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The Borgnis technique is used to solve the Maxwell equations under the following conditions: (a) Com-

plex field strengths are used such that 8=~im, that is, circularly polarized waves of positive or negative
helicity; (b) there is only harmonic time dependence through a factor exp(iWt), that is, a pure energy state
of the photons; (c) there is no s dependence, that is, no k, component of the photons' momentum; (c) there
is no restriction on the x, y dependence of the solutions. It is then shown that the S, component of the
Poynting vector obeys the formula

~2WS, =B,Sy —8„5
and is in general nonzero. This fact, together with the postulated nullity of k„ is the expression of the "trans-
lational inertial spin effect."An experiment using the limiting case of total reflection is proposed to test
the effect. A discussion of gauge-dependent expressions of the effect, using potentials, is also given, in connec-
tion with de Broglie s formulas for the current- and spin-density 4-vectors of the photon waves.

will be taken (a) such that H=&iE, that is, the
polarization state will be purely circular, either with
positive or negative helicity; (b) time-dependent
through a common factor exp(iWt), with W)0 fixed;
(c) z-independent; (d) arbitrarily x-, y-dependent. It
will then be shown (Sec. II) that the components of the
Poynting energy-density vector

I. INTRODUCTION
' N a preceding paper' the Dirac electron equations
- ~ were explicitly solved under the following condi-
tions: (a) a velocity equal or nearly equal to e, so that
the two spin states were longitudinal, that is, pure
helicity states; (b) a pure energy state, with eigenvalue
W; (c) no s dependence of the wave function, so that
there was certainly no z component of the particle's
momentum; (d) a bending of the beam parallel to the
x, y plane as far as momentum (not necessarily velocity)
was concerned, in such a way that a pure helicity
state was conserved; (e) an a, y distribution of the wave
amplitude such that the current- and spin-density
vectors, j and rr (which are collinear in the extreme
relativistic limit), had a nonzero s component obeying
the formula

S= R*xH+ExH* (3)

obey the formula

&2WS, =B,S„—BP, (4)

that is, although the k, momentum of the photons is
identically zero, the two pure helicity states are
deQected in opposite z directions according to their sign.
This is, of course, the gauge-independent formulation
of the "translational inertial spin e6'ect" in the photon
case.

In Sec. III an experimental test will be discussed
brieQy; it is based on the limiting case of total reQection
which, according to classical optics, is the only reQection
or refraction case in which a pure circular polarization,
or photon helicity state, is preserved.

In Sec. IV the transverse potential (tangent to the
Borgniss surfaces) will be introduced; then using de
Broglie's' expressions for the current- and spin-density
4-vectors, j and o, a formula similar to (l) will be
deduced. As the j and +o 3-vectors turn out to be just
I/W times the Poynting 3-vector S, this amounts to
saying that formula (4) is precisely the expression of
the photon's inertial spin efI'ect.

The above j and o-'s, which are collinear, are time-like,
non-null 4-vectors. It is shown in Sec. V that using
de Broglie's' expressions with the longitudinal gauge
potential yields other current- and spin-density 4-
vectors, k and &v, which are collinear and orthogonal
to j=~0-, and which satisfy the same typical formula
for the inertial spin eBect as j and a', this amounts to
saying that the gauge can be adjusted in such a way

or, in integral form,

j,dxdy= op@+0 y . 2

The "translational inertial spin efI'ect" corresponds
precisely to this transverse deQection of the two
helicity states, in opposite z directions, together with
the nullity of the k, momentum component of the
particles. On the whole, with a contour integral taken
outside the beam, the efI'ect is zero; but it is predicted
to be locally nonzero, and thus should be observable by
a detailed exploration of the current lines describing the
Qux of the Dirac current, that is, the probabilities of
transitions to the localized states of the particles.

In the present paper a similar deduction will be
carried out for the photon. The Maxwell equations will
be solved using the Borgnis' technique, which is quite
suitable here; an essentially complex E, Iwave function

' O. Costa De Beauregard, Phys. Rev. 134, 8471 (1964). See
also Ann. Inst. H. Poincard 2 131 (1965).

s P. Borgnis, Ann. Physik 3t, 339 i1939l; the Borgnis technique,
which we use with Cartesian coordinates, has been defined m
generally for a class of curvilinear coordinates.

ore s L. de Broglie, La mecanQue ondulatoire du Photon (Hermann
Bt Cie, Paris, 1940), Vol. 1, C'hap. VIII.
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that J=j+t't and Z=o+r, which obey the typical
formula, become null 4-vectors.

It is well known that in photon theory the physical
interpretation of both the current-' and the spin-density'
4-vectors is difBcult. So, in the photon case, it may be
safe to say that the unambiguous expression for the
translational inertial spin eGect in the siguation char-
acterized by postulates (a) to (d) is formula (4), which
can be experimentally tested as explained in Sec. III.

II. EXPRESSION OF THE EFFECT IN TERMS
OF THE FIELD STRENGTHS ALONE

According to postulates (a) to (e) above, and
following Borgnis' method, we consider essentially

complex solutions of the equation

(B.'+B„'+W')U(x,y) =0, (5)

which is the corresponding reduced expression of the
d'Alembert vacuum equation; units such that c= 1 and
h=h//2x=1 are used. Apart from the common phase
factor exp(iWt), the Borgnis' formulas for the "elec-
tric"- and the "magnetic"-type solutions, (E) and (H),
respectively, of the vacuum Maxwell equations are

(E): H =iWB,U, H„= iWB,U, E,=—W'U;

(H): E,=&WB„U, E„=WWB,U, H, =&iW'U;
(6)

according to postulate (a), the scalar function U is
taken to be the same for both (E) and (H), and a
relative phase factor &i is introduced,

The components of the Poynting density current
3-vector LEq. (3)j are

S,=2iW'(U*B, U UB,U*—),
S„=2iW (U*B„U—UB„U*),

S,= &2i W'(B,U*B„U—B U*B U) .

thus, although the s component of the photon's momen-
tum is identically zero (owing to the postulated
s independence of the E, H wave), the S, component of
the Poynting S vector is nonzero; the two helicity
states of the photon, respectively, speciGed by the signs
+ and —,are deflected in opposite directions of the
s coordinate.

One deduces easily from the expressions (7) the
formula (4) which is, in integral form,

s,day= ~-,' sg~+s y .

It should be noted that, being quadratic in U and its
derivatives, formulas (4) and (8) would not hold if a
real instead of a complex wave function were used.

' J. M. Jauch and F.Rohrlich, The Theory of Photons and Elec-
trons (Addison-%esley Publishing Company, Reading, Massachu-
setts, 1955), Chap. 2-8, p. 40.

III. A PROPOSED EXPERIMENTAL TEST OF
THE PHOTON INERTIAL SPIN EFFECT:

THE LIMITING CASE OF TOTAL
REFLECTION

with

H, =&iE,= 2iB sin8 sinF exp(Q),
H„=+iE„=2B cos8 cosF exp (+),
H, =&iE,= &2iB cosF exp(iy),

(10)

2B2=SO, F=nWy sin8, P=W(t nx cos8). (11—)
Thus, according to (3), the expressions of the Poynting
vector are

S =SB' cos8 cos'Y= 4SO cos8 cos'(nWy sin8),

$„=0, (12)
S,=&2B' sin28 sin2Y= &So sin28 sin(2nWy sin8);
formulas (4) and (8) are, therefore, veriled, as they had
to be.

The mean values of S and S, as functions of y are

8~= 2SO cos8, 8,=0, (13)
the Grst expression implies that the Aux through the
AH and BE cross sections is conserved.

According to classical optics, the only case of reQec-
tion or refraction where a pure circular polarization of
a plane monochromatic incident beam is conserved is
the limiting case of tota1 reQection. The Borgnis method
is easily adapted to that case: Following a well known
recipe, one simply performs the substitition

W ~ nW E~ g&/2E H ~ ~&/2H n= (A/4)&/2 (9)

and thus obtains a solution for a medium characterized
by the electric and magnetic permeability constants e

and p, .
Formula (4) would not be easily applied to the

quasidiscontinuous case of reflection, for it would
involve a delicate analysis of the E and H Gelds in
the quasidiscontinuity region. Fortunately, the field
strengths E and H have a very simple distribution both
in the ingoing and outgoing beams, and inside the
interference region; this will make it quite easy to use
formula (8), which will automatically take care of the
over-all e6ect.

We will consider (Fig. 1) the case of a cylindrical
beam of rectangular section aXb with rays orthogonal
to the s axis, falling on a reRecting plane parallel to the a
side, in the limiting case of total reQection. We take as
the picture plane an x, y incidence plane, the x axis
being parallel to the reflecting plane. —,'m —8 denotes the
incidence and reflection angles, and thus 28 the angle
between the incident and reQected Poynting vectors;
these are constant inside the corresponding beams with
a common magnitude So.

Inside the interference region, projected in CAB on
the x, y plane, the expressions of the complex Geld
strengths may be written as
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a value which, as expected, diGers from the mean
value —,

' of cos'Y. Thus

8s=~(1/2eW)tan8. (18)

Instead of the energy of the photons, it will be more
signihcant to introduce the wavelength of the beam in
the medium

QIB cga and, instead of the deflection bs per helicity state, the
linear separation

Fro. f. Integration contours for calculation of the photon's transla-
tional inertial spin effect in the limiting case of total reQection.

Ke are interested in the over-all eGect of the abrupt
variations of the Geld strengths through the boundaries
AB, AC, and BC. A contour such as HDQRS, cutting
orthogonally the incoming and outgoing beams and
closed outside the beams, yields a zero total eGect,
due to an over-all compensation of the inner sources of
S, by those existing on the sides of the beam. Thus, to
Gnd the eGect existing inside the beam, we must use
the IJLMS contour traced just inside the beam, and
just outside the sources of 5, which are present inside
the beam. Setting

l=b/sin28= ~AB~ = ~AC(, (14)

the contribution of the E3fLJI part of the contour is
written as —2lSO cos28.

The contribution of the IÃ part of the contour
depends on the value chosen for F, that is, for y. Owing
to the physically active character of the reflecting
surface BC, it is a priori unlikely that the value of 5,
along the IE segment should be 8, dekned by (13),
because the physically appropriate result could then be
obtained as the mean value corresponding to arbitrary
positions of the horizontal IE segment inside the
interference region. So we denote by q, 0~&g~&1, the
appropriate value of cos'F along the IE segment, and
will 6x it a posteriori. The contribution of this segment
is thus written SqlSO cos'8.

Finally, in the case we are considering, the line
integral in (8) is, with m denoting thepower transported
through the @=const p/anes,

between the two states or, even better, its ratio to ).
Moreover, the significant quantity ds/X will be multi-
plied by E if E additive (or quasiadditive) deviations
of the kind just described are produced. Finally,

M/X=X(1/2~)tan8. (19)

In the case where 8 is inGnitely small, this formula is
the same as the one found for the extreme relativistic
spin--', particles. '

Figure 2 shows the linear separation ds of the two
pure helicity states inside the outgoing beam (right),
as compared with the arbitrary polarization state
inside the incoming beam (left).

IV. EXPRESSION OF THE EFFECT IN TERMS
OF THE FIELD STRENGTHS AND THE

TRANSVERSE POTENTIALS

In both cases of (E) and (H) type of Borgnis solutions

(6), a potential satisfying the Lorentz condition is
easily found, namely

(E): A =A„=V=0, A.=iWU, 8&,=0;
(H): A, =+i8„U, A„=~iB,U, (2o)

A, = V=O, 8 A +B„A„=O.

These are transverse potentials; that is, the complex A
vectors are orthogonal to the complex U(x,y) =const
surfaces.

Inserting(6) and(20) in the de Broglie' —typeformulas
for the current- and spin-density 4-vectors in photon

&2nWm=215 (4yccos'8—cos28). (15)

Another expression for m- involves the deflection R
of the photons in the 2' direction, due to the "transla-
tional inertial spin eGect, " and is written as

m. = lSyB sin28. (16)

From (15) and (16) one deduces the f- (or b )independ--
ent expression

0

0

B

(a) ~ ~

B ~ ~ ~ ~ &or ~B ~ ~ ~ B ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ B~ ~ ~ ~ B ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~~ 0 ~ ~ ~ ~ ~ ~ B ~~ ~ ~ ~ ~ ~ ~ ~ '~~ ~ ~ B ~ B ~ ~ ~ B
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~ ~ ~ ~ ~ ~ ~ ~ ~B ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ BB ~ B ~ B ~ ~~ ~ ~ ~ ~ B ~ B ~~ BBBB ~ ~ ~ 1 ~~ ~ ~ ~ ~ ~ ~ ~ ~OBSS ~ a~BBS

ha(P)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ B ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ BE

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ B ~ B ~ ~ B ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
OB ~ ~ ~ OBOBB ~ BBBB

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~

~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ B ~ ~ ~ ~ ~ ~ ~ B ~ ~ ~ ~

~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ 0 ~ ~ ~ ~ B ~ ~ ~ ~ ~

~ ~ BO ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '~ ~ ~ ~ ~ ~

~ ~ ~ ~ g ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ BOO ~ ~ ~ ~ ~ ~ ~ B ~

~~",. + + + + + + ++
8a.„++ + + + + + +

bz=~(4g cos'8—cos28)/nW sin28. (17)

It is physically obvious that, if n-+ 1 and thus 8 —+0,
bs must ~ 0; this will be the case if, and only if, q= ~,

Fro. 2. Separation of the two-photon helicity states in the
limiting case of total reRection. Cross sections of: left, incoming
beam, right, outgoing beam; (a) any polarization state, (p)
positive helicity, (e) negative helicity.
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theory,

yields
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j= i(A~X H+ V*K)+c.c. ,

e= K*XA+ VH'+c. c. ,

j,=zA~ R+c.c. ,

o =A I+CC

current and a spin density 4-vector

J=j&gk, Z=o&gv, (28)

2$'J, =B Z„—B„Z .

From formulas (22) and (26) one deduces

(29)

(21) satisfying the "canonical formula" for the "translational
spin effect"

j,= +0 =2iw'(U'B, U—UB,U"),

j,= ~0„=2iW'(U*B„U UB„—U*),

+j,=0,= 2i w(B,U*B„U B„U*B,—U),

j.=&og=2W(W'U~U+8 U*a U+B„U~B„U).

(22)

V. THE LONGITUDINAL GAUGE POTENTIAL

Now we consider the gauge potential

S,=ma. U, 5„=ma„U, S.=o, 5=+iwU, (25)

with the same U(x,y) function as above, and the same
correspondence between the two signs and the helicity
states; this potential is longitudinal in the sense that
the 5 complex vector is normal to the U(x,y) =const.
complex surfaces.

Inserting (6) and (25) in the de Broglie —type formulas
(21) yields the new current and spin gensity 4-vectors
k and 7,

k, =mr, = 2W'8„(U'U—), k.=ar„=2W'8. (U'U),

+k.=r.=2w(B.U*B,U+8 U~a U—w'U*U), (26)
kp= &r(= 2iW(B,U~B„U ayU*B U) . —

They satisfy the same canonical formula as j and o-,

that is
2lAz= t9gTy By7 g j (27)

so any choice s5, g8 of the gauge (25) will yield a

By comparing formulas (7) and (22) one notices that

S=8'j= +W'o. (23)

The Poynting energy-density 3-vector 8 equals 8'
times the current-density 3-vector j deined above.
Assuming that the photon's energy 8' is positive, one
6nds that the fourth component of the j 4-vector is
positive dehnite, as was expected for a position probabil-
ity density. One also deduces from formulas (22) that

2$'j, =B,o „—Oyer„ (24)

which is the canonical formula for the "translational
inertial spin effect, "with a factor 2 which was absent
in the electron case.'

Finally, the above formulas (4) and (8) are directly
interpretable in terms of the general theory of the
translational inertial spin effect.

The only property of the collinear 4-vectors j and o

which is not satisfactory is that they are time-like, not
null 4-vectors t see below, formula (38)]. We will show
now that it is possible to adjust the gauge in such a way
that this feature disappears.

j.k- jg.kg=0 (3O)

VI. CONCLUSIONS

In its gauge-independent form as given in Sec. II,
the photon's "translational inertial spin effect" is
unambiguously deduced under the hypothesis that, on
the quantum level, the components of the photon's
wave function are essentially complex; thus, exper-
iments such as the one proposed in Sec. III should
be tests of both the "translational inertial spin effect, "
and the complex or real character of the photon's
wave function. It should be recalled that very strong
theoretical arguments have been given in favor of the
complex rather than real character of the physical
wave function of the photon. '

The introduction of the transverse potential waves,
which was performed in Sec. IV, shows a connection
between the formulas of Sec. II and those of the theory'
of the inertial spin effect with moving particles of spin ~.

An adjustment of the longitudinal potential waves,
or gauge waves, is possible, which renders the current-
and spin-density 4-vectors, as defined by de Broglie,
null vectors, as they ought to be; but the double
determination of the corresponding gauge, together
with other known arguments, '4 tends to give a merely
formal character to the gauge-dependent expressions of
the new effect.

' P. A. M. Dirac, QfcunIum Mechenk s, (Clarendon Press, Oxford,
England, 1947), 3rd. ed. , Chap. I.

j 2 j2 Ir2 k 2 W6(U4U)2+WC( (Uka U)2

+ (Ua, U*)'+ (U*B„U)'+(UB„U")'}
+w'( (8,U*a,U)'+ (B„U*B„U)'

+(a.U*a„U) +(a„U*a,U) ) . (31)

The j and k 4-vectors are orthogonal, with squares of
opposite signs. Thus, there is one and only one choice of

~ p~ that renders the J and Z 4-vectors defined by (28)
null 4-vectors: ~s~ =1. This yields two determinations
of the J and Z 4-vectors.

The J& component of J is easily calculated as

Jg= 2w/w'U*U+B, U*B,U+B„U*B„U
&is(B,U*B„U B„U—*B,U)) . (32)

Since it is positive definite, and owing to the double
determination of k, it turns out that the j and k
4-vectors are, respectively, time-like and space-like.


