably be deduced.

APPENDIX I
In this Appendix we wish to establish the analog of Eqs. (13)—(24) for nuclear beta-decay transitions of the type

[NT, (J(&) ~ T').=a(+) s(+) ((+) . . . ~ 11~[N (J()') ~ T) =&(+) ('(+) )(+) . . . ~ 1]+(—+r,

and, in particular, to justify Eq. (26). We have, analogously to Eq. (13), and in the "allowed" approximation,

(Nf )
' ' 'Mf '

~ J (")(0)
( N;; . ' .3E; )= [N&~, ))(~.. fr+(i.~.. )NN. , , ~ ..))(, .j(1-84.). G. ~(N—;~ N))
+(terms which vanish in the limit of small-momentum transfer (7= (p)) I—p))(,.)}, (A1)

where u~, , ...~,.... and uNI,....~I... are spinors which describe the initial and final nuclei as "elementary" particles
with spin and spin projection J;, M; and Jy= J;—=J, Mf, while i0.1, io-2, i03=—p4p1p&, y4p2ps, p4p3p& are spin--,'
angular-momentum operators which work on certain factors within», , ...))r,....and»f, ...))(~... [see Fq. (A3) below j;
it is easy to write explicit expressions for uN, .;...~ ~ J . and u~f, ...~~ J..., viz:

»;; ~; z =»-;("r)4((1)K+)(2) 4((~—k) X+(~~,

»& ...jrf g. ..=()~I(r)(+)(1)g+y(2) . g+g(J k)&+&I2,

( '( ) +,( ))=1
with I+1/2 spin-2 type wave functions appropriate to spin-projections ~2 so that

o SX+1/2 =+~+1/2 0 1~+1/2 ~%1/2 0 2X+1/2 ~&~+1/2

and (+((i) spin-1-type wave functions, i.e. , spin-1-type polarization three-vectors, appropriate to spin projection
+1.Thus

(»g;" Mf J"~ r+(ra»;;".M; /" )
=(('&g (~)~+»'(~))((+& (1)'C+&(1))' ' '((+& (~ k)'4+&(J 2))(x+()2 0' x+((2)=1'1 1 b,a=h, )), (A4)

and it only remains to relate (»I; M~ T+(7»... ;; ..).)( )for ...an.y.. 3fz, M; to the just evaluated
(»~, ...~f z...tr+o u&, , ...))r, z...). This can ho-wev. er be very simply done since we wish to calculate [see the
analogous Eqs. (19) and (25)7

(AS)

and this is given by"

I (»g;" ~,".'r+~.»;;".~;".) ~

'
a~1,2,3 Mf J, ~ ~ ~,+J

= [(1+1)/Jj
~
(»y;".))rf J'... T+0gspr;;. ..v; g. ..) ~

2= [('J+1)/Jj. (A6)

~ See e.g., E. Feenberg and G. E. Pake, Notes Oe The Quests Theory of Awgulur Mongentlm (Addison-Wesley, Cambridge, Massa-
chusetts, 1953), p. 50.
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Equations (A6) and (A1) and the fact that CVC again implies Fr~ "&(0)=G—r(.V;~ ATr)=1 yield the desired
Eq. (26).

As a more explicit version of Eqs. (A1)—(A6) consider the case of J=-,'. Here, analogously to Eq. (13),

(y„" m, " lg &"&(0)lx,;

Zg. (fltNf +18~,)= (&~i; ~f ')~&+. V4 V~V&~"' '(0')+ ysFJ "' "&(q') b„„
2m»

Zgrr(rNNy+SENr) /ply+ v vs~~" "'(q')+ ~&~ "'""'(v')
2 2m» -m»

'V~9'p

+ L4.4F~-"* "'(V')+~ s& F~- "' '(q')1 ( N~; ~, )., ...(A7)

where (N. ..~...)„is a spin--,'-type wave function" satisfying the supplementary conditions

p„(N...~...)„=0,

and representable as

(N".~ ").=~(r) 2 ($~-.),&.(1,~—~; —,', ~
I 2, ~)

g—$,+$

(A8)

(A9)

with (4r,)„=((~ „(5,& )4} a spin-1-type polarization four-vector appropriate to spin projection ~—0, z, a
spin--', -type wave function appropriate to spin projection 0 and (1, M —0; —',, 0

I
a~, M) a vector-angular-momentum

addition coeflicient appropriate to I+I/2=5/2; (M —rr)+o=3E. In the "allowed" approximation, Eqs. (A7),
(A8), and (A9) yield

(tf, Mf lg (0)I~V;; Ã," . .)
= (uN~, ~~ )„r+(zrr.~..)(gw;, ~, )„(1 8„..4.)(1 —8~4)Gg(cV, ——+ ~Vr)

+(terms which vanish in the limit of small-momentum transfer q= (p~, —p~, )}

=~(~Nr'(r)r+»;(r)) 2 2 (4~x . 4~; ")(&'~-&")--
rr=), +$ 0'~$,+$

X(1,~/ &r kr ~I 2~ ~f)*(1,~*—~'; k, ~'lk, ~')(I—~-4)G~(&'~ ~Vr)+(" }
=z Q (xr 0 x~; err+)(1, Mr 0i2~ u—

l
'2Mr)r*(1,M f o; k, 3E, 3Er+aI~~ ~~)'

a=),+$

X (1—b~4)Gg(1V, ~ &Vf)+ (. } (A10)

so that, for My=M;= J=~3,

(N&!'"'~f=l"' )v + &( ~~'"'&~~ I"')s + ( ) I ( 4 +r 2~ +I 2~ 2) I
'=(&»r''tr-&ri~) = b, s (A11)

rr

in agreement with Eq. (A4).

APPENDIX II

In this Appendix we shall derive a relation between LGg(~V; ~ ~Vy)/G~(e ~ P)j' as calculated on the basis of
the impulse approximation based Eq. (22) generalized to any half-integral J and the magnetic moments of Nf,
and X;,p(1Vf) and p($,) LEqs. (A19) and (A18) below]; this relation is employed (apart from indicated exceptions)
to obtain the values of LGg(V, —+ A'y)/Gx(n —+ P)j2imp-approx theor in the sixth column of Table I and in the dashed

"YV. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1944).
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curve of Fig. 1. We have, using Eq. (22) and Eq. (A6),

Gg($ ~ cVr)

GA(tt ) P) —imp-approx theor

AIBA = —J, , +J a=i

IN&rf;" br' " r+trNN„" &)r;" ~
i

Mf=—J ~ ~ ~ +J

MJ = —J ~ ~ ~ +J

(~+1)/~
(A12)

Mf=—J ~ ~ ~ +J

A

1&~~f ~f I&"r+"~"
I +~':"~' -& I')"'

a=1

whence

J+1 1/2 A

I &+Nf;" My=J"[ 2 +"r~'3
I
+N M ","J )'=f, "J a=1

G~(X, —+ A'f)

Gg(rt ~ P) —imp-approx theor a=1
(A13)

it is clear from Eq. (A12) that
I (tr&f;I is the impulse-approximation Gamow-Teller matrix element.

Ke now note that

A—( Y (b)E~T~+N;; "M;=J" =
XC &— Z ~Nf;" Mf=J". ~

b=l

A A

(Q r '")%br, , ...br;=g ..=0, (p r+t'))e. „f;"br)=z. ..=O
b=l b=l

(A14)

since O' N,",...M,. J... and O'Nf, ...Mf J... are characterized by T;=-2, p,. = ——,
' and Tf—,Tf(3) —+1 respective]y

and that

A A A A A

(P r (a)tr (o))(P r (b)) ( P r (b)) (P r (a)& (a)) p r (a) (a) (A15)
b=l a=1 a=1

Thus Eqs. (A12) and (A13) become

A

r'=~" lx 2»"o'a" l&r;;".br; z. ..)l (A16)
a—1

LG~(1V ~ XVI)/Gg(it ~ p)j impapprox theor= (1+$) I (f f
Saip& —Sat")

f f) (i[St&a& Sx(a&
I i& I

b-

and it remains to relate (f[Sat» —Sa'"'
I f)—(i I Sate' Sa'"' fi) to—the magnetic moments &()t' ) and „&Ar)



APPLICATIOX OF THE GOLDBERGER —TREIMAih RELATION 82463

These magnetic moments are given, on the basis of the customary impulse approximation, by

p(&y) = (1+4)(@rrr ...srr=z. ..
I Q {[(1+rs )/27[Isn&rs +(J s so's )]+[(1—rs )/2]stntrs ) I +rrr;" err s=")
a=1

=(1+&&){J/2+', (fl -Js' & Js—'"&I f&+[st(p)+st(n) ,']——

X(f I
~s'"'+~s'"'

I f&+ [& (P)—s (n) —sj&fl ~s"'—~s'"'I f))
A

Is(N;)= (1+$)(%&r,-...sr; g. ..
I Q {[(1+ra )/27[Is„&rs& &+(J & s&aso—s&'&)7+[(1—rs&'&)/2]st„&rs ) I 4N; ...&&r;=g. ..&

a 1

=(1+5'){J/2+s(sl Js'"' —Js'"'Is)+[s (P)+& (n) —s 7 (A17)

&& &s I
~s'»+~s& "&

I
s)+ [& (p) —

& (n) —s 7&s I
~s'"' —~s&"&

I s&);

(1+4)=(1+k)—= (1+V)

where (1+$&), (1+$;) are pion-exchange corrections. Equation (A17) yields

1/(1+ g )[st(1Vg) st(E') 7
&fl.t&, &» —t&, & &If)—(sI t&, &» &, &t—&Is)=

[ (p) —( )——,'ja(t+-', )

1 &fl Js'"' —Js'"'If&—(sl Js'"' —Js'"'ls&
~(f+s)—=—

2 (fl5s& & —ps&"&I f) &sl &&s&—» —t&s& & Is&

so that, substituting into Eq. (A16),

(A18)

s (A'~) —
s (~V')

1&o)I'I =
2+ '

& P —~ n ——,
' ~ l+-,'

Gg(&V; ~ -Vr) 1+$ -' „(.&~)
—„(,y )

(t+r) Ll &r&
—

I & )—l7~&&+l&

(A19)

In a model in which 0&,, ~~,=~... and %&f....&IJ=J... are such that X, and Xf can be visualized as consisting of a
"core plus or minus an odd nucleon, "l and j= l~-,' are the orbital angular momentum and total-angular-momentum
quantum numbers of the odd nucleon (e.g. , in tHss and sHets: l=0, and j=l+ ', = ,'; in;Ns"-an-d sC&". 1=1 and
j=l——,'=-', ; etc.); for the numerical values of [Gz(X,~ Xq)/G&(n —+ p)]'; n,»„„th„, in the sixth column of
Table I and the dashed curve of Fig. 1 we have used such a model and also taken [(1+/)/(1+$') jr=1. Com-
parison of Eqs. (A19) and (A18) with Eqs. (30) and (27), viz. :

-Gg(1V; —r &s&'r)

GA(n 'a p) —G-T theor; anom-ma&&-mom theor

[&t(-'~ f) Z(~ &f)/~7 [st(&~ ') ~(-'~ ')/~ 7

[&s(P)—17—[st(n) —07
(A20)

shows that, in spite of the not too great differences between corresponding numerical values, the functional de-
pendence of [G&(iV, —+.Vr)/G&(n —+ p) 7' on st(iV&) and st(X;) in the customary impulse-approximation theory is
very diferent from that in our Goldberger-Treiman-type theory.


