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Counting the Bound States in Short-Range Central Potentials*
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For the case of a short-range central potential, the quantity u&, defined as the zero-energy limit of k"+'cotb&,
vanishes whenever the range and depth of the potential are such that there is a state of zero binding energy.
By solving the zero-energy scattering problem we obtain o.~ as a function of range and depth and thus
determine the number of bound states supportable by a given central potential as a function of the potential
parameters without having to solve the associated and more diRicult eigenvalue problem. The method is
applied to the Debye-Hiickel (Yukawa) and Woods-Saxon potentials.

radial-wave equation is thus

d Ni/dr'+[2mE/k + (2g/ao)e "~"/r l(l+1)/—r 7zzi 0, ——
EVERAL attempts have been made and reported in

~

~

the literature' ' to determine the number of bound
states in the Debye-Hilckel (Yukawa) potential as a
function of range and depth. These attempts usually
involve considerable numerical work even though they
yield solutions which are only approximate, and one
may justi6ably inquire why no eGort is made to 6nd an
exact, though numerical, solution. We believe the
answer lies, at least in part, in the cumbersome and
time-consuming procedure required by the straight-
forward approach to this problem. This involves replac-
ing the radial-wave equation by an appropriate differ-
ence equation, guessing an eigenvalue and integrating
the equation step by step from the origin to large values
of the radial variable r, and then determining whether
the resulting solution exhibits the proper asymptotic
behavior. If it does not, the trial eigenvalue is changed
and the process repeated until it does. This must be done
for every negative energy state in the spectrum and for
many sets of potential parameters in the desired range.
In addition to being a lengthy process, this technique
never provides complete assurance that all bound states
have been found; one or more levels, especially loosely
bound ones at the top of the spectrum, can easily be
overlooked.

If one desires to know only the number of states
bound for each set of potential parameters rather than
the eigenvalues themselves, there is another method for
doing this which is both simple in concept and easy to
carry out. To begin with, an appropriate scaling of the
wave equation makes it possible to characterize some
potentials by a single parameter. To make this discus-
sion speci6c let us deal with the Debye-Huckel potential
as an example. Thus we write

where N~ is the reduced radial-wave function, m and E
are the mass and energy of the particle bound in the
potential, and ao= fP/me Intro.ducing the variable
x= r/X and defining kz= —2m''E/k' and ze = 2gX/ao, we
Qnd

d' z/zd x—z [k' ~e ~/x+1(l—+1)—/x'7li 0. (1)——
With the equation in this form the Debye-Huckel
potential is characterized by the single parameter or.

Clearly there are many potentials which, by some
scaling procedure, can be characterized in terms of a
single parameter. For the present we assume that the
potentials with which we deal are of this kind; later we
shall generalize our methods to include potentials which
must be characterized by more than one parameter.

By assumption, the potentials we work with are short
range and so, at large values of the radial variable x, the
reduced radial-wave function at zero energy is

Ni(x) = (1/x')+bi((o)x'+', (2)

with arbitrary choice of normalization. The quantity b&,

as indicated, depends upon the potential parameter or.

Let us now suppose that for or =or, there is a zero-energy
bound state of angular momentum L For this value of or,

the function u~ must then be normalizable and the
second term in Eq. (2) cannot be present. We conclude
that

b, (~.)=0, (3)

V(r) =—gA-' exp( —r/X),

where e is the electronic charge, X a range parameter,
and g a dimensionless coupling constant. The reduced

*Work done under the auspices of the U. S. Atomic Energy
Commission.' G. M. Harris, Phys. Rev. 125, 1131 (1962).

'D. Kelley and H. Margenau, Progress Report, 1956 (un-
published), as reviewed by H. Margenau and M. Lewis, Rev. Mod.
Phys. 31, 569 {1959).' G. Kcker and %.Weizel, Ann. Physik 17, 126 (1956). ' J. Schwinger, Proc. Natl. Acad. Sci. U. S. 47, 122 (1961).
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if there is a zero-energy bound state of angular mo-
mentum / for or=or, . Since all the bound-state levels
enter the spectrum at zero energy for some value of or

and, to quote Schwinger, 4 ". . . a decrease of the
potential in some region must lower the energies of the
bound states and therefore cannot lessen their number, "
the procedure for counting the number of bound states
is thus the following: We solve the reduced radial-wave
equation at zero energy at a series of values of or. The
function b&(cu) is determined by joining the solution
smoothly at each or to the asymptotic form given in
Eq. (2). The number of bound states of angular mo-
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k"+' cotb)=a((s))+P((a))k'+. (4)

where the constants aq, P~, etc. depend upon the
potential parameter co. Thus in the zero-energy limit
we 6nd

N((x) = (2/ —1)!!/x'+ay((o)x'+'/(2l+1)!!.

By comparing this form with the one given in Eq. (2)
we see that

bi( )=L(21+1)"(2f—1)!'j ' ( ) (3)

This way of looking at the problem relates the function
bl(co) to the leading term of the finite-range expansion,
a&(~), and shows that our method of counting bound
states actually involves solving the associated zero-
energy scattering problem, and this is generally far
easier than attempting an eigenvalue problem, especially
if the latter must be carried out many times.

Now for the s-wave case. Levinson's theorem' tells
us that if there is a zero-energy resonance then, provided
the phase shift is normalized to zero at in6nite energy,

b, (0)= (m+1/2)x,

where n is an integer (the number of bound s states, as

' See, for example, L. Schiff, Quantum Mechanics (McGraw-Hill
Book Company, Inc., New York, 1949), 1st ed. , p. "J8.

'See, for example, M. Goldberger and K. Watson, Collisiorl,
Theory (John Wiley 8r. Sons, Inc., New York, 1964), p. 289.

~ Reference 6, p. 284.

mentum l at any ~=coo is then the number of zeros of
b~(a&) for values of &u less than or equal to ruo We shall call
b~(&») the counting function, which is inversely propor-
tional to the lth partial-wave scattering length.

The above line of reasoning is not applicable to
s states because binding in attractive short-range central
potentials results from the centrifugal barrier which, of
course, is absent when l=0. Thus, rather than a true
bound state at zero energy, for s waves we have a
"zero-energy resonance" which, when the well is
deepened by an arbitrarily small amount, becomes a
true bound state with a small negative eigenvalue.
However, the criterion for a zero-energy resonance and,
therefore, for counting s states is bo(&o) =0, the s-wave
version of the general statement (Eq. 3). This can be
made evident from the following alternative derivation
of the criterion.

For energies different from zero the scatterilg (i.e.,
k'& 0) wave function outside the range of the potential is

a, (x) = k'+'x(n—((kx) J((kx) c—otbgj,

where b~ is the lth wave phase shift, jr, and n~ are the
regular and irregular spherical Bessel functions, and
the normalization has been chosen for convenience. Ke
now take the limit of this expression as k approaches
zero. To do this we use the forms of the two Bessel
functions at small argument' as w'ell as the generalized
finite range expansion, '

a matter of fact) and bo(0) is the s-wave phase shift at
zero energy. Clearly, then, cotbo(0)=0 under these
circumstances. But from the 6nite-range expansion,
Eq. (4),

lim cotbo(k) = limLao(ru)/kj.
k-+0

If these two results are to be compatible, it is clear that
ao(co) must be zero for any value of ca for which there is
a zero-energy resonance. Our expression relating b~ and
a& t Eq. (5)] thus establishes that the counting procedure
for s states is the same as in states of higher angular
momentum.

It may have occurred to the reader that Levinson's
theorem might be applied directly to count the number
of bound states. This theorem asserts that the difference
between the phase shift at zero and infinite energies is
equal to nor where e is the number of bound states. (For
s states this statement must be modi6ed in a way in-
essential to the following discussion. ) Thus it appears
that we need only solve the scattering problem at zero
energy and at some large ("infinite") energy, take the
diGerence of the two resulting phase shifts, and divide
by &. Unfortunately, the solution of a scattering problem
does not provide the phase shift itself but some function
of it, such as the tangent, from which the phase shift
can be determined only to within an additive integral
multiple of x. But this multiple of m is clearly crucial in
this context. For a direct application of Levinson's
theorem it is necessary to solve the scattering problem
over the entire range of energy for each value of ar so as
to obtain the entire history of tanb~ (or whatever
equivalent function is determined) and from it re-
construct the phase shift without any ambiguity. The
method of counting bound states put forth in this paper
is clearly preferable, since it requires only the solution
to the zero-energy scattering problem at each value of
the parameter co which varies over a finite range.

To apply our counting procedure to the Debye-
Huckel potential, we require solutions of

O'I(/dx'+[~e */x l(l+1)/x' jl( 0— ——
which is Eq. (1) now written for zero energy. This
equation, which must be solved numerically, is replaced
by an equivalent difference equation by standard means'
and then integrated once and only once at each cv in the
desired range from the origin to large values of x. At
large x the function I& is joined smoothly to the zero-
energy asymptotic form given by Eq. (2) and b&(ao) is
thus determined.

The counting functions b~(s&) for the Debye-Hiickel
potential are plotted in Fig. 2. Since only the positions
of the zeros of these functions are relevant to us here, we
have not calibrated the vertical scale. It will also be
noticed that, except for s waves, no counting function is

~ See, for example, 3. J. Scarborough, Egmerkal Mathematical
Analysis (Johns Hopkins Press, Baltimore, Maryland, 1955),3rd ed. , pp. 265 8.
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TABLE I. Critical values of cu as a function of principal quantum number (o) and angular momentum (I) as given
(a) by present calculation and (b) by Harris' variational calculation.

(a)

1.68
6.45

14.3
25.4
39.5
56.8
77.3

101

0
(b)

1.74
5.00
6.78
9.09

113
13.8
15.9
18.5

9.08
17.7
29.5
44.3
62.2
83.2

107

(b)

9.52
18.2
25.0
33.3
38.5
43.5
50.0

(a) (b)

21.8 22.2
34.4 40.0
50.0 50.0
68.5 58.8
90.2 69.0

115 80.0

40.2
56.5
75.9
98.2

124

40.0
57.1
74.1
95.2

111

(a) (b) (a)

63.8
84.0

107
134

(b)

66.6
87.0

111
125

s STATES

s TSTES

d STATES

10 20 50 40 50 60
4)

I I I I I I

70 80 90 100 120 130

I'IG. 1. The counting function 5& (w) versus w for s, p, and d waves
in the Debye-Hiickel potential.

'R. G. Sachs and M. Goeppert-Mayer, Phys. Rev. 53, 991
(1938); C. Lovelace and D. Masson, Nuovo Cimento 26, 472
(1962).

plotted for values of ~ less than a minimum value
below which no binding is possible. This minimum ar

is determined by observing that the e6ective potential
in a state of angular momentum l,

Vi(x) =—cue */x+l(l+1)/x',

cannot give rise to binding unless its minimum is
negative. The limiting value of cs in any angular-
momentum state 1 is that value for which Vi(x) and its
first derivative Vi'(x) are zero at the same value of x.
Carrying out the algebra we 6nd that ca; '=l(l+1)e
=2.7181(1+1).No counting function need be computed
for any value of eo less than this minimum value.

The critical values of co for the Debye-Huckel
potential (that is, the values for which states are just
bound at zero energy) are presented in Table I. To the
best of our knowledge the only entry listed in the table
which has been at all accurately determined earlier is
the value c0=1.68 at which the ground (1s) state is
6rst bound. 9 The remaining values are to be compared
with those obtained by Harris' using a variational
method; these also are presented in Table I. We see
that (1) for fixed angular momentum, agreement be-

tween the two sets of numbers deteriorates as the
principal quantum number increases; while (2) for
fixed principal quantum number, it improves as angular
momentum increases. The erst of these observations is
to be understood from the fact that for the most
tightly bound state of a given l, and for that state only,
the variational method yields a lower bound on the
energy. In the remaining cases the variational method
leads to uncontrolled and apparently unreliable ap-
proximations. The second observation is to be under-
stood by noting that Harris' trial wave functions are
chosen to be eigenstates of angular momentum. As the
angular momentum increases, the centrifugal barrier
becomes the increasingly dominant contribution to the
eGective potential. Therefore, as long as the trial func-
tion is the appropriate angular-momentum eigenstate,
its speci6c form becomes less important as l increases.

Another aspect of our results concerns the order in
which levels appear as a function of ao compared with
the order of the levels in a Coulomb potential. We 6nd
(see Table I) that the levels enter as a& increases in the
same order in which they appear in the Coulomb well
for all states up to and including the 4d. This is in
accord with one's intuition as to how these levels should
be ordered, since a low-lying state has a large overlap
with the region of small x where the Debye-Huckel
potential has a Coulomb-like behavior. Harris' results
deviate from the Coulomb order at an earlier stage, the
3s state making its appearance before the 2p.

Before discussing potentials of a somewhat diGerent
type, we mention two ~I+culties encountered in apply-
ing our counting method to the Debye-Hiickel potential.
The 6rst of these occurs because for large l the term
bc(si)xc+' in Eq. (2) very strongly dominates the term
1/x'. Thus as one goes to larger l values it becomes
increasingly O'%cult to extract the counting function
from the reduced radial-wave function. It might be
suggested that one could overcome this problem by
taking advantage of it and writing for x and l large

whence

bc(cd)=x-' 'I (x)-
The objection (not necessarily insuperable) to this is
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Defining a new variable x=r/a and two constants,
xo ro/a and &v=2mVoa'/h——', we find that Eq. (6) can
now be rewritten in the form

d Ng co

+
de I+e

l (1+1)
X2

and we see that the potential is characterized by @co
parameters, au and xo. All statements made earlier in the
one-parameter case are valid here, except that functions
of co become functions of co and xo. In particular, then,
our counting criterion still rests upon determining the
zeros of the counting function, the precise statement

that it will yield a counting function which is arbitrarily
normalized (since I& is arbitrarily normalized) and,
worse, normalized differently at each co, making it
impossible to construct a continuous curve of b~ versus au.

Perhaps a better way out of this problem is to note that
near any critical value of co, b& is small so that in this
range b~(cu)x'+' will, in fact, not dominate 1/x'. This
requires knowing in advance at least the approximate
location of the critical co and leads directly to the second
of the two difBculties. This is the observed fact that as l
increases each branch of bI, consists of two very steep
sections separated by a very flat section. The critical
value of au always appears near the beginning or the end
of the Rat section. Thus the "neighborhood of the
critical cv" is a region containing steep sections of two
adjacent branches of b~ and the precise position of the
critical value is as a consequence hard to locate. For
l&4, we found, however, that the location of this range
can be determined by taking 6nite differences ro„,—~„~,
co „—~ g, etc., and using the resulting succession of
numbers to locate the approximate position of the
critical eo. Construction of the counting function in this
region with a suSciently fine mesh in ~ enabled us in
every case to locate the critical co accurately.

One fact already alluded to makes the two difhculties
discussed in the preceding paragraph less important
than they might otherwise be: Both occur for large
values of angular momentum where the variational
method Of Hams works quite mell. Hence, even if our
scheme became irremediably defective for states of high
angular momentum, an accurate approximate scheme
is available as a substitute.

Ke turn our attention next to potentials which,
unlike the Debye-Hiickel well discussed above, cannot
be characterized by a single parameter. %e take as an
example the Woods-Saxon potential which we write in
the form

V(r) = —VoL1+exp(r —ro)/oj
—',

in which Vo, ro, and a are all constants. The reduced
radial-wave equation at zero energy is now

d'I( -(2m Vo/b') l(l+1)-
+ N)=0.

dg2 ]+e(r—rp) Ia

0.60

0.50—

0.40—

P 0.50—

0.20—

O.l 0

I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I

2 4 6 8 10 12 14 16 18 20 22
Xo

FIG. 2. Curves of zero counting function (parameter plane}
for the Woods-Saxon potentj, al.

now being that there is a bound state of zero energy and
angular momentum f (or a zero-energy resonance in the
s-wave case) for ail pairs of co and xo which satisfy the
equation

bg(a), xo) =0

If we take au and xo as defining a pair of orthogonal axes
in a "parameter plane, " then this equation defines a
family of curves co= or (xo) any one of which is a locus of
points for which the counting function is zero. In Fig.
2 we plot these curves for a Woods-Saxon potential,
conlning our attention to s states. The number of bound
states supportable by this potential for any pair of
values (co,xo) is equal to the number of curves to the left
of (or below) the point (co,xp) on the parameter plane.

The actual process of counting bound states in a two-
parameter potential like the Woods-Saxon well does not
require a knowledge of the family of curves ~=co(xo)
such as those shown in Fig. 2. If, for example, we wish
to know the number of states in the %oods-Saxon well
for co=so, x0=$0, we could simply fix the value of co at
ao and determine the zeros of b~(ru, xo) as xo varies from
zero to xo. Alternatively, we might determine the zeros
of b~(&u,xo) as &o varies from zero to ce. In fact, there are
obviously infinitely many paths ending at (co,xo) any one
of which could be used, the only restriction being that
the path be traversed in the direction of increasing
parameter values. For this procedure to yield a unique
result for the number of bound states requires that the
curves in the parameter plane be monotonic and single
valued, and that two such curves never intersect. To
establish that the curves are, in fact, monotonic and
single valued we observe that if the contrary were true
we would be dealing with a situation in which a state
moves in and out of the discrete spectrum as the
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FrG. 3.Number of bound single-neutron s states as a function of
atomic weight using a %'oods-Saxon potential with the parameters
of Ross et al. (Ref. 10).

potential is made more attractive (say by steadily
increasing the range at a 6xed well depth). But
Schwinger's statement' quoted earlier precludes this
possibility. To show that two curves in the parameter
plane do not intersect, we observe that if such an inter-
section were to occur, then two linearly independent
states of the same angular momentum would be
degenerate at zero energy:

1(t+ 1)I"+ V(r) — N(r) =0

I (3+1)
s"+ V(r) — r (r) =0.

average field assumed in many shell-model calculations.
Thus the results plotted in Fig. 2 can be used to deter-
mine the number of neutron s states as a function of the
atomic weight A. According to Ross et al. ," single-
particle neutron states are described by the parameters
co=0.468, x0=2.73A'" (i.e., V0=42.8 MeV, r0=1.3A'"
X10 " cm, and a=0.4766)&10 " cm). Thus, 6xing co

at the value 0.468 and letting xo vary from zero, we can
determine the values of xo at which the is, 2s, ~ . states
become bound. Then with A = (xo/2. 73)', we can
calculate the corresponding atomic weight. Our results
are shown in Fig. 3.

To count neutron states of angular momentum greater
than zero would require two generalizations of our
method, for we would need, in addition to the central
Woods-Saxon well, a spin-orbit term in the potential.
Thus, first of all, we would require an analysis of a
potential characterized by more than two parameters,
but this could be accomplished by a straightforward
extension of the methods we have been discussing.
Second, because of the spin-orbit force, we could no
longer label eigenstates of the system by l alone, but
would require j= Il&-,' I

as well. However, in each such
state there is an effective radial potential, and the entire
method described here is directly applicable. We shall
not consider these matters in detail here, however, since
our purpose is merely to describe a method and illustrate
it in a few cases.

Since N(0)=s(0) =0, we have at once that u(r)s'(r)—I'(r)s(r) =0 whence u(r) =cv(r), contradicting the
assumption of linear independence.

Although we have performed our calculations merely
to illustrate the counting method, we can attach some
physical significance to the results for the Woods-Saxon
potential, since this is the central nuclear part of the
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