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resonance occurs below threshold for reaction (13b),
while it is above threshold for (13a) due to the fact
that the resonance is also coupled to the E+Z+ channel
with its high threshold. This is a particularly clear
example of the large deviations from symmetry that
can be produced by the mass differences.

The remaining discrepancy which has been reported'
is in pp interactions at a center-of-mass energy of
2700 Mev. As it involves only a factor of about 2 in
cross sections, and the energy is not particularly large
compared to the masses involved, it is clear that this
can easily be accounted for by the mass difI'erences.

To summarize, it would appear that none of the
reported discrepancies between SU(3) and the results
of scattering experiments are so large, considering the
energies at which the experiments have been done, that
they might not be due entirely to the efI'ects of the mass
di6erences within multiplets, with no other large
symmetry breaking mechanism required. Conversely,

the cases in which agreement has been found4' are
quite probably fortuitous. Because our results would
indicate that there are uncertain, but probably quite
large, eGects due simply to the mass dÃerences, it
would seem that scattering experiments may not be a
very fruitful way either of gaining evidence for SU(3)
or of studying the nature of its violations. In any event,
data will be needed at considerably higher center-of-
mass energies than those at which experiments have now
been done.
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A uniled theory of baryons is proposed based on a spinor wave equation that depends on four space-time
points or equivalently on the center of mass and three relative-coordinate vectors. The associated sub-
sidiary condition and the structure of the mass operator are such that the four-point association is main-
tained within a small region of Minkowski space-time with characteristic length and that the theory has
U(9) symmetry in the full symmetry limit. By the couplings of internal motions this symmetry is reduced
to the direct product of the usual unitary-spin group U(3) and the other unitary group U(3) characteristic
of spherical-oscillator-type motions, and then this latter is further reduced to simple rotational invariance.
Baryonic states are assigned to the 165-dimensional irreducible representation (IR) of the U(9) correspond-
ing to the Grst excited shell with respect to the oscillatory motions of relative coordinates. These states are
subgrouped according to the IR of the usual SU'(3) and to the eigenvalue of the relative angular momentum.
Identi6cations with known levels are then made. The whole treatment is carried out covariantly, and
minimum violation of causality is implied inside the particle.

INTRODUCTION

E propose in this paper a unided theory of
elementary particles, speci6cally of baryons,

based on the hypothesis that a particle has a configura-
tion represented by four space-time points y„(n= 1,

, 4). This just doubles the coordinates describing an
elementary particle as compared with the bilocal model'
of Yukawa.

The attractive feature of our theory lies in the fact
that it represents the simplest possible model endowing
an elementary particle with ful/ and 6nite extension in
space-time in conformity with relativistic covariance,

that the usual U(3) symmetry together with its break-
down is directly ascribed to this space-time nature of
particles (rather than to the characteristics of meson-
baryon interactions), and that internal attributes such
as charge and hypercharge are reduced to quantized
internal motions themselves, ' in contradistinction with
the viewpoint of the usual composite models. '

Furthermore, our model implies underlying broken
U(9) symmetry such that its irreducible representation
(IR) (3,0,0, ,0) groups together, baryon super-
multiplets belonging to diferent relative orbital
angular-momentum states.

'H. Yukawa, Phys. Rev. 77, 219 (1950); 80, 1047 (1950);
91, 415 (1953); Progr. Theoret. Phys. (Kyoto) 31, 1167 (1964);
M. Markov, Nuovo Cimento Suppl. 3, 760 (1956).

' T. Takabayasi, Nuovo Cimento 33, 668 (1964}.' S. Sakata, Prog. Theoret. Phys. (Kyoto) 16, 686 (1956);
M. Gell-Mann, Phys. Letters 8, 214 (1964).
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THEORY OF QUADRILOCAL MODEL

The four-point system is equivalently described by
the center-of-mass coordinate

and three relative coordinate vectors x„" (r=1, 2, 3),
which are obtained from y„by a 4-dimensional
orthogonal transformation4

x &=C&~y ~ C&~Cr~=her ($ /=0 1 2 3) (1)

where the constant coeKcients C& must have the
additional special property C' = 2; consequently,

P Crl

Then ~x„'=X„represents the center of mass, while the
three vectors x„", which we call normal axes, describe
the internal configuration of our deformable object
extended in Minkowski space-time.

We denote the momentum vectors conjugate to
y„by q„; they satisfy the covariant commutation
relations'

L"=e„„x'p ' tL",L']=ie,.gL'. (6)

The transformation (5) corresponds to such 4-dimen-
sional orthogonal transformations of y„with respect to
the 0. index as leave X„invariant':

y„"=8 ~y„~, BB =I, QR ~=1.

These include in particular the 54 subgroup of permuta-
tions of the four points y, including transpositions
(y~,y~) and cyclic permutations like (y',ye, y'), (y', y', ye).

The binding mechanism keeping the four points
within a small space-time region around X„to construct
a particle may be supposed to be supplied by a direct
"invariant potential" V working inside the particle in
conjunction with the subsidiary condition stated below
Lsee Eq. (17)]. Under the assumption that V is a
scalar function constructed from

through an orthogonal transformation in the figure
space

(5)

which includes figure-space rotations and reflections.
The former are generated by

According to (1), q„ transform to p„&=C&~q„' which
satisfy

P.' P'j= f~er4' (2)

Then the quantity 2p„p=P„=Q q„represents the
momentum-energy of the particle, ' since (2) contains
$X„,P„$=[ „xPPPj=i8„„Equa.tion (2) also indicates
that x„" and their conjugates p„" are "internal vari-
ables"' which not only are translation-invariant but also
commute with X„. Since (1) is an orthogonal trans-
formation in the "e space, "one has

y aya x ix) 4XX+x rx

a~a —
p (pp —pp+prpr (3)

The choice of normal axes is not unique, but any
possible set of them can be obtained from the "standard
set"'

x '= (12) '"(3y '—y
'—y

'—y ')

4 In this paper suffixes n, P, *. usually range from 1 to 4, and
g, g, ~ * from 0 to 3; Latin suSxes r, s, t, u, run over 1, 2, 3.
The summation convention is understood for any repeated
sufFixes unless other7Jise stated.

'%e set A=c=1, and use the convention of imaginary
Minkowskian fourth component for any real 4-vector; sufIixes ltd,

v, a, . runover1to4, whilei, j, k, over1, 2, 3.
6 If one has to treat a system of n points y ' - . y„",one should

perform an n-dimensional orthogonal transformation for the
separation of center-of-mass motion; thus, one takes (1) with
n=1, ~ ~ n, and )=0, ~, n —1, and puts C =1/gn. Then
X„=Z y„ /n=s„o/gn and I'„= Z„g„~={gn}p„o.The present
quadrilocal model corresponds to the case n =4.

7 A quadrilocal theory is considered also by H. Yukawa,
Y. Katayama, and E. Yamada, with a different choice of relative
coordinates and in a more generalized frame {to be published).

M'= ppp'(lp'p„'p„"+lp 'x„"x„"),

lp= (4pE) "', pp4 ——2%2,

and the wave equation becomes

(P„'+3P)P=0.

(g)

(9)

Evidently (8) represents the (mass)P operator for this
model, for which the characteristic length /0 and the
scale of mass pp are related by (9).

We now define the oscillator variables

a„"=2 '~'(lp 'x„"—+ilpP„"), a„'t=2 '~'(lp 'x '—i4P„"), —

These transformations, which we call bodily transformations,
form in fact an O{3) subgroup of O(4); the meaning of such
transformations is analyzed in detail in T. Takabayasi, NUDP-
Report T-1, 1965 (unpublished) LProgr. Theoret. Phys. (Kyoto)
(to be published)).

V„p= Q (y„~—y„~)(y„~—y„~) =4x„"x„",
t~,Ã

all normal axes are mutually equivalent, resulting in
the O(3) symmetry independent of Lorentz transforma-
tions with the conservation of I.", which constitute part
of the unitary spins [see Eq. (16) below).

The simplest possibility for V is the relativistic Hooke
potential V= V», namely, the sum of 6 invariant
squared distances among y„. The model then implies
the free-particle wave equation

HQ=O, H= (2p) 'q ~q ~+ 'KV -(7)

P&esides the subsidiary condition (17) below). By the
transformation to normal coordinates the center-of-mass
degrees are separated Lowing to (3)],and (7) is brought
to the diagonal form H= (P„'+M')jgg, with
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satisfying the covariant commutation relations

[a„',av't]= &ref& p. ~

It is important to notice that since x4' and p4' are pure
imaginary, the above definition implies that ap"~=ay+,
444't= —444" (the asterisk designates Hermitian con-
jugate), whence (11) means that [a;",44,~]=1 (r and i
not summed) while [444',a4't]= —[a4",444~]= [a4",a4"]
=1 (r not summed). Thus, if we define I,"=44 &a,"

(r and i not summed) and. 444"=444"u4~= —a4'444't
= —(444"ta4"+1) (r not summed), each of 44,

" and n4"

takes non-negative integer eigenvalues 0, j., 2,
representing the number of vibration quanta for each
normal coordinate. For those quanta a;" are annihilation
and a t creation operators, while a4" are creation and
a4"t annihilation operators. Further we write

a„""a„"+1=+r&4" N4"=n—&"& (—r not summed). (12)

themselves but are quantities such as unitary spin,
spin, and mass, which are all self-reciprocal. The theory
is also invariant under the "multiplicative triality"
I&'„'~ 4044„" (40= e-'4&') induced by the unitary operator

U 4
e——xp(2n. ia "&u ')3) (U4)'= 1.

The U(3) breakdown is connected with the situation
that the full equivalence among the four points is
partly violated so that y„4, say, becomes inequivalent
with the other y„" (r= 1, 2, 3).Then the O(3) symmetry
is reduced to O(2) corresponding to the equivalence
among the three y„" alone, and along with it the U(3)
symmetry, for which the O(3) is a specified subgroup,
must also be reduced to isospin and hypercharge
conservation, as can be verified by consideration in
the standard coordinates (4).

To complete the theory (on the one-particle level) it
is essential to impose the subsidiary oondition" (c&(c&X„)
)&44„"tiP=O. This is rewritten as

Then (8) is rewritten as 0 gr Pa— (17)
3P=I442(a„'ta "+6)=pp'(Q n'" &+)3,

and clearly the wave equation is invariant not only
under the O(3) group (5) but under the wider U(3)
transformation in the figure space:

rsvp
a + rt ~ + et(U4c)st Q, U4 I (14)

This indicates that a„" and a„"t are contravariant and
covariant vectors, respectively, with respect to the
figure-space suffix. The generators of the I '(3) group are

A,"=a„'ta„"+5„,
satisfying

[A 'A."]=5"A " 5 "A ' (A —')*=A '

and contain in particular A, "=r4'"& (r not summed).
Isospin components and hypercharge are to be identified
as

T+= T'i+4T2=A&2, T4=-', (r4"&—n"&),

g «) ~(3)3 ~
and are thus created by the oscillatory motions of
normal axes. They commute with both X„and P„.
One has

I'=i(A42 —Ag4)=2Fy, I.'= —2F4,
(16)I.'= 2T2= 2F2,

where F; are unitary spins in Gell-Mann notation. '
The U(3) symmetry contains the invariance under

the internal reciprocity

Really observable quantities are not x„" and p„"

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

Clearly (17) is a U(3) vector equation having U(3)-
invariant meaning, and is compatible with the wave
equation (10) [or (21) below]. The subsidiary condition
electively reduces the internal degrees of freedom from
12 to 9, and at the same time eliminates the difhculties
of infinite degeneracy of mass levels and of negative
squared mass, which otherwise would have occurred.
Let us first assume that P„ is time-like. Then one may
take the center-of-mass rest frame in which all P~ have
vanishing eigenvalues and (17) reduces to u4'&/=0, so
r44" ——0 (recall that a4"t are annihilation operators), so
that the relative-time motion is restricted to the zero-
point oscillation, resulting in r&'"&=+4 r44"~0 [see Eq.
(12)]. But since 44'& is a scalar quantum number it
must be positive semidefinite in any frame. Thus the
subsidiary condition ensures the positive-definite prop-
erty of the operator M' [Eq. (13)], and the wave
equation (10) assures in turn that the quantity

must be positive definite for any physical state, in
accord with the original assumption of time-like P„.
On the other hand if one assumes a space-like P„, then
one can prove that there exists no normalizable solution
satisfying the subsidiary condition (17). It is thus
verified that P„must be time-like as a consequence of
the wave equation and the subsidiary condition.

If one considered the limit la~0, the subsidiary
condition (17),which is re-expressed as P„(x„" il4'p„')/-
=0, would tend to P„x„"/=0, meaning that in the
center-of-mass rest frame all four "events" y„occur
simultaneously: yo' ——y04=y4' ——y04 (yo~= y4 /i) I—n fact, .
however, because of the finiteness of lo, the subsidiary
condition (17) suppresses time-like extensions to a

'0 This condition is analogous to the Lorentz condition (BA„/Bx„)
)&4 =0 in the case of electrodynamics.
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minimum but 6nite degree such that there always
persist zero-point oscillations in relative times. Thus
in our theory the unitary symmetry is necessarily
related to the minimum violation of causality inside
the particle.

The orbital angular-momentum tensor y~„g„~ of
our system (the square brackets denote antisym-
metrization with respect to the indices) is separated into
that of the center of mass and the part due to relative
motion:

3 fp gv) XtpP )+vLp v vLpv z[p pvl

=K4,'= 0. This U(3)' is the symmetry characteristic of
an oscillator-type model.

Moreover both the wave equation (10) and the
subsidiary condition (17) are invariant under the U(9)
group containing U(3) U(3)' as subgroup. The U(9)
generators are

A," „„=O„pO„ap'ta,"

with the properties P„A.",„„=P„A,",„„=0, fA,",p„A"j
=0, and

t A e",pv Av, p f=vIevvOpvA e,pv ~ eOeepAv"v, pv ~

The covariant relative angular momentum" is de6ned
,tv

tors because
W„=P "'L„.P,= ( i/P")—Q„„),x„'P),"P,

—( f/P1/Q)Q „y aq aP

which commutes with E'„and is space-like because
W+p=0. This W„means the in6nitesimal operators
of the little group with respect to I'„, and its magnitude
is positive semidefinite, taking integer eigenvalues
W„'=W(W+1), W=O, 1, 2, . In the rest frame it is
reduced to

8';= —~c,,I,a;"tuk", Wg= L23 etc., lV =0.
Evidently, L„„is the antisymmetric part of the U(3)-
invariant tensor

K„,= ap'"a. ', (Kp„,A,"j=0,
namely L„„= 4(K„„K„p).—The th—ree quantities W„Q,
W'3, and

0=W„K„„W.=W"'W", (W"=a„"Wp)—
are all U(3)-invariant and mutually commuting, and
they correspond to the three degrees of freedom of
rotation of our extended object with respect to an
inertial frame. ~

The E„„ themselves do not commute with the
subsidiary condition. However, we define the associated
space-like tensor

K„„'=O„pO„Ep„
with the aid of the projection operator 0„„=8p„+PpP„/
I', which has the properties

O„„I'„=0, O)I,„O„„—O)t, (19)

"Cf., e.g. , . Pauli, lecture note, CERN, 1956 (unpublished).
"Precisely speaking 0 is a quantity related to couplings

bet&veen oscillations and rotation and not one related to rotation
only. Clearly 0 is also positive seInide6nite.

then K„.' satis6es PK„„',A"j=LK„„',A,"j=0. Since W„
and Oa can be written as W„=—Qp„,qK„q'P„/gP and
0~=8'„E„„'H/"„, they also commute with A". Now E„„'
constitute the generators of the group U(3)'. In
particular, in the center-of-mass rest frame the space
components satisfy fE4v', K»' j=8,7,K;&' I4;&K,&''and—
(K;p')*=K, , while all time components vanish: Kp4'

BARYONIC STATES

To deal with baryons more closely we assume that
all (free) baryonic states are described by the funda-
mental spinor wave equation

where f is a Dirac spinor depending on four points, and
M is a certain operator invariant under inhomogeneous
Lorentz transformations, depending on y„—y„t' and

qp = i8/(B—y„ ) By th.e transformation (1), Eq. (20)
is rewritten as'

where M now depends on x„",p„", and possibly on P„,
and means the mass operator.

The ground state (of internal motion) pQ is speci6ed
by imposing the additional condition

Op& VQ=0 (22)

This is compatible with (17), and also has U(9)-
invariant meaning, since (22) implies

t Ae O pgag eQQ —Sea0„4(Oveav )QQ —0.
In the center-of-mass rest frame Eq. (22) reduces to
44Q lpQ 0 so that for g Q all relative motions are in their
oscillator ground states.

%e now de6ne

I4'.„,= bp.+2PpP„/P,
which is the operator reflecting an arbitrary vector with
respect to the hyperplane normal to P„, and accordingly
has the property of an (improper) I.orentz transforma-
tion: I4.'qQp„= 8qp. In terms of I4! Eqsp. (17) and (22)

A.",„„=Op.ap' a ", A„",„„=K„„,
where the former is equivalent to A, " of (15) in so far as
it operates on any state satisfying the subsidiary
condition (17):

O„a,'tu. 'P =A, "P.
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are put in a unified equation

(x„"+o7 o'R„,P„')iso =0

The plane-wave solution is given by the internal
minimum wave packet with space-time extension of
order lo'.

iso= (irido') ' to(P„') exp(iP„'X„',—lo-'R„„'x„"x„"). (23)

Here P„' and R„„' denote respective eigenvalues,
satisfying P„"=—rtto', where otto is the (lowest) eigen-
value of the mass operator M; and u(P„') is the
constant spinor satisfying (oy„P„'+mo)to(P„') =0. From
(22) one immediately obtains A, ',„go=0, so A, "iso
= WvlPo= &go= 0. In the center-of-mass rest frame, iso

damps in a Gaussian manner with respect to relative-
time coordinates xo'=@4"/i as well as relative-space
coordinates. io This iso does not vanish in the region
where x„" is time-like, but it is normaEzable with
respect to integrations over internal coordinates
including relative times, and, in fact, expression (23) is
exactly normalized to unity. Also each x„"is space-like
in its expectation value, with ((x„")')o=lz' (r not
summed).

If one considered the limit lo~O, then tPo would
tend, aside from the external factor, to a 5 function for
space- and time-relative coordinates, and one should
approach the local theory.

We classify baryonic states under the additional
restriction' UiiP = iP, meaning A „"=Q, n'"' = 3v (v
= integer). For simplicity we consider the more restric-
tive condition

(24)

to allow the "first" excited shell only. This condition is
U(9)-invariant and is rewritten as

a„"ta„"/=0, i.e. , K»/=0.

Then. a wave function consistent with subsidiary condi-
tions is generally written as

gg„&tg„&tg,itipo(tto), (25)

where iso(ttt) is a "generalized ground-state function""
and the summation is to be made over r, s, t and p, ~, ~
with appropriate coetficients such that (25) becomes
an eigenstate of the mass operator M with the eigen-
value m. Note that each individual term in (25),
denoted. ip„,„""(m)= a„"tu„'tu, 'tipo(ore), satisfies P„ip„„.""

'3 This point was emphasized by H. Yukawa, Progr. Theoret.
Phys. (Kyoto) 31, 1167 (1964), for the case of bilocal model."A possibility can be suggested of interpreting this restriction
in terms of parastatistics regarding permutations among the four
points. LCf. Ref. Sj.

j~ One generalizes tto given by (23) mathematically by dropping
the condition that ego should be an eigenvalue of N; namely, one
replaces @so by an arbitrary parameter m and denotes it by Po(m).
This "generalized ground-state function" (or "core function, "
say) does not itself satisfy the wave equation but continues to
satisfy {17)and (22).

X (tto) =Pg „„"'(tto)=P„iP „,""(tto)=0 as a consequence
of the subsidiary condition (17).

Owing to the Dirac spinor character of tP, the total
angular-momentum tensor is

~v =XtvP t+Iv +oirv~ ~ (irv =VtvV t/2~)

so that the covariant particle spin is J„=M„.P./g'P
=5'„+Z„with

Its magnitude,

J„'=W„'+oo+ 2W„Z„, (26)

has eigenvalues J(J+1) with J=W+-,'. The last term
in (26) means covariant "spin-orbit coupling" and is
written also as

2WP„= —(i/2P"') o„„,t,o ~W,P„=(2i) 'W„W~„„

and in the restframe WP„=W X= —(i/2)o;;oo ta;"iro

The magnitudes of relative angular momentum and of
the total J spin are good quantum numbers, while W3
is not, and in its place one may employ the helicity
Jo=—J4/i.

In our model the rest mass should originate in general
from the excitation of oscillatory motions of normal
coordinates and their couplings, as illustrated. in (8).
For the mass operator of baryons the first approach
will be to require that the wave equation (10) should
still be fulfilled, to obtain M= go(a„"ta„"+6)"'.How-
ever, it is more reasonable for baryons to assume the
oscillator formula for M itself

M =po(a„'ta„"+6)=po(A, '+3) (27)

to begin with, where the theory has U(9) synunetry.
The additive constant 3 in (27) corresponds to zero-
point oscillations. The U(9) IR (3,0,0, ,0) with the
dimensionality a=165 exactly represents the "erst
shell" defined by (24), with completely degenerate
mass. Such full symmetry will be reduced successively.
Here we consider the problem merely in a formal
manner.

First we introduce couplings among different normal
axes by (AA)=—A,"A„' and (AAA)=—xoA, "(A„',A,").
These U(3) Casimir operators and the respective ones
of U(3)' are equal for any physical iP satisfying (17):

(AA)iP= K„„'K„„'iP, (AAA)iP= ,'K'i,„''(K„„',K„),')iP.-
In place of them one may employ

(BB)—=B,"B;, (BBB)= ,'B;(B„',B,"), (28)—-
in view of (24), where B;=A," ~~8„,A „"are ge—nerators
of the SU(3) subgroup. By the above couplings the
full U(9) synunetry is reduced to U(3)U(3)'. The
quantities (28) are related to the signature of SU(3)
IR (lip, xo) by (BB)=x((Xy+Xo)+li])io/3(At+ho)),
(BBB)=g(4—4) (2&i+4+3)(4+24+3).

Next the U(3)' symmetry is reduced to the usual
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rotational invariance. ithout going into the possible
mechanism of such reduction, we simply assume that it
electively brings to the mass a new cootribution repre-
sented as the couplings of angular momenta, in con-
formity with the requirements that it should be com-
patible with the subsidiary condition (17) and preserve
the usual U(3) symmetry as well as the relativistic in-
variance. Then such a contribution must depend on 8'„',
W„Z„, and 0 alone Lor equivalently on W„', J„', and
0 alone, in view of (26)j. The simplest mass formula
under the above assumptions is M =Mi+'Mp with

Mi —
II,p(3+A —„'+ag(BB)),

Mp= pp(apW„'+2apWP„),
(29)

"This model corresponds to one for which x„"are no longer
independent variables but are subjected to the constraints
(&„'&„'—pe«)/=0, which are equivalent to the restriction that
all the six invariant squared distances among four points y
are equal and constant: (y„&—y„&)'=so(1—5 p) La, p not sum-
medj. For this model the U{3) symmetry reduces to the 0(3)
symmetry (5) with the conservation of I." of (16) only."S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).

'8 Note that on account of the conditions (17) and {24) on the
one hand, and of the additional degree of tt' polarization on the
other, one needs the set of 9 commuting quantities for a complete
classification of internal eigenstates.

where in particular we have neglected terms depending
on (BBB)and 0.

On account of the M~ term the wave equation now
involves, via 8'„, explicit couplings between the
internal xi„"p„j" and. the external P„, and it further
implies a higher order diGerential equation in X„.
(Another way of looking at the equation is to regard it as
simply applying for each eigenstate of W„' and J„'.)
By analogy with the case of the rotator model'6 it is
natural to assume that ap)0 Lsee (35) below). The
formally introduced "spin-orbit coupling" should be of
d,inherent origin from similar ones such as occur in
atomic physics. It explicitly contains y matrices, but
still M formally maintains the meaning of mass operator.
In fact, from (21), one gets by iteration (P„'+M'

iP„)y„,M—])$=0, which is the Klein-Gordon equation
(10), provided that P„[y„,Mj=0. But this condition is
really satisfied by the spin-orbit coupling term since

P,Lv„W&„j= (p/4P'~ ).„.„,P,b „„„1W,P,=O.

Finally the U(3) symmetry is broken in a fashion
analogous to that of Gell-Mann and Okubo (GMO),""
to obtain M=Mi+Mp+Mp with

Mp ———~iY+sp(T(T+1)—xi Y'—$(BB)}. (30)

The average of Mpaver any S'U(3) IR vanishes.
Baryonic states (25) under the shell condition (24)

are now classified according to simultaneous eigenstates
of (28) and"

(I', 'P, Tp,W„',J„',O,Jp), (31)

as shown in Table I, where identifications with known
levels are indicated.

TABLE I. Baryonic states in the first she11.

z (x„x2) ~aa) &aaa& e'

1 (0,0) 0 0 0

8 (1,1) 6

Baryon

0 '+ r *(1405)

(x,~,z,=)

g1/g~(1688), Fo*(1815},~ .

2

10 (3,0} 12 18
3

k+0
(&8/2*, ~1*,-"I/2', ~ )

Ã3/2*{2920), ~ ~ ~

J(J+1)——;=3(J——,') =2+&,
-', (BB)=3(J+-,') =J(J+1)+9/4,

(33)

(34)

'9 T.Takabayasi and Y. Ohnuki, Progr. Theoret. Phys. {Kyoto)
30, 272 (1963);T. Takabayasi, Nuovo Cimento 30, 1500 (1963}.
In this latter paper the relation (32) was pointed out.

~ This implies that Fo~(2405) should have J~=)+, which
assignment was also adopted by J. Schwinger, Phys. Rev. Letters
12, 237 (2964). The "second shell" with A,"=6 yields odd-parity
states.

+ Considerations about the predicted states (i.e., those left
unidentified in Table I), for which some evidences exist, will be
given elsewhere.

For example, the totally antisymmetric eigenfunction

= (i/gP) p„„iP a '"a 'ta&.'9'p(m)

yields the unitary singlet, which is identified with the
known Yp*(1405). According to the mass formula (29)
and (30) its mass is given by

m(I'pP) = 6iip, (32)

from which one may fix the unit imp as pp=1405/6
=234.2 MeV. It is remarkable that this exactly agrees
with the basic mass unit which we previously introduced
from empirical mass systematics of baryons and
me sons. "

We assignby convention oddintrinsic parity (J~= —, )
to the "ground state" fp, then all baryonic states in
the "first" sheU should have even parity. ~ The feature
of the "first shell" is that once an SU(3) IR and relative
angular momentum are specified, 0 takes on a unique
eigenvalue, and that for every SU(3) IR its dimen-
sionality d equals the multiplicity due to TV to be
accommodated therein: d=Zs (2W+1). In fact,

165= (1,1)+(8,8)+ (10,10) .
Although experimental identifications are not yet
complete, "it is the characteristic feature of our mode1
that our super-supermultiplet 165 accommodates the
usual octet and decuplet together with their supposed
(first) Regge recurrence supermultiplets, by grouping
diGerent relative orbital angular-momentum states into
a single U(9) representation.

The usual baryon octet and the ~3+ decuplet are
comprised in an "18-piet," or, say, 56-piet, according
to the P-state nature of the internal motion, W=1.
This positive-pairty 18-piet has further properties
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which allow us to reduce our baryon mass formula to a
simpler form for the 18-piet.

K1—6K2 )

Cg= 83= 3 &

=2

Po= Kg+ K2,
(35)

and notes (33) and (34), one obtains the mass formula
for the 18-piet~

%=as{28+6(J+st—Y)+[T(T+1)—at Psj} (36)

which is in good agreement with observations. %e note
that this semi-empirical formula contains, besides the
GMO relations, ' 'r the following simple relations: (a)
The central mass of the octet and that of the decuplet
stand in the ratio (stts)/(ess. )=$. (b) The isosinglet
masses belonging to the octet and to the decuplet are
in the ratio ttsa/ttso-=as. Both of these relations are
in excellent agreement with observations. ~ (c) The
common spacing within the decuplet is related to the
octet spacing by 3io=, (tts„-.—tttw), which yields bm= 143
MeU as compared with the experimental value bqo= 145
MeV.

(ii) In the present multilocal scheme, leptons will
be assigned to a trilocal con6guration; for mesons an
appropriate con6guration is one which consists of eight
points subjected. to special constraints so that they again
have nine internal degrees of freedom.

(iii) This paper is mainly devoted to establishing a
concrete model verifying that elementary-particle sym-
metry should follow naturally from the hypothesis of a
space-time con6guration of the particle, such as
described by a nonlocal framework. Clearly, our theory
is still quite restricted in its scope, as we have established
it merely on a one-particle level. However, this is the
important step, since the quadrilocal theory means a
rather drastic theoretical extension, and since our treat-
ment already manifests characteristic features of the
theory, including the qualitative prediction of the ex-
istence of broken U(9) symmetry with its definite
irreducible representation to be realized.

The treatment of interactions is the main problem to

~ This formula is essentially the one presented in T.Takabayasi,
Phys. Letters 5, 73 (1963).

ss T. Takabayasi Progr. Theoret. Phys. (Kyoto) 32, 981 (1964);
Nuovo Cimento 3, 666 (1963).

COCCI.UDING REMARKS

(i) Within the limits of the preceding arguments
the parameters occurring in the mass formula (29) and
(30) are not calculated, but one may estimate their
values by comparison with observations. In fact, if
one takes the choice

be pursued in a further study, in which one must perform
second quantization. The interesting point then will be
to see how the assumed 6nite extension of the particle
should modify the interactions.

The process of symmetry-breaking, which was
regarded. as being of internal origin, should be reconsid-
ered from the standpoint of interactions; the electro-
magnetic interaction is related to this problem also.

(iv) It is interesting to note that our broken U(9)
synunetry has a character similar to the SU(6) recently
discussed, '4 although the original ideas and standpoints
are quite diferent.

Our theory is based on the set of three internal
vector variables c„" together with their adjoints c„'~
derived. from the assumed quadrilocal structure. If one
postulates instead that the particle has internal
structure represented by three 2-component spinors
a " (r=1, 2, 3;a=1, 2), one can construct a model
embodying U(6) symmetry with the U(6) generators

p
——a "ap". This contains the spin represented by

J;=-s,a "'(o~) sas' and unitary spins corresponding to
A,"=a "u '. Since this model has six internal variables
only, it is much more restrictive than the quadrilocal
model, and, it indeed gives the relation (34) for the
18-piet. This scheme [like the usual SU(6) theory) is
not Lorentz-covariant. To remedy this de6ciency we
start with the internal variables consisting of the set of
three 4-component spinors f', ' (r= 1, 2, 3) and impose
the commutation relations [f',",i,'j= 3„3„,(i "=i ~y4)—
The model then embodies U(6) symmetry in a covari-
ant way with the generators A, ',„„=O»O„,(i'y,y,i')
+28„,0„„.This model resembles a composite system of
three rotators rather than a multilocal one.

All these points, including a more detailed treatment
of the mass-formula problem, will be discussed further
elsewhere..Vote added iN proof The investig. ation of the quadri-
local model referred to in Ref. 7 is presented by Y.
Katayama, E. Yamada, and H. Yukawa, Progr. Theo-
ret. Phys. (Kyoto) B3, 541 (1965). The uniled model
of baryons and mesons based on three spinor internal
variables i', ' (which are equivalent to three triads),
referred to at the end of the text, is given in detail in
T. Takabayasi, NUDP-Report, T-8, 1965 [Progr.
Theoret. Phys. Suppl. (Kyoto) (to be published) j.
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