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The theory of the beta decay of complex nuclei, N; — N;+e~+7., is developed on the basis of a treatment
which considers the nuclei involved (; and Ny) as “elementary” particles and applies the hypotheses of the
conserved polar-vector hadron weak current (CVC) and the partially conserved axial-vector hadron weak
current (PCAC) to determine the effective polar-vector and axial-vector weak coupling constants
Gy (N: — N;) and G4(N; — Ny); the numerical values of Gy (N; — Ny) and G4(N; — Ny) reflect in this
treatment the complexity of internal nuclear structure. Using CVC, and supposing that |N;) and |N,)
are sufficiently pure isospin eigenstates, we can immediately calculate Gy (V; — Ny), while PCAC, together
with a suitable pion-pole-dominance assumption, implies the Goldberger-Treiman (G-T) relation which
expresses G4(N; — Ny) in terms of the pion-initial-nucleus-final-nucleus coupling constant f.n;~,; this
coupling constant can be found from a polological analysis of #+XN; — p+N; nucleon charge-exchange
scattering experiments. Since such experiments are not as yet available, we calculate the values of the
fn;n, in terms of the known magnetic moments of N; and Ny by means of a very crude theory, and compare
these values with the values of the f,;n, calculated by means of the G-T relation from the G4(V; — Ny)
deduced from observed beta-decay rates. The agreement is, in general, somewhat better than that found

between calculated and observed rates in the customary impulse-approximation theory of beta decay.

I. INTRODUCTION

N the customary theory of nuclear beta decay:

N;— N;+e 47, the weak-interaction Hamiltonian
is taken as that of a collection of mutually isolated
physical nucleons while the initial and final nuclear
states, |V;) and | N;), are described by wave functions
¥y, and ¥x,, dependent on the position, spin, and iso-
spin of these nucleons. As a consequence, an impulse
approximation is employed to relate the transition
matrix elements in nuclear and nucleon beta decay;
moreover, the calculated matrix elements are in general
rather sensitive to the details of the wave functions used.
Thus, no very high precision has ever been attained
in the prediction of nuclear beta-decay rates and
several serious discrepancies still exist between theo-
retical and experimental f: values (e.g., in 13Al12%° —
16Mg1325+et+»,); these discrepancies seem too large
to be due to a failure of the impulse approximation
(i.e., to be due to pion-exchange effects!) and probably

* Supported in part by the National Science Foundation.
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arise from inadequacies which still afflict even the best
available ¥y, and ¥u,.

In the theory developed in this paper we attempt to
avoid the above difficulties by treating the nuclei N;and
Ny which participate in the beta decay as “elementary”
particles and by applying the hypothesis of the con-
served polar-vector hadron weak current (CVC) and
the hypothesis of the partially conserved axial-vector
hadron weak current (PCAC) to determine the effective
polar-vector and the effective axial-vector weak coupling
constants, Gy(N;— N;) and G4(N;— Ny). The cou-
pling constants Gy(N;— Ny;) and Ga(N;— Ny) are
characteristic of the V; — N, nuclear beta-decay transi-
tion; their numerical values reflect, in the present treat-
ment, the complexity of internal nuclear structure. In
spite of this complexity, Gv(V;— N;) and G4(V,;— Ny)
may be found explicitly in many cases since the CVC
hypothesis permits identification of the polar-vector
hadron weak current with the isospin current while the
PCAC hypothesis, together with a suitable pion-pole-
dominance assumption, implies the Goldberger-Treiman
(G-T) relation. Thus Gy(N; — N) is immediately given
if |V;) and | N;) are sufficiently pure isospin eigenstates
while G4(N:— Ny) is proportional to the pion-initial
nucleus-final nucleus coupling constant, f.n;n,, which
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can be found, e.g., from a polological analysis of n+N;— p+."; nucleon charge-exchange scattering experi-
ments or can be expressed (as we show below by means of a very crude theory) in terms of the magnetic moments
of IN,) and IN}>.

II. FORMULATION

We recall that neutron beta decay: » — p+4e=47,, is phenomenologically described by the transition matrix
element

G
(7| £(0)] n>=\72[140*747a(1+75)m*]{<17| 3«0 [m)+(p| ja0(0) [m)},

098

wwq?)]un} ,
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(110ja(0)/0xa| n)= —iga(p | ja 4 (0) | n)= (mytma)[F 4*?(g*)+(g*/ m?)F o7 7(g*) J(u5' 4y ay5ttn)
= (mp+ma) "7 (g%) (' 7y sy50);
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where, on the basis of the CVC hypothesis,?
Fyr?(0)=Gy(n— p)=1-0=1, Fu"?(0)=[u(p)—1]—[u(n)—0]=(2.79—1)—(—1.91—-0)=3.70 (2)
and, on the basis of the PCAC hypothesis,?
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In Egs. (1)-(4), ., us, up, and u, are electron, antineutrino, proton, and neutron spinors; 7,V and j,4) are
polar-vector and axial-vector hadron weak currents; Fy"~?(g?), Fy">?(¢?), F 4»~?(¢?), and F p"~?(g?) are polar-
vector, weak-magnetism, axial-vector, and induced-pseudoscalar neutron— proton weak form factors ; w(p) and u(n)
are proton and neutron magnetic moments (in units of e/2m,); a.=F 47>v*(p,2= —m,?) is the axial-vector pion —
vacuum weak form factor determined numerically from the observed 7+ — u*+v, decay rate as |a,| =0.95:£0.01%;
Jeno= frnp(Pn?= —m,2, po2=—m2 ps?=(pn— pp)?= —m,2) is the pion-neutron-proton vertex function evaluated
at pa’=—ma?, ppt=—my’, ps’=(pn—pp)*=—m,% i.e., frpn is the pion-neutron-proton coupling constant, given

? See, e.g., H. Primakoff, Proceedings of the International School of Physics “Enrico Fermi,” 1964, Course 32: Weak Interactions and
High Energy Neutrino Physics (Academic Press Inc., New York, to be published).
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on the basis of dispersion-theoretic analysis of 7+ p — n+-4p elastic-scattering experiments® or, somewhat less
accurately, on the basis of a polological analysis of #+4p — p-+» nucleon charge-exchange scattering experiments,*
by frnp=V2fxopp=V2(4r)!/2(0.08140.003)!/2=1.434-0.03.3

We note that m.2/(m?)p">?Sm.2/(3m.)?=0.11 so that Fp"~?(¢?) is indeed dominated by the pion-pole term
—Mr28r frnp/ (Me2+q?) for —m,2<q2S0. If we assume that

00

/ Im®»~>?(—m?)d(m?)
3ma)?

00

(o (m?) 2 / TP p7+2(— m2)d(m?) )
(37"')’

=

and use Egs. (3) and (4), we see that a similar pion-pole dominance also characterizes ®"*7(¢q2) and we can write,
up to errors =109,

Ga(n— p)=arfen,~—Fp"7(0). (6)
Equation (6) is the Goldberger-Treiman (G-T) relation; since on the basis of the measured ¢;! and sOg!* beta-

decay rates one obtains G4(n — p)=1.1940.03,5 and since, as mentioned above, |a.| =0.954+0.01,2 the value of
fanp deduced from the first equality in the G-T relation of Eq. (6) is

frnp=(1.192£0.03)/(0.95:£0.01) = 1.25:-0.04. )

This value differs by 139, from the above mentioned pion-nucleon elastic scattering value: frnp=1.43+0.03;
the relatively small discrepancy is presumably due to the neglect of the contribution of higher mass states in
passing from Eq. (4) to Eq. (6). In addition, analysis of the measured muon-capture rates in 1H,! and ;He,? indi-
cates that —F,">?(0) lies between 1.0 and 1.7° so that the second equality in the G-T relation of Eq. (6) is also
consistent with available experimental information.

We proceed to extend Egs. (1)-(6) to nuclear beta decay: N;— N;+e~+75.. The customary theory assumes
(V] £0)] N4) = (G2 [urere(1+1us¥ UV ] 5u D O) | N+ OV, | 1O O) [N},
(N4 5aP0) | V)= (W /(- - 1@, 05(@ 13@ . Y| TP [Ty (- 1@ 3@ 3@ .Y (8)
(V| 5@ O) [ Ny = (Tx,(+ - 1@ 55 74@ )| T [Ty (- + 1@ 3@ 3@ . 1))

with
4 748 Vqs
]Q(V) = Z T+(a),y4(a)[,ya(a)FVn—bp(q2)__ FM"—"’(QZ):IC‘Q"(Q) ,
a=1 mp
4 1qa(mp+m,) 9)
Je=Y 7 +(a>.y4<a>|:,ya<a)75<a) F Anap(qz)_;__q__”__,ys(a) Fpn»p(qz)]esq-rw , (
a=1 m12
9=— (Pe‘!‘?i) )
whence, in the “allowed” approximation,
4 4
M= Z T+(")|:5a4GV(n N ?)] , Ja= Z .,.+(a)[(1__ 8a4)i¢7'a(a)GA(n — p)] . (1())
a=1 a=1

In Eq. (8), ¥w,, ¥n, are wave functions describing the nuclear states [N:) and | N,), and 1@, ¢5(®), 75 are posi-
tion, spin, and isospin coordinates of the ath physical nucleon. The above mentioned impulse approximation
corresponds to the representation of J,(", J,4) in Egs. (9) and (10) as a sum of terms each one of which refers to
the beta decay of a physical nucleon within the nucleus with a weak-interaction Lagrangian identical with that of
an isolated physical nucleon. Actually, pion-exchange terms of the form

froop®\? A g—mrlr@—r®)]
]a(exch)z 1 ) Z (T+(b)—T+(a)){[74(”)Ya(a)’)’s(a)je"q'r(")—[74(”)')1‘,(5)75(5)]e“l"“’)} FA"*”(qZ)
T a=1,b=1

M| 1@ —1®|

(11)
% See e.g., J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737 (1963).
¢ See A. Ashmore, W. H. Range, R. T. Taylor, B. M. Townes, L. Castillejo, and R. F. Peierls, Nucl. Phys. 36, 258 (1962). The method
was originally suggested by G. F. Chew, Phys. Rev. 112, 1380 (1958) and is rather fully discussed by M. J. Moravcsik in Dispersion
Relations, 1960 Scottish Universities’ Summer School (Oliver and Boyd, Edinburgh, 1961), p. 117.
8 C. S. Wu, as quoted in A. Halpern, Phys. Rev. Letters 13, 660 (1964) ; our G4 (1 — ?) is the negative of the conventionally defined
axial-vector neutron — proton weak coupling constant.

. ®The G-T value of —Fp""?(0) given in Eq. (6): —Fp» ?(0) =a, frnp=1.36 corresponds to an effective-for-muon-capture
induced-pseudoscalar neutron—proton weak coupling constant :

w(mptms)

m n r’
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should be adjoined to the J,(M+J 4 of Eq. (9). It can be shown that in the “allowed’ approximation we have!

(s | T o) | Wy )~ {(f "°“’2>24A[m,<g§f1m>]—3}<\1:N,| é e @O[(1—8a0)iva@Ga(n— )| ¥  (12)

4 M

so that the impulse approximation should be accurate to something like 109,.

We now set down the basic equations of the theory outlined in the Introduction where the nuclei which partici-
pate in the beta decay are treated as “elementary” particles. Confining ourselves for the time being to nuclear
beta-decay transitions of the type

[Vi: (I3 T)i=4®; 31 [N (U3 T)=4®; ke,

we have, on the basis of the validity of the CVC and PCAC hypotheses, and analogously to Egs. (1)-(4),

(67N £0)| VoY= (G/VD)[ulyeva(1+7s)us* (N ;| 1V (0) | No)+(Ns| 1 (0) [ N2},

(N1 jaPO) [N )= {uwtrivsvaF vV N1 (g%) — (0 apgs/ 2mp) F ™= N1(g*) Juns}

(Ns| 7« ©O) [ Ni)= {uw ravalyarsF 4V V1(q?)+[iga(mu +mus) /ma*TysF pNi=¥1(g2) Jun.}
(N110ja'9(0)/ x| Niy= —igalN/| ju'#(0) | V)

= (mNi+le) [FAN’._’N/(QZ)‘F (92/mrz)FPN‘*Nf(q2):|(“N/TT+‘Y4’YB“N-‘)
= (mu;+mn )@V V(@) (un iy aysuns);
G=(1.0X107%)/m,*; g=—(petp5)=(pn,~pn:),

(13)

with
FyeNi(0)=Gy(Ni— N)=Z(N)—ZN)=1, Fu¥(0)=[u(N)—Z(N )/ AT~[u(N)—Z(N)/A] (14)
and

1 [ Im®¥Nr(—m?)
BNNI(0) = F4-N(0)= G 4(Ns— N )= e e H— f —————d(m)

T J m%n m
1 00
- / M@Y= — m?)d(m?)
™ m’an (15)

=a1rfrnp 141 ’
(m2>¢N‘»Nja1rfﬂrN.‘Nj

ImF pNe=N1(—m?)

M’
d(m2) = _awer.'N/[l ————] .

mZ <m2>PN.'->Nf

1 o0
FPNi_’N/(O) = _a'rer;Nj"I'— /

™ m’an
In Egs. (13)-(15), #ns and uy, are spinors describing the motion as a whole of the final nucleus and the initial
nucleus; FyNi=Ni(q?), FyVi=N1(g?), F 4¥i>N1(¢g?), and Fp"i>¥/(g?) are polar-vector, weak-magnetism, axial-vector,
and induced-pseudoscalar N;— N, weak form factors; u(N,) and u(XV;) are magnetic moments of the final nucleus
and the initial nucleus (again in units of e/2m,);

Javin= fanin (pn 2= —mn2, pn2=—my 2 ps2= (pvi—pn))'=—m.?)

is the pion-initial-nucleus—final-nucleus vertex function evaluated at py,2= —my.?, pn,2=—m N pat= (pni—pn,)?
= —m.% i.e., fan;n, is the pion-initial-nucleus-final-nucleus coupling constant; m2,, is the anomalous threshold
squared mass value associated with the possibility of the process (zV4_z4); — (2N a_z_141)+n— (zN 4_z_147)
+p+e+v.— (241N a_z-14)+e+5, and is given by formula me.2=[84/(4—1)Jmpe=2(1.7m,)? where =8
MeV=0.057 m, is the binding energy of a nucleon to the nucleus.” On the basis of the impulse approximation of
Egs. (8), (9) we can then write an equation connecting F¥:=¥s(g2) with F»~>7(g?)

G . el (mn;+mn,)
;/-f[ue VoYa(1+78)us* 1 iqe—————F pVi>¥1(g%) | [un, iy sysun;]

M

(mn+mp) 4
———Fp" (%) ( {(¥n,| X 14 @y @y @eins@ | Wy ) (16)

Mx a=1

G
%E[ue*vm(1+vs)ua*]{iqa

7 See R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Phys. Rev. 111, 1187 (1958).
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whence, using also Egs. (15) and (4),

A
0V T (a),y (a),y (a) ‘I’N.'>
1 r ImFPNi_,Nf(_mZ) mn+mp < N/I El + 4 5 I
_arwa.'Nf'I'—/ d(mz)g“‘arfrnp <
T J man m? mui+mn, (unfryyeysun:)
> O] )
N/ 7. (e Y (ﬂ)7 @ |y,
1 r ImFPn_.p(__mg) mn+mp < Nf! El + 4 5
+- ———d(m?) ( ) a7
mJ (3my)? m? my;+my, (“N;"T+'Y4‘Ysum)

Clearly, a similar equation connects ®¥:>¥s with 77, Equation (17) shows that the contribution of the pion-pole
term and that of the higher-mass cut term are multiplied by the same factor in passing from the » — p to the
N;— N, case so that the extent of pion-pole dominance should not be appreciably different in these two cases.
Thus, the pion-pole-dominance assumption for ®¥:>¥/(¢?) and FpVi>V/(¢2) may be expected to hold about as well
as for ®"~7(¢%) and Fp"~?(g? so that, analogously to Eq. (6), we have the Goldberger-Treiman relation

G,4<.\v¢ d A\'rf)gdwwa;Nfg’“FPN"_'N'{(O) . (18)

Equation (18) is fundamental in what follows.

We close the present section by appending formulas for f¢ values in the “allowed” approximation for nuclear
beta-decay transitions of the type [N;: (JP; T),=3®; 31— [N;; (JP; T);=1; 1746+, Thus, using
Egs. (13)-(15), we can write

2m3 In2
[(ft)Ni—be]—.l( )=[GV(L\71‘—'>A})]2{ Z |(uN,;...M,...TuuN,-;...M,-...)]2}

02 Mr=+1}
+[GA(1\’Y,-—> ;7\7_;)]2{ Z I (uNf;..,M,...TT+GMN1-;..‘M,-.‘.) [ 2}
My=+}
= 1 X 1+[GA(AV£ b d Nf)]ZXS

GA(N,' —_ I\Tf) 2
= 1+(1.19)2[————] (19)
Ga(n— p)
so that, expressing Ga(N;— N;)/Ga(n — p) via the G-T relations of Egs. (6) and (18),
Ga(Ni— Ny)/Ga(n— P)EerfN//frﬂp (20)

and substituting into Eq. (19),

L) 1728 102/G2) = 1X 1[G a1 — P T/ fonp) X3
=14 (1.19)%(fan;n,/ frnp)2X 3. (21)

On the other hand, on the basis of the impulse approximation of Egs. (8)-(10) together with the pion-exchange
correction of Eq. (12), we have

A
Ga(Ni— X)) (1+E)(‘I’N/;...M,... lagl 7+ @@ [ Wy, aginnl)

= )
GA(n-)p) (uN,;...M,...*-r+auN,-;...M,~...)

A
[GA(N.'-—)N{)]2 (1+£)2M/§:|:;|<‘I’Nf,"'Mf"'[ag1 T+(a)0(a)I‘I’Ni;-"Mi"'>]2 -
= s 22
+

Z l(uN,;...M,‘.. T+0'uN,~;...M.-...) [ 2
M=t}

Ga(n— p)

A
=3(14-¢)? Z l(‘I’Nf;---M/“"Z T+(a)0'(“)|‘1’N,-;...M,~...>|2,

My=1} a=1
Fropp\ 2 44 2
(1+s)2z{1+< ) =1.10,
dr ] [ma(0.8413/m,) T2
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whence, substituting into Eq. (19),

3 In2 4
[(ﬂ)N.--—N/:]_l( ch >=1X1+[GA(n——>p)]2(1+£)2{ Zﬂl(‘I’Nf:---M/---l > 1 @@ | Wy )| 2}
My= a=1
4
=14+1.192014+ > [(Tnyeeerryee] 2 74D | Uyssiinsn |2} (23)
My=+} a=1

Finally, combination of Eq. (20) with Eq. (22) yields

A
Fawin (1+E)(‘I’N,;...M!...Iaz:1 T+(“)G(“)I‘I’N|-;...M,-...>
*NiNyf =

) (24)

f-rnp ('IlN/;...M,...TT_(_WN,-;...M,-...)

which is consistent with an impulse-approximation expression for the transition matrix element of nuclear pion
emission

[N:: (J9; T)i=3 ;3] = [Ny: (J; T);=3®); § -

with the pion-exchange correction factor (14-£) acting to renormalize the mnp vertex.

III. ESTIMATES FOR THE RATIO (f.n,v,/frnp)?
Values of ftin the “allowed” approximation for nuclear beta-decay transitions of the type
[Ne: (JP; T)=3 ;3] [N (I 1),=3 ;5 e +5, (e, Hy? — sHed+e+5,)

are, as we have seen in the last section, calculable from Egs. (19)-(21) which, for purposes of numerical work,
can be conveniently written as?

14+ (L19)[Ga(Ni— N)/Ga(n— p)]*X3
14(1.19)2x 3
14 (L19)2(fowany/ fon) *X 3. (25)
14+(1.19)2X 3 ’

[(ﬁ)N.— —-N!:|_1= [(ﬂ)n—»p]—l

= [(ﬂ) nap]

(f) n-p=1180 sec!.

With this equation, and with experimental values of (ff)x,.n,, we can obtain (frw;n,/frnp)?=[Ga(N:— N;)/
Ga(n— p)]* and compare these “Goldberger-Treiman experimental” values of (frn;n,/frnp)? With values of
(feniny/ fxnp)? deduced from a polological analysis of #4-N; — p+ N, nucleon charge-exchange scattering data or
expressed, by means of a very crude theory, in terms of the magnetic moments of V; and N, (see below). Before
embarking on such a comparison we note that a treatment of nuclear beta-decay transitions of the type

[Na(JP; T)=3 §&® 1 ... 17—
[V (P )y =3, 5, 50, - beta, (e, oColl— Boll+etv,),
wholly analogous to that given in Eqs. (13)-(24) for (JP)),=(J®);=1@® yields (see Appendix I)
1+ (L1192 [Ga(N: = Np)/Ga(n— p) PX (T +1)/T
14(1.19)2X 3
14+ (119 (fawiwy/ fann)* X (J+1)/J (26)
1+(1.19)2X 3 ;

LDwean, I =L(f)np]™

= [(ﬂ)n—»p]—l

(f0),p=1180 sec!

& A. N. Sosnovskii, P. E. Spivak, I. A. Prokofiev, I. E. Kutikov, and I. P. Dobrinin, Zh. Eksperim. i Teor. I'iz. 35, 1039 (1958) [Eng-
lish transl.: Soviet Phys.—JETP 8, 739 (1959)].
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I I T T T T T T
2 2

[ G‘(N‘—*N,) ] _ ("NN, >
[T e, (np) -
/ A 4 exper. frnp G-T exper.

2
faNN,
/°“7< 1 anom.—mog—
;N rnp ~mom. theor,
2 \ N -
7 2

Go(N{=> Ny)

\
\/-l: G,(n—>p) ]img.—uppmx
\ theor.

F16. 1. Comparison of theoretical and experimental values ooando \
of [Ga(N: — N)/Galtn— p)F. \

0.5

Mass Number A

which holds for J=3%, §, Z, - - -, and, in fact, reduces to Eq. (25) for /=3. Equation (26) yields “G-T experimental”

values of
<f rNiN/)zz [GA(Ni - Nf):r 2
fenn Ga(n— p)
for all nuclear beta-decay transitions of the type
[V (J®; T),=3@) 36 5@ 1) .. 1] S [V, (JP); P) =3 3@ 60 1@ ... 1 g5,

the results are shown in the fourth column of Table I and in the solid curve of Fig. 1 and exhibit a strikingly non-
monotonic dependence of (frn;n,/fxnp)? on the mass number 4 of N; and N

We now describe an extremely crude theoretical derivation of these values of (fsn;n,/ frnp)*—our derivation
is in the spirit of the semiclassical meson-theoretic treatment of the isovector anomalous magnetic moment of the
isobaric doublet pair: proton and neutron. On the basis of such a treatment we can write,®

[Cu(p)— 11— [u(m) =01 =k f*xnp (28)

where £ is a numerical constant and | (u(p)—1)— (u(z)—0)| =3.70 [Eq. (2)]. In a similar way we can set down an
expression for the isovector anomalous magnetic moment of the odd-4 isobaric doublet pair: V; and N,

Z(AV ) Z(fvt)
d )- (#(Ni)—T)l =kfning(4); g(1)=1, (29)

(#(Nf)_

where g(4) is a more or less smoothly varying function of 4. We have been unable to devise a convincing a priori
specification of g(4) and make the a posterior: choice: g(4)= A3 in order to obtain a good over-all fit to the ex-
perimental values of (ft)n;.x,. Equations (28) and (29) yield

(fmm)z: I[N —Z(N)/AT=[wN)—Z(N)/A]| 1 _ [Lu(N )= Z(N )/ A]— [N )= Z(N:)/ 4]
Jrno [ ()= 1)—(u(=)—0)| g(4) 3.7041/3

and this equation, together with experimental values of u(V;) and u(V;), yields ‘“anomalous-magnetic-moment
theoretical” values of (fxn;v,/ frnp)? shown in the fifth column of Table I and in the dash-dotted curve of Fig. 1—
the overall agreement between these values of (fxn;n,/frnp)%anom-mag-mom theor and the corresponding values of
(feNiNy/ fanp)?G-T exper (fourth column of Table I and solid curve of Fig. 1) lends some confidence to the calculation
of (feniny/ fanp)? from |[u(N ) —Z(N;)/AJ—[w(N:)—Z(N3)/A]| - [ (u(p)—1)—(u(n)—0) |71+ A~13 [Eq. (30)] and
to the G-T identification of (fan;n,/ frnp)? With [Ga(N;— N;)/Ga(n— p)1? [Eq. (27)]. It is also of interest to
calculate [Ga(N;— Ny)/Ga(n— p)]? from the impulse-approximation based Eq. (22) (generalized to any hal-
integral J) using appropriate nuclear models to specify ¥x;;...a... and ¥u;...x,... (see Appendix II); these values

(30)

® See e.g., J. D. Jackson, The Physics of Elementary Particles (Princeton University Press, Princeton, 1958), p. 44.
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of [Ga(Ni— Ny)/Ga(n— p)imp-approx theor LEGs. (A19) and (A18) below] are shown in the sixth column of
Table I and in the dashed curve of Fig. 1 and agree no better (in fact, somewhat worse) with the [Ga(N;— N)/
G4(n—> p)Pexper (fourth column of Table I and solid curve of Fig. 1) than do the (fxn;~;/ frnp) anom-mag-mom theor
(fifth column of Table I and dash-dotted curve of Fig. 1) with the (fxn;n,/ frnp)*G-T exper (fourth column of Table I
and solid curve of Fig. 1).
We proceed to discuss nuclear beta-decay transitions of the type
[N (TP T);=04; 17— [Ny (JP; T)p=1F;0]4-¢e+5, (e.g., :Hesd — sLis’4-e+5.);

the nuclei V;, N; are here again treated as elementary particles. We then have, on the basis of the CVC and
PCAC hypotheses, and with neglect of certain relatively small terms,

(e5.N 7| £(0)| Ni)= (G/V2) [y sya(14v8)us* H{(N s | 7o (0) | N ) +(N | 74 (0)
<~Vfl ja(V)(O) I Ni>= - {uNtT[GaB'rS*r(QB/zmp)FMN"_'Nf@z)]“Ni} )
(V] 7P (0) | Niy= {un, [SaF 47N (%) +(iga(Ssgs)/m=*)F p+N1(¢?) Jun.}
(V7187 (0)/xa| Niy=—igalN | j«*(0)| V) (31)
=[Fa¥>N1(g)+(g*/m:2)F pVi=N1(g") ] Lun, (Sege)un.J= BN+ ¥1(g*)[us' (Spgs)un:];
G=(1.0X107%)/m,%; q=—(pt+ps)=(pn,—pn:),

*Vi>} ’

with
FaNi¥1(0) =v2Zu([0); 17— [10; 0])
1 2 Im@¥N1(—m?)
PNi>N1(0)=F 4N ¥1(0)=G4(N:— Njy)= e / —_—2_——-d(m2)
™ m’an m
1 00
- / @Y (—m2)d(m?) | (32)

T
=arfaning |1+

<m2>¢N'.-.Nfa1rf1rNiNj ’

TmF Y eVs (— i)

1 r~ My?
FpNio¥1(0)=—arfanin,+— / d(m?) = —awfxzv.-zv,l 1——————} .
T J m%n

m? <m2> PN i=>Nf

In Egs. (31) and (32), ux, and uy, are spinors describing the motion as a whole of the final (spin-1) nucleus N, and
the initial (spin-0) nucleus N;; (#'n;...ar,=1,0~1.-.Satny;--215~0...) 15 to be understood as [S(S+1)J2(£.(M,))*
where £, (M) is a spin-1-type polarization four-vector orthogonal to (pn,), and S=1, F,¥¥s(g?), and Fp¥~¥1(g?)
are weak-magnetism, axial-vector, and induced-pseudoscalar N;— N, weak form factors; ([0 ; 17— [14;0])
is the transition magnetic moment to the ground state of N, from an excited state of Ny with the same quantum
numbers (except for Ts) as the ground state of N;; as before, f.n,n, is the pion-initial-nucleus—final-nucleus
coupling constant. Assuming further that the pion-pole-dominance assumption is also valid in this case [see

the analogous discussion after Egs. (16) and (17) and also Egs. (18) and (20)] we have the Goldberger-Treiman
relation

GA(]V;‘ - Ayf)ganfuN,'Njg~FPN’.->NI(O)7 GA(“\y‘i - 1\71‘)/6,4(11 g P)ngNiNj/f"r"P ’ (33)

wholly analogous to Eq. (18). From Eq. (33) we can calculate the f¢ values in the “allowed” approximation for
nuclear beta-decay transitions of the type [N;: (JP; T);=0%; 11— [N;: (JP; T);=1D; 0]+ e +5,, viz.,

(1.19))[Ga(N:— Ny)/Ga(n— p)I*X6
14+(1.19)2X3
(L.19)2(frwiny/ frnp) X6 (34)
14(1.19)2X 3

LfOwian I =[(fD)nsp]?

= [(ﬂ)n-—p]—l

(ft)n>p=1180 sec™!.
Similarly, the f¢ values in the “allowed” approximation for nuclear beta-decay transitions of the type

[N": (J(P); T),= 1(+); 0] hd [IVf: (J(P); T)/=O(+); 1]+8++V¢ (e.g., 9F918—) 801018+8++V¢)
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and
[Ni: (P T)i=19;1] - [N (JP; 1) ;=09 0]+e+5. (e.g., sB:'2— 6Co'*+e+7.)
are

(1.19)2[Ga(N,— N;)/Ga(n— p)]2X2
14(1.19)2X3
(119X (fewins/ frnn) X2 35)
14(1.19)2X3

LAwian I =L(0n-p ]

= [(ﬂ)n»p]—]

(ft)nvp=1180 sec™!.

Use of Eqs. (34) and (35) and of experimental values of (f/)w,.~, permits calculation of “G-T experimental” values
of (frwiny/frnp)?=[Ga(Ni— N;)/Ga(n— p)]* for even-A nuclei and these values are included in the fourth
column of Table I and in the solid curve of Fig. 1—it is seen that (fxn;n,/fsnp)?G-T exper has the same general
(strikingly nonmonotonic) dependence on A for even A4 as for odd 4. On the other hand, particularly in the cases
§Cs!* — Nyl4+e 47, 5§06 — Nili+et+v,, and 1451182 — 1P 132+ 7, [GA(Ni - Nf)/GA(ﬂ - ﬁ)]Qexper
= (fen:Ny/ frnp)?G-T exper is very small and it may be doubted that the corresponding ®V:*¥/(¢?) and Fp":*V/(¢?)
are indeed dominated by a pion pole with residue proportional to f.x;~, [see however the argument after Egs.
(16) and (17)].

What can we say about a theoretical derivation of the values of fay;n,/frnp for the even-4 nuclei? It is clear
that a treatment analogous to that described in Egs. (29) and (30) for the odd-4 nuclei cannot be given in the
even-A case if only because one of the two nuclei involved has zero spin and therefore zero magnetic moment.
Thus the frx;n,/ fznpfor even A can only be deduced from a polological analysis of #n+ N ; — p+ N, nucleon charge-
exchange scattering experiments (e.g., n+3Lis® — p+.Hess or n+6Ce'?— p+5B;'?). In the absence of such
experiments, our sole recourse is an estimate of frn;n,/fznp on the basis of the impulse approximation [see the
analogous Eq. (24)]

A
er.'Nf (1+£)<\I,Nf;---M,... l az=:1 T+(ﬂ)o.(a) l ‘I’N;;---M,-...>

(36)
f.,np (uN,;...M,..."SuN“...M,....)

However, Eq. (36) yields no new information since, together with Eq. (33), it merely gives the usual impulse-
approximation expression for G4(N;— Ny)/Ga(n — p), viz. [see the analogous Eq. (22)]

A
GA(N;—%.N/) (1+£)<‘I/N!;...M,...laz=:l T+(°)(r(“)[‘I’N{;...M,»...>

(37)

GA(n—>p) (MNI;...M,‘..TSMN,-;..‘M‘-...)
We conclude this Section by giving a brief discussion of nuclear beta-decay transitions of the type
[V (J99; T)e=3®); T]— [N : (JP; T),=3®); T— 11447,
(e.g., 48Cder1'5(3;519/2) — 45Inge!'5(3; 17/2)+ e +7.);

in contradiction to the cases previously treated, this last type of transition is not “allowed” but rather ‘“parity-
forbidden.” Analogous to Egs. (13) and (14) we then have, using the CVC and PCAC hypotheses and with the
same notation as before,

(677N, £(0) | Noy=(G/V2)[uMyseva(1+75)us* TN 1| P (0) [ Ni)+(Ny| ja 4 (0) | NV2)}

TapqgBYs

Facteo ) Jund

) iYa
(Ns| 1« (0) | Ni)y= {“N;T‘Y4<|:‘Ya‘Ys—T(mNs+me)75:|F yNirNi(g?)—

q Mp

lim [FyVNi(g?)/¢*]=finite constant;

q2-0

. o Tapds iga(my,—my;)
(N7|ja(0)| V)= I”N:*‘Y4|:’YJ'AA'*N’(‘]2)— - FE“"’N’(92)+*~TFPN‘*M(92):|MN.'} )
¥4 L4
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Niy=—igal{N ;| ja“@(0)| N2)
= (mn;—my)[F AN (") (g% m2)EpVi= Vi (¢) Juy, My aun,)
= (my;—mn;)®V>N1 () (un Pyaun,);

(V719720 (0)/dxa

(38)
1.0X10-
G= —; =~ (petp5)=(pn,;—Pn);

mp®

my,+my; 1 r® Im®Ni=Ni(—m?)
@N‘*N’.(O)=FAN"-’N/(0)EGA(AV{—‘) A'Vj)=<'———)arf1rNiN/+—/‘ . d(m2)
™ mzan

mN,—mN,- m
1/~ I
—/ Im®¥i=>Ni(—m?)d(m?) ]
my ,+my, T J m?an r
=<~——~—)a,fm.w, 1+ J :
MN;—MN; <m2>¢N""Nf[<mN/+mN,-)/(me——mN{)]a,f,,NiN/

my+my; 1 ® ImFp¥i>N/(—m?)
FpNi=Ns(0)= '—<——————)dxfm.-1v/+‘/ d(m?)
m™ m’an

my,—my; m?
my+my; Me®
=—|——— )t fanin, 1———%- ,
MN;— MN; (m?)pNi=Ns

whence, postulating also pion-pole dominance [see the analogous discussion after Egs. (16) and (17)], we have the
Goldberger-Treiman relation

mN/+mN;

GA(A\'Y@'—) AV_/') MNf+mNi firNiNf
~( ) (39)

GA(”'—)P) - frnp .

Here, however, f.n;~, is a scalar-type, rather than the previously used pseudoscalar-type, pion-initial-nucleus-
final-nucleus coupling constant, i.e., frn,n, is here defined via the vertex function

GA(.Vi — A\'Yf)g< )arfo.'Nf%/-FPNi_.N'r(O) )

MN;— MN; MN;—MN;

[(me+mN.‘)/mwjersN/(PNizyprz’sz)(uNfT'Y‘iuNi)
rather than via the previously used vertex function
Lonn,tmu)/me]fenin, (pnon 200 (un Py aysun,);

Jxnin,/ f+npis deducible on the basis of a polological analysis of #+.V; — p+.V; nucleon charge—exchange scatter-
ing experiments (e.g., 7+ soIne!® — p+43Cder'1%). In the absence of such experiments our sole recourse is again
an estimate of fxw;n,/frnp on the basis of the impulse approximation [see the analogous Eq. (36)7]:

A
[(mN/‘l‘ mNi)/mar]eriNf (1+$)<‘I,N“ veeMyee IaX=:1 T+ @Oys (D@ I YN Mieen)

L(mptmn)/mx]frenp (ungeeostye Py s oonsn)

However, and just as before, Eq. (40) yields no new information since, together with Eq. (39), it merely gives the
usual impulse-approximation expression for Ga(.\N': — .V;)/Ga(n — p), viz. [see the analogous Eq. (37)]

(40)

4
A+HTnpeeryen] 2 7@y Dy @ | Wy agie)

a=1

Ga(N:i— Nyp) ( Mpt+Ma
Ga(n— p)

mN,~mNi/ (uN,;...M,...*'y4uN;,...M,~...)

4
A+ gal /(mptmn) K¥npivocatyen | 7 @y Dys @Oy @ [Ty i)
N< Mpt+Ma a=1

MNy— MN; (uN,;...Mf...*‘y‘;uN,-;...Mt—...)

A
(1+$)<‘I’N/: s Myees [ Z 74 (@@ l ‘I’Ni;-~-M£--->
a=1

IR

(41)

(u‘vf;...M',...Tug\,'i;...y,-...)
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Equations (20), (24), and (22), Egs. (33), (36), and (37), and Egs. (39), (40), and (41) show that the Goldberger-
Treiman relation together with the impulse-approximation expression for frn.n,/frnp leads in all cases to the
impulse-approximation expression for G4(N;— N;)/Ga(n— p). The essential reason for this consistency of the
G-T relation with the use of impulse-approximation expressions for both Ga(N;— N;)/Ga(n— p) and fen,n,/ frnp
can be seen particularly clearly if we cast the PCAC hypothesis together with the pion-pole-dominance assumption
into the form??

0ja®(x)/0%a=Cro™(x) - - - = C:[ —(9/024)(3/ 0xe) +m+" T j () +- - -, (42)

where C, is a constant, ¢(™(x) is the pion-field operator which destroys a physical 7~ (and creates a physical 7t),
7™ (x)=[—(8/0%)(8/xa)+m+*]e ™ (x) is the pion-field source-density operator, and the terms in - - -, which
are associated with higher mass J7P¢=0;~~ meson-field operators, are supposed to give relatively small contribu-
tions for processes with hadron momentum transfers ¢% in the range —m,2<¢?><0. Equation (42) yields, using
also Eq. (1) and, e.g., Eq. (13),

(vac|8ja®(0)/d%a| 77)=1(p2)al [1/(2E)*Ji(px) atal a™>"*(p2") Jpetamy?
=[mia./(2E:)"1*]=(vac|Cro™(0) | 77)=[C+/(2E)'2]; (43)

mPa==C,
87 (0) 9 9 -1
(p|————|n)=(mp+m)2"?(g) (up' 7y s750) =(p | Cr[—_— —-l—m,?] F®(0)|n)
axa axa Ko
¢ [ Mot 2 2 42
= L frnp(_mn y —Mp®, Prx =(Pn_Pp)2=q2) (upTT+'Y475un);
¢*+my? M (44)
my’ Frnp(—ma?, —my?, g%) my?
@n-*p(q2)g a“’f“m I: :IE Crjmn Krn 2 5
mﬂ'2+q2 i f’fﬂp(—_mﬂzi _mP2) _mrz) mr2+q2 f ? p(‘I )
&>2(0)=F 47?(0)=Ga(n — p)=Zar frnpK rnp(0).
9j.4(0) s o »
(V| T | Noy= (my +mu )2V N1 (g®) (un iy aysun) =Ny | C r[—a—— —+m,2:| F™0)| N,
« Yo 0%
C. r my;+my;
= N 2L eriN/("'mNezy —my,?, P72=(PNi_PN!)2=q2)](uNfTT+7475uNi);
't s Mx (45)
2 f,rN,-N/(—MN.'z, _mN!27 qz) m"’2
PNi~Ns(g?)= a,f,N‘-N[ ]E Qe fanin K zn; %),
Myt ! farN.'N/(_mNiz’ —my,?, —ms2) Mattg? f NllzN Nf(q )

‘I’N'.*Nf(o) = FANi*‘Vf(O)E Ga(N;— ‘Vf)gafffNiN/KrNeN/(O) ’

where the G-T relations in Eqgs. (44) and (45) differ from those in Egs. (6) and (18) by the presence of the
neutron — proton and initial-nucleus — final-nucleus pionic form factors K..,(¢?) and K.nn,(¢?) evaluated at
¢*>=0 i.e., evaluated at zero virtual pion mass [by definition K rnp(—m+2)=K zn;x,(—m4?)=17. Thus, if the G-T
relation in Eq. (44) is exactly correct, K 715(0)=(Ga(n — p))(@xfrnp) ' =[1.19/(0.95)(1.43) ]=0.87 [see Egs. (6),
(7) et seq.]; on the other hand, nothing is known about the numerical value of K ,x;x,(0).

The G-T relation in Eq. (45) essentially consists of an equality between the N;,— N, matrix element of
8ja4(0)/dx, which gives G4(N:— N) and the N;— N, matrix element of C.[— (/9x4)(8/dx2)+m,2]"1j(0)
which gives a.fzn.n,Kxn;n,(0); this equality is not appreciably perturbed if eack of the two matrix elements is
evaluated in impulse approximation. The last remark establishes the consistency in question.

IV. DISCUSSION

We now discuss in a little more detail what appears to us as the most promising experimentally based method
for the determination of

f"’NiNfEf"NiNJ(PNf.z: —mn 2, pNi=—my2?, pai= (PN{_PN',)2= —m,2);

10 See M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960); J. Bernstein, S. Fubini, M. Gell-M. d W. Thirring, 7bs
757 (1960); Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. L. Adler, Phys. Rev. 137, B1032 (1965). > 20 W- Thirring, ibid. 17,
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this pion-initial-nucleus-final-nucleus coupling constant enters into the G-T relation of Eq. (18). As already
mentioned, f.x,~, can be found from a polological analysis of #+V; — p+ .V, nucleon charge-exchange scattering
experiments. Thus, in the case that (J®; T),=(J®; T),=(3®; §)—e.g., V;=.He,3, N;=1H,?, the differential
cross section for n+.V; — p+ .V, nucleon charge-exchange scattering can be written as

da(cosbyp,E)
d = IADiOWEXCh(COSOnp,E)"i'A multipion-exch, etc.(COSan,E) [ 2
Q
4 pion-exch(COS@np,E)
L2mn/ma) frnp(—ma?, —myp?, ¢*) (3¢ IL2my/m) fenin (—mu 2, —mu 2, ¢*)(3¢H)Y2](1/47E)

q2+m12

[(2mn/mr)(1/\/2‘) (47")—”2f1rﬂp(—mn2, —my?, len[ 2(1—C050,,p))]
X[(2my/me)(1/V2)(4r) 12 faniw ((—mu?, —mn %, 2| pa| 2(1—c088,5)) ]

[L(A+ms2/2]pa|?)—cosnp J[(1/E)(1—cosb,,) ]!
Ma?
lim . l [(1+ 2) - Cosonp]/l multipion-exch, etc. (COSOnp,E) =0;
cosﬂw—v(1+2’p’;|2) 2|pa|

My==Mn, MNZ=mMN;=mN;
¢’= (?Ni'_PNf)2=P12= (?n—Pp)2=2Ipn[2(1—C080M,), eanCOS_l((Pn‘Pp)/IPnI [Ppl)i
E=[—(putpn)? 1= Ent Eng=(|pa|*+m:)" 24 (| pa| 24+-mn?)11%;

where p, and p, are, respectively, the neutron and proton center-of-mass momenta and where the pole in
A pion-exch(cos8ap,E) associated with the exchange of the virtual (charged) pion occurs at an unphysical value of the
cosine of the scattering angle, viz.: cosfn,= (14m.%/2|p.|%); as a numerical example, (14m,2/2|p,|2)=1.06 for a
neutron with laboratory kinetic energy of 150 MeV incident on ;He;®. Equation (46) yields

My?
lim { [( 1+ ) —cosb, ,,]A pion-exch(C080,,F) }
cosB,.p—>(1+ ma? ) 2|pﬂ[2

ATHE
() G ) ([, o

which, supposing fr.p known, determines f.y;v,. In this connection it should however be noted that
faniw, [—mn?, —mn 2 2|pa| 2(1—cosf,,)] varies more rapidly with cosf., in the physical region than does
frnpl—ma?, —my? 2| pa|*(1—cosb,,)] because of the relatively large size of a nucleus compared to a nucleon; in
addition, A pion-exch(C088sp,E)=0 at cosfn,=1 because of the (1—cosf.,) factor. Unfortunately, each of these
circumstances, as well as the necessary multiplication of the above expression for 4 pion.cxch (0S8 p,E) by

ZN) Ba g 2lpal\ | (metbdm 2
exp{—l: 137 |p,l|\tan ( M )—i—zln m«+g? >:|} (48)

to include the effect of the final-state $-V; Coulomb interaction, will tend to make the isolation of the pion-pole
contribution to do(cosf,,,E)/dQ2 more difficult.!!

An extrapolation of 4 jion-exch(C088np,E) to cosn,= (14+m.2/2|p,|?) has, in effect, been carried out in the case
Ny=p, Ni=n*and gives a value of f,., somewhat less precise than, but consistent with, the value of f,,, obtained

! It should be mentioned that | few;n/| =V2| fronyn | =VZ| fson;n;| so that we can also obtain | fry;n,| from a determination of
| f=0w ;s | on the basis of a polological analysis of n+N; — n-+N, neutron elastic-scattering experiments (any polological analysis of
p+Ny — p+N, proton elastic-scattering experiments involves additional complications due to the presence of a relatively large Coulomb
term in the scattering amplitude at small scattering angles). However, the small scattering angle n+N; — n+N s elastic scattering
amplitude, in contradistinction to the small scattering angle n4N; — p+N; charge-exchange scattering amplitude, necessarily contains
an imaginary part associated with the possibility of various inelastic processes (optical theorem) and this imaginary part will help mask
the pion-exchange pole term in the real part.
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from an analysis of w*+4p — w+-+p elastic-scattering experiments, viz.: § fxnp?/4mr=0.0792£0.006 versus 0.081
+0.003; we should also mention that any determination of f.n~, from a dispersion-theoretic analysis of 74N, —
w++ N, elastic-scattering experiments would be very considerably complicated by the presence of 7=+ N;— NV
pole terms in the forward =+4 N, — n+4 N, elastic-scattering amplitude—here the N, are the various bound and
unbound excited states of the nucleus whose ground state is \V;. To our best knowledge, no experimental study of
n+N;— p+ N; nucleon charge-exchange scattering from the point of view of determination of the f,»,v, has ever
been undertaken and we would like to take this opportunity to advocate such a study ; it is important to note in this
connection that E=my for all practical |pa| so that, if fex;n,= frnp, the right side of Eq. (47) is of the same
order in the Ny, N; case as in the p, # case. If f.x;¥;Kfrnp, as one anticipates on the basis of the fourth column of
Table I, e.g., for ¢C:'%, N:=:Ng', Apion-exch(Cosfnp,E) will be small compared to A multipion-exch, etc.(COSOnp; E)
for all physical values of cosf,, and the determination of f.n,~, from Eq. (47) will become extremely difficult in
practice. In general, it is of course clear that any experimentally based determination of those f,x;~, which are
small compared to frn.p is bound to be a formidable task but this gloomy circumstance should not deter efforts
to perform experiments from which the larger f.n;~, can conceivably be deduced.

APPENDIX I
In this Appendix we wish to establish the analog of Eqs. (13)-(24) for nuclear beta-decay transitions of the type
[N (JB; T)g=3, §@) 26 ... 1] [N, (J®; T),=3@), & 1@ ..o 14+,

and, in particular, to justify Eq. (26). We have, analogously to Eq. (13), and in the “allowed” approximation,

<]Vf; . 'Mf' c ]ja(A)(O) !N.'; M- >= [uN,;...M,...Tr+(ia,,)uN,.;...M.....](l—6a4)GA(N;——> f\Y/)
+{terms which vanish in the limit of small-momentum transfer ¢= (pn,—pn~,)}, (Al)

where #x;...x;... and #ny;...u,... are spinors which describe the initial and final nuclei as “‘elementary” particles
with spin and spin projection Ji, M; and J;=J.=J, M;, while io1, i0s, ics=vsy1ys, Y4y2Ys, Yev5Ys are spin-}
angular-momentum operators which work on certain factors within uy,;...s... and #n ;...x,... [see Eq. (A3) below ];
it is easy to write explicit expressions for uw;...s;=s... and un,;...srpmr..., viz:

UNG oo Mmoo = ON(T) E1 (1) E41(2) - - - £ (T — $) X172,
UN oo gm o = ON(T) E01(1) E42(2) - - - Ea(T—$) X412, (A2)
(v, () iom (7)) =1

with X1/ spin-} type wave functions appropriate to spin-projections =1 so that
03X12=EXyp172, 01Xp12=XF12, 02 Xp1p=£iXF1) (A3)

and &1(7) spin-1-type wave functions, i.e., spin-1-type polarization three-vectors, appropriate to spin projection
+1. Thus

(uN,;...M,-J...fT+o'¢uN|-;...M‘-_J...)
= (x, (1) raow (T)EAT Q) En(1)) - E' (T—3) BT — D)) (X p'0aXian) =11+ 1-8 3= 843, (A4)

and it only remains to relate (uny...n;...'7400ln;enr;) for amy My M, to the just evaluated

(ungieodymt. N 740 aUN; o i=0...). This can however be very simply done since we wish to calculate [see the
analogous Egs. (19) and (25)]

Z Z JI (uN,;...M,...*uo'aum,...M,~...)I2 (AS)

a=1,2,3 Mf=—J,+++ +
and this is given by!?

Z Z l(uN,;...M,...TT+crauN,~;...M,-...)I2
a=1,2,3 Mg=—J -+ +J

= [(]+1)/]][ (uNf;...Mf.:.]-..TT+(T3uN;;...M;EJ...) l 2=[(J+ 1)/]] (Aé)

2 See e.g., E. Feenberg and G. E. Pake, Notes On The Quantum Theory of Angular M. 77 Addison- i -
chusetts, 1953), p. 50. ¥ of Ang omentum (Addison-Wesley, Cambridge, Massa



APPLICATION OF THE GOLDBERGER-TREIMAN RELATION B 1461

Equations (A6) and (A1) and the fact that CVC again implies FyVi*¥/(0)=Gy(V;— N;)=1 yield the desired
Eq. (26).

As a more explicit version of Egs. (A1)-(A6) consider the case of J=3$. Here, analogously to Eq. (13),
(Npyo o My | ja®(0) | N+ - M- - -)
T:Qa(mN;'f'mN.')
Jo

= (Unsettye D) T4 l I:’Ya‘/sFAN"’N’<q2) +—-———2_—‘—')’5FPN"'N’(‘12)
My

iqa(mu;+mu;) qug»

M2

+[,Ya,),5FA,N;-»N/(q2)+ ISFP’N‘_’N’((QZ)]

M2

Y598
_|_

[6“‘!65,FP':N"’N/(Q2)+ 6”354,FP111N‘--'N/(q2)]] (uN‘; ...M"---)p , (A7)
Mx

where (%......), is a spin-3-type wave function'® satisfying the supplementary conditions
'y“(u...M...),‘=O, P,,(u...y...)“=0, (AS)

and representable as

(e..pa..)w=2(7) Z* H(EM_«),‘X«(I, M—o;3,0|3, M) (A9)

with (£a—o)u={Er—s,(£x—0)s} a spin-1-type polarization four-vector appropriate to spin projection M—a, X, a
spin--type wave function appropriate to spin projection ¢ and (1, M —o; %, ¢|%, M) a vector-angular-momentum
addition coefficient appropriate to 14+1/2=3/2; (M —o)4-o=M. In the “allowed” approximation, Eqs. (A7),
(A8), and (A9) yield

(N My ']‘a(A)(O)

Ng Mg -+)
= (uN,;...M,...T),,u(iaa)(um;...M,....),.(l-—- 5,.4)(1 - 5,,4)64("\',' — .‘Vf)
+{terms which vanish in the limit of small-momentum transfer ¢= (pn,— pn:)}

=in (D)) L X (Empmo Erie)(XoloaXo)

o=—},+} o/=—},+}

X1, M;—a;%,0|3, M))*(1, Mi—d';3,0" |3, Mi)(1—=6a) Ga(Ni— Np)+{-- -}

=i Y (XloaXarispra)(l, Ms—0;5,0|3, M)*(1, M;—0; 5, Mi—M 403, M)
o=—}%,+}

X (1— 5¢4)GA(1\7,'-—) ./Vf)—l‘{ . ‘} (AIO)
so that, for M;=M;=J=3%,

(uN/;'"Mf==l"'1)u7+°'a(uNi;---Mim%---)ﬂ= z%: i(X,fa'aX,) t <1: %"‘7; %: "'I %) %)I 2= (Xl/2f‘7axll2)= 0,3 (AM)
=3+

in agreement with Eq. (A4).

APPENDIX II

In this Appendix we shall derive a relation between [Ga(V;— N;)/Ga(n — p)]? as calculated on the basis of
the impulse approximation based Eq. (22) generalized to any half-integral J and the magnetic moments of N,
and Ny, u(N,) and (V) [Egs. (A19) and (A18) below J; this relation is employed (apart from indicated exceptions)
to obtain the values of [Ga(N;— N;)/Ga(n — p) Jimp-approx theor in the sixth column of Table I and in the dashed

3 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1944).
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curve of Fig. 1. We have, using Eq. (22) and Eq. (A6),

A
14¢)? > WNeeeMpen 7+ @D¢@ | Wy i) |2
l:GA(N,--—)Z\’,):r ( M/=—J,~~.+JI< Niie 2t lagx * ¥vseeati)|
GA(n g P) imp-approx theor z [uN,; ...M,...fT_,_GuN,;...M,-... I B
Mp=—J, -+ +J
4
(1+f)2 Z ]<\I’Nf;---M/---| Z T+(a)0(a)|\I/N“"_M‘".>l2
My==T,--4J a=1
= (A12)
J+0/7
=148 {e)s:|2T/(J+1);
4
{oyl={ X [(¥Ngentgonn| 2 74 @0@ [Ty )| 2)12
Mp=—J, -+ +J a=1
JH1\1/2 4
- <—J-—) l<‘I’N/i"'Mf=-’"'l Z 74+ @3 @ I \I,Ni;"'Mi=J"'>[ ’
a=1
whence
GA(N,'—> I\Tf) 2 A
[——:' =1+ (¥ stymgen | 2 14 @05@ [Wyvyiiagims. )| (A13)
GA(n g P) imp-approx theor a=1
it is clear from Eq. (A12) that |(e),;| is the impulse-approximation Gamow-Teller matrix element.
We now note that
A A
WNiiee Mimdee = (Z T_(b))‘I/N,;...Mf=J... s YNpeeMp=g.= (X T+(b))\I/N5;...Mi=J...;
b=1 b=1
4 4 (A14)
(El 7'—(b))\I’Ni;---M;‘:J-n=0, (bé:l T+(b))‘I’N/;...Mf=J...=O
since ¥y,;...p;=7... and ¥ ;...ar,=s... are characterized by 7,=%, 7.¥=—1 and T,=1, T;® =41 respectively,
and that
A A A A A
(X 74+@a3@) (X 7-P)— (X 7-O)N(E 7. @g3@) =3 75@)g5@ (A15)
a=1 b=1 b=1 a=1 a=1

Thus Egs. (A12) and (A13) become

[{@):] =[(]'*‘1)/]]”2[<‘I’N/;---M/=J--~l% ZA: Ta(“)ﬂa(“)l‘I’Nf;---M/=J-.->

A
—<‘I’N.';~..M.-=J...|% > Ta(")ds(“)I‘I/N,-;...M,'=._;...)l (A16)

=LUHD/TT2(fS:®—Ss™ | f)—(i| S;® — S5 | 5)] ;
[Ga(N:— N1)/Ga(n— p) Pimp-approx-theor= (14-£)2[ (f|SsP =S| f)— (i] S3» — §3m | )| 2

and it remains to relate (f|S3®—S;™| f)—(i|.S3» —S5;(™|{) to the magnetic moments #(Ny) and u(NV;).
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These magnetic moments are given, on the basis of the customary impulse approximation, by
A
p(N )=+ (Tnsentymren] T AL+ 759)/2][0p08 @+ (f3 @ — 303 @) JH[(1— 75) /2 ]unos @} [ Wn i aty-)
a=1

= (+EN /245 5@ =T | ))F-[u(p)+u(n)—3]
X{f1S:P 483 | f)+[u(p)—um) =3 Kf1S:P—Ss™[ )},

p(N) =+ E)(¥wisoimr.| ZAZI{[(I-FTs<“))/2][#pos(“’+(ja(“)—%crs<“’)]+[(1— 75®)/ 2405 @} [ Wns o ertims )

=(1+E)(T/245G] TsP— T [0+ [u(p)+u(n)—3 (A17)
X (i[S3® 4S5 i)+ [u(p) —u(n)—3 Ki] SsP =S5 [4)};
(I+&)=1+8)=>1+¢),
where (14 %), (14-£;) are pion-exchange corrections. Equation (A17) yields
1/(1+) a0V ) (V)]
Cu(p) —u(m) =31 (+1)’

<f153(p)__53(n)lf>_<”53<p>_53(n) |i)=

(A18)

1 (flJa”’)—‘fs(")lf)*(iljs(p)*]a(")fi)

= (+1)=- . :

2 (£S5 =83 f)—(i| S3® — 3™ [4)

so that, substituting into Eq. (A16),
JH1\12 1 w(NV ) —u(Vy)
ol =(=) — ;
J A+ [u(p)—p(n)—3]£0+3)

(A19)

2

[GA(Ni - AVI)] 2 _ < 1+ S) : p(N ) —u(V:)
Ga(n— P) imp-approx theor 1+¢ [#(P)—#(n)—%]:t(l-i-%)

In a model in which ¥y;...ar,—s... and ¥x....ar,—,... are such that .\'; and Vs can be visualized as consisting of a
“core plus or minus an odd nucleon,” /and j=1I/47 are the orbital angular momentum and total-angular-momentum
quantum numbers of the odd nucleon (e.g., in 1H?® and ;He;*: =0, and j=I4+1=3; in ;N4!® and ¢C;'%: /=1 and
j=1—%=1%; etc.); for the numerical values of [G4(N;— X;)/Ga(n— p)imp-approx theor in the sixth column of
Table I and the dashed curve of Fig. 1 we have used such a model and also taken [(1+¢&)/(14+¢)]?=1. Com-

parison of Egs. (A19) and (A18) with Egs. (30) and (27), viz.:

I:GA(Nf — Nf)J2 _|BV)—Z(N )/ A1 [w(V)—Z(N)/A]) 1
GA(n i P) G-T theor; anom-mag-mom theor [Il(p) - 1]_ [ﬂ(”)_o:l A3

(A20)

shows that, in spite of the not too great differences between corresponding numerical values, the functional de-
pendence of [G4(Vi— N;)/Ga(n— p)]? on u(Vy) and u(.V,) in the customary impulse-approximation theory is
very different from that in our Goldberger-Treiman-type theory.



