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Levinson's theorem is generalized to systems of three particles. The usual two-body result relates the
number of bound states of given angular momentum to the corresponding eigenphase shifts of the S matrix.
Because of disconnected diagrams the three-body S matrix has continuous eigenphase shifts in addition to
any discrete ones; however, it is possible to de6ne a unitary connected matrix that has only discrete eigen-
phase shifts. Levinson's theorem is given in terms of these phase shifts, and it is the same as the usual multi-
channel result, except that there are an infinite number of eigenphase shifts to be summed over for each
value of the total angular momentum. The proof is carried out within the framework of the Faddeev equ8, —

tions by generalizing Jauch's proof for two-body systems.

l. INTRODUCTION

~M~WE of the important problems in the theory of
elementary particles is the determination of

whether or not a, particle is elementary or composite. In
a Lagrangian theory an elementary particle must be
put in the Lagrangian. In a model based on dispersion
theory there is the well-known ambiguity of Castillejo,
Dalitz, and Dyson. ' They showed that an infinite num-
ber of solutions exist in the charged scalar theory
without recoil. In both kinds of theories, it has been
suggested that Levinson's theorem' could be used as a
means of selecting the proper Lagrangian or the proper
solution to the dispersion relations. In its simplest form
as first given b» I.evinson, the theorem says that in the
scattering of a particle from a, spherically symmetric
central potential, the number of bound states of the
particle in a given angular-momentum state is related
to the phase shift by

X~=b(0) —b( ).
Jauch' generalized the proof to a larger cia.ss of po-

tentials tha, n that treated by Levinson, and also he
showed that the relation (1.1) is a result of the com-
pleteness of the eigenfunctions of two operators H and
H p, provided that the interaction term tends to zero
sufficiently rapidly at large distances. H is the full
Hamiltonian for the system, and Hp is the Hamiltonian
in the absence of interactions. The result has been
generalized to the case in which H p also has a discrete
spectrum ' '

(Ytt tYII,)sr= b(0) —b(—~);
3,'~ and 3'~, are the number of bound states of H and

Hp respectively. Since Hp is the Hamiltonian operator
for a, noninteracting system, all points in its discrete
spectrum represent elementary particles. Levinson's
theorem has been further generalized to many-channel

' L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

-'N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949).' J. M. Jauch, Helv. Phys. Acta 30, 143 (195'lt).

' J. C. Polkinghorne, Proc. Cambridge Phil. Soc. 54, 560 (1958}.' M. Ida, Progr. Theoret. Phys. (Kyoto) 21, 625 (1959).

systems by Kazes. ' In view of the possible application
of Levinson s theorem to determining which equations-
and which solutions to them —nature actually selects,
it seems important to extend the theorem to systems of
more than two particles. In this paper, we generalize
the theorem to three-body systems.

The three-body problem has two important complica-
tions which are not present in two-body problems. One
difference is in the number of variables in the system.
In two-body scattering, the 5 matrix can be completely
diagonalized by projecting out the total angular mo-
mentum, whereas in three-body scattering the 5 matrix
depends upon additional energy and angular variables,
and a further diagonalization is necessary. Unfor-
tunately, it is not known how to do this. The second
major diGerence is the connectedness structure; that is,
in three-body scattering there exist situations in which
two particles interact and the third particle is always
beyond the range of the forces. As a result of this dis-
connectedness, the kernel of the Lippmann-Schwinger
equation has a continuous spectrum. ' Similarly, the 5
matrix will have a continuous spectrum, that is, it will
not have only discrete eigenphase shifts which can be
summed to give an equation. such as (1.1).However, be-
cause of the simple origin of the continuous spectrum,
it is possible to de6ne a unitary operator closely related
to the 5 matrix and having only a discrete spectrum.
Unlike the two-body case, there are here an in6nite
number of eigenphase shifts even after the separation
of angular momentum, and the expression for the num-
ber of bound states involves an infinite sum. In the
special case in which there are no two-body bound
states, the number of three-body bound states is shown
to be

1S=—+{8„(0)—b„(c))}, (1.3)

6 E. Kazes, Nuovo Cimento 13, 983 (1959).
7 S. steinberg, Phys. Rev. 133, 3232 (1964).

where 8 are the eigenphase shifts of the unitary opera-
tor mentioned above.

The proof of (1.3) is ca,rried out within the framework
of the set of three-body equations developed by

B 137



B 138 JON ALAN WRIGHT

Faddeev, ' " and it is based upon the completeness
relationships of the eigenfunctions of the operators H
and Hp. If there are no two-body bound states, the
eigenfunctions of H and Hp are related to each other by
one isometric operator, the Mgller" wave matrix. In
Secs. 2 and 3, we restrict ourselves to this situation, as
it contains all the essential problems without the many
algebraic complexities that arise when two-body bound
states are permitted. In Sec. 2, we introduce the
Faddeev" equations and the projection operator onto
the three-body bound states. In Sec. 3, we derive Eq.
(1.3).

In Secs. 4 and 5, we relax the restriction on two-body
bound states to permit one bound state between each
pair of particles. Section 4 contains the generalization of
the Ml6ller wave matrices to allow for this possibility,
and Sec. 5 contains the generalization of Eq. (1 3).
Finally, the more tedious calculations can be found in
the Appendices.

(2 4)

The completeness of the eigenstates of H and Hp gives
the relationships

and

dE~yz)Qz~ =I (2.5)

dE~P~)g~~ =I I, . —(2 6)

Here I is the identity operator and I'& is the projection
operator on the discrete spectrum of FI. Combining
Eqs. (2.5) and (2.6), we have

states of Hp onto the continuum eigenstates of H is
called the Mfiller wave operator" and is given by

I'g ——Q~Q —QQt . (2.7)

H=Hp+V, (2.1)

where Hp is the free-particle Hamiltonian and U is the
interaction term. We assume that all the eigenstates

ga of H, are continuum states with energy E)0,

Hpg@=EQ@, (2.2)

and that H has N points in the discrete spectrum with

E„(0(rl,= 1& 2, , X). H is assumed to have the same
continuous spectrum as Hp.

HP@=EP~, with E)0,
HP =E P, with E„(0. (2 3)

The isometric operator that maps the continuum eigen-

8I.. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
/English transl. : Soviet Phys. —JETP 12, 1014 (1961)].

'L. D. Faddeev, Dokl. Akad. Nauk. SSSR 138, 565 (1961)
/English transl. : Soviet Phys. —Doklady 6, 384 (1961)j.

' L. D. Faddeev, Dokl. Akad. Nauk SSSR 145, 301 (1962)
LEnglish transl. : Soviet Phys. —Doklady 7, 600 (1963)g.

'~ L. D. Faddeev, Mathematical ProbLems of the QNantlm Theory
of 5catterieg for a Three-Particle System (Steklov Mathematical
Institute, Leningrad, 1963), No. 69 (English transl. : H. M.
Stationery Ofhce, Harwell, 1964).

» C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
23, No. 1 (1945).

2. THREE-BODY WAVE MATRICES

In this section, we outline the method of proof and
introduce the Faddeev equations' " and the isometric
operators which are the generalization. of the Mgller
wave matrices'2 to three-particle systems. A complete
account of thy operators and their properties can be
found ln Ref. 11.

The basis for the proof is the same a,s for Jauch's
original proof' for two-body systems. All calculations
are carried out for fixed total angular momentum /. The
total Hamiltonian is split into two parts,

Since the trace of a projection operator is the dimension
of the space it projects onto, we have, for the number of
bound states,

lV= TrPq= Tr(QtQ —QQt) . (2.8)

"R.Omnes, Phys. Rev. 134, 81358 (1964).

It is convenient to use two sets of variables in the cal-
culation of the trace in (2.8). The 6nal answer is in-
dependent of the variables used, but the proofs are often
simpler for a particular choice of variables. One set is
the same as that used by Omnes, "which consists of the
individual kinetic energies (&vr, pps, cps) in the over-all
center-of-mass system, a total angular momentum J,
and its projections M on a space-Axed axis, and 3f' on a
body-fixed axis.

The second set of variables is essentially an angular-
momentum decomposition of Faddeev's. A pair of par-
ticles is denoted by the symbol o., for example, the 2-3
pair is denoted by n= 1. In the center of mass of pair m.

we introduce the kinetic energy v and the relative
angular-momentum variables I and m . These variables
refer only to pair o.. In the total center-of-mass system
we let o) be the translational energy of the center of
mass of pair n and the third particle. A third total-
energy variable E=cp +v will often be used instead of
or . For simplicity, we denote the angular variables l
and m by X; sometimes X is omitted entirely, as it is
inessential to the calculations. Obviously, there are
three sets of variables as there are three distinct pairs.
of particles, and we will often change from one descrip-
tion to another. The total angular momentum J and its
projection M on a space-fixed axis complete the set of
variables. We will always work in a system with J and
M fixed, so they will be omitted.

Before discussing the three-body problem, it is neces-
sary to have the solution to the two-body I.ippmann-
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Schwinger equation" for the I, matrix,

t (v. ; v.', X.; s) = V.(v. ; v.'; X )

V.(v. ; v.";l~.)t„(v.";v.'; l~; s)
(2.9)

a=p=p; n&P
[W t, Wp)

The term Wp is that part of (2.13) with no delta func-
tions, that is, the connected part. Using Eq. (2.15) we
have, for A,

Ke have assumed that the potential is of the form
Vis(

~
ri —rs

~ ) in coordinate space so that V and t are
diagonal in X . The kernel of the three-body equations
involves the operator T (s):

+[Wp",Wpf+ Q [W t, W ). (2.17)

The last term is the two-body expression equivalent to
Eq. (2.7) and can be written

(v,z,~
~
T.(s)

~

v', V,~') = 8(~.—ei.')

Xbg, , li ')t (v, v '; X; s—pi ) . (2.10) [W t,W„]=8(pp —
pp ')P (2.18)

Although the three-body transition operator satisfies
an integral equation like (2.9), the kernel is not compact,
because of the disconnected graphs. However, it is pos-
sible to define operators that satisfy a set of coupled
integral equations in which the disconnected terms are
explicitly summed. An iterate of the kernel of these
equations has been shown by Faddeev to be compact.

Let M' a(s) be the amplitude for an interaction where
pair n is the first to interact and pair tt is the last. These
operators satisfy the equations

M a(s)=8 aT (s) —T (s) P M p(s). (2.11)
Hp —S V~~

Here IIo is the energy operator for all particles free and
noninteracting. In our representation, it is just multi-
plication by E=v„+re . The kernel of the operator will

be written

where P is a projection operator on the two-particle
bound states of pair o.. Since we assume there are no
two-particle bound states, P =0. Later we include the
possibility of these bound states.

Because P =0, we need only take the trace of the
terms in (2.17) that do not have an over-all delta func-
tion. The answer is given in terms of the three-to-three
5 matrix, which is defined by

Spp ——b(pi —pp') 8(v —v') 5(X,X')
—27K i(tip+iv pp v )Tpp, (2.19)

with

Tpp= P M a(pi, v, li co, v X ' s= v +pi +ie) . (2.20)
O. , P

The trace of A is evaluated in Appendix A, and the
separation of eigenphase shifts is discussed in the next
section.

or
(v,pi,) iM.a(s) iv', pi', X)=M.p(pi, v, t, ; pp', v', V; s)

3. THREE-BODY LEVINSON THEOREM

( „„,M ~M.,(.) ~,', ,', ,',M')

=M~p(0)i, pip, pps&M& ppi &pps &Ms 1
M

& s) &
(2.12)

The number of three-body bound states of the system
can now be obtained by taking the trace of both sides
of (2.14). The result, as given in Appendix A, is

depending upon which variables we are using.
The generalization of the wave matrix is given by

Qp = 8(pp —ni') 8(v —v') 8(li,X')

W=ix
~&oo ~&oot

dE Tr Tppt —Tpp . (3.1)

M~p((d) vl Al Gp
1

v
q

X ) s = pi +v +'Le)
(2.13)

If there are no two-particle bound states, the projection
operator on the three-particle bound states is

The prime on the integral means that terms with an
over-all delta function are to be omitted from the trace.
To obtain a result in terms of a sum over eigenphase
shifts, it is necessary to have a compact operator. A
connected T matrix is defined by

A =Qp~Qp —QpQp~. (2.14)

The operator Qp is a sum of several terms which we
write as

with
S,= 1 27ri8(E E')T„— —

5,=Sgt52~53tSop.

(3.2)

(3.3)

Qp
——1—8'g —8'g —F3—8'p,

with 8'~, 8 2, 8'3 being the disconnected terms,
Si——1—2irih(E —E')Ti, (3.4)

(rp, v, hi W. in'', v', X')= 8(rp„—cp.')5(X.,) .')
X t~(v ~ q

v ~ l X~ l v ~ +1 )/( evv~ ze) . S, is a units, ry opera, tor, and it is easily verified tha, t T,
has no delta functions in it. For fixed total energy, T.
is a square integrable operator, since its kernel is'4 B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

(2 15) Here Si is the two-body S matrix multiplied bv
8(ppi —(pi ):
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00 B B
dF. Tr T,t T, T, —T." . (3.12)

BE BE
X=im-(3.5)TrT, T,~( ~ .

Because of unitarity, T, is also a, normal opera, tor,

T 'T.= T.T.t,
To compute the trace, we use the eigenfunctions of T,

(3 6) a,s a ba, sis. The diagonal elements are easily computed
to give

bounded for all values of the variables and the integra, - This can be rewritten with T, rather than 5„
tion is over a finite ra, nge; that is,

1
T,= ——Q e" sins„~e„)(e.~. (3.7)

and therefore it has a spectral expa, nsion of the form
BTc

(e„t T,'
BE

Bl q—T,—T, "I e„)=e""sinh (e I Ie
BE

The eigenvalues depend upon the particular order of the
5 in (3.3) but the final result does not. For the total
energy E=O, Tr(T,tT,)—=0, since the subenergy in-

tegrations are over an interval of zero length. Therefore
the eigenvalues sin'8(E=O) all vanish identically.

We now write (3.1) in terms of Soo,

00 ~
BSpp BSppt-

l7= j~ dE Tr Spp~ —5pp
Q

4~' BE BE

1
— (Too+ Toot) (3.8)

BT'—e""sinh„(e„~
~
e„). (3.13)

BE

(e
~

8T,/8E,
~
e„) —B(e"'"sinhn)

(e ~e„) vrar'
(3.15)

The eigenvalues of T, are given as a functional which is
stationary with respect to variations of the wave
functions,

(—e'~"/m) sinh„=(e„~ T, ~e„)/(e„(e„). (3.14)

Taking the derivative of both sides with respect to E,
we have

BT, BT~ 2i d6
(e

~
T.t —T,

~
e„)=—sin'h„. (3.16)

BE BE m' dE

since the derivative of the eigenfunction gives zero be-
cause of the stationary property. Finally, then, (3.13)then we use the fa,ct that tra, ce Tpp va, nishes at zero a,nd

infinite energy to eliminate all but the 5 ma, trix. Sub-
stituting (3.3) for 500, we have

r~ I

X=4m. dE, Tr (5,'Si"S,tSg") (5,5gSiS,,)
BE

To obtain the tra, ce, the a.bove expression is summed
over e to yield

—(S3S2SiS,) (S,tSit52tS, t) . (3.9)
BF

d8„
dE P sin'h—

dE
(3.17)

Using the unitarity of the 5 matrices and the identity
TrAB= TrBA, we ha, ve

Interchanging integration and summa, tion, we have

iV = Ph„(0)—h„(~-)

&Y=-
4Vr. p

B
dE Tr S,t 5,—5, 5,~

BE BI'
sin28„(0) sin28„( ~ )

(3.1S)

B B
+Sit Si+52t 52+53' 53

BE BE BE

B B—Si Sit —Sg Spt —5,, 5," . (3.10)
BE BE BE

The prime on the integral reminds us that all the terms
with an over-all delta function are to be omitted. Finally,
then, we have

The integration and summation can be interchanged if
the partial sums are bounded by an integrable function.
The partia, l sums are bounded if only a finite number of
pha, se shifts have arbitrarily large derivatives. We
assume tha, t this is the case. The bound is integrable
provided that the T matrix falls to zero sufTiciently

rapidly as E—&~.
Since the amplitude vanishes at in6nite energy,

sinh(~ ) = 0; we have already shown sinh(0) =0, there-
fore we ha, ve

00

4X p

B B
dE Tr S,t S.—S. S,t . (3.11)

BE BE

1
1V=—P(h (0)—8 (~)). (3.19)
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4. THREE-BODY WAVE MATMCES IN THE PRES-
ENCE OF TWO-BODY BOUND STATES

In this section, we extend the discussion of Sec. 2 to
allow for the presence of two-body bound states. In
that case, it is necessary to know the bound-state wave
function P:

P (v;X )=

this term out, we define an operator E p and the cor-
responding operator X p by

I-.p= (.+8.)~.(.)~(-- -—-') ~-p

+E»p(cd, v, X; cdp, s) . (4.7)

The residue of M p at the double pole with both wave
functions removed is denoted Ii p, and it is obtained by
separating E p into a term regular at s= —8 +cd and
a pole term:

,y (, ~ ) ( ) (41)
E p=G p+[(v +8 )p (v )/(s+8 cd )]—

where the binding energy is —8 . The wave functions
are normalized to unity:

dv IP (v; X ) I'=1. (4.2)

and the residue at s=co —8 by

Lr»p(cd»q cd qv )X l s) = (s+8» cd»)

Ke will assume that there is one s-wave bound state in
each two-body system. This is not essential, but it
simpli6es the algrebra considerably. In this case,
X = fl,m} =—0 for the bound-state pair e.

The bound state causes the two-body t matrix to have
a pole at s= —8 . The three-body amplitude N p will
then have a pole at s=co —8 . Similarly M p has a pole
at s=cop' —Bp. The residue at these poles and at the
double pole s=~p' —Bp——co —8 are closely related to
the 5 matrices for bound-state scattering. To be more
precise, it is not the residue of M p but rather the residue
of M p with the two-body wave function projected out.
Ke list these residues and their relationship to the 5
matrices and the Mgller wave matrices in Eqs. (4.3)
to (4.12). For a complete discussion of their properties
the reader may consult Ref. 11.The residue at s =cop' —Bp
with the wave function projected out is given by

L»p(M&P&hi Mp i s) (s+Bp cdp )

"M p(cd, v, X; vp', vp', 0; s)
0p(v p')dv p', (4 3)

Pp +cdp s

Lp (cd, v, X;cd '; s= 8+—cd '+ip, )

(cd+/+8» cd» zp)
(4.10)

The 5 matrix is given by

S»p= 8»p8(cd» cd» )
2si(cd, 8— cdp'+—Bp)—T p(cd; cdp') (4.11)

and

Sp = 2ll"g(cd+V+8 cd ) Tp (cd P X' cd ), (4.12)

where

T»p(R»p Mp )—:F»p(cd»i Mp j s cdp Bp i tp)

Tp»(cd)PEA l cd» )=Q Ep»(cd) Pq Xl cd»
q
s= 8»+cd» +M) .

P

The subscript zero denotes a state with ail. particles
free, for example, 50~ is the 5 matrix for particle-1
scattering on a bound state of particles 2 and 3 with all
final particles free. 5~2 is the 5 matrix for a rearrange-
ment collision with particle 2 free initially and particle j.
free in the final state.

The 0 operators are formally defined by Faddeev" to
be a mapping of one Hilbert space onto another. De6ne
the space A by the orthogonal sum

I =hoo+h&o+h. o+h„ (4.13)

E»p C»p+F»p(K»i Kp i s)

&&I:( '+8 )0 ( ')/(s+8 — ')3 (49)

We define three isometric operators by

where hp is the space of functions of the variables

(44) cd, v, X that satisfy
V»+Cd» S

The 3E p satisfy the relation

M p(cd, v,X; cd', v', X', s) =Mp *(cd',v', X', cd, v, X; s*), (4.5)

and the I. p satisfy

I. P*(cd,v,X; cdP', s*)=LP (cdP', cd, v, X; s) . (4..6)

dcd dvI fp(cd, v, X) I'( ~,
0

d~-If-( -) I'& (4.15)

and h is the space of square integrable functions of cu

The L. p operator has a unity term in it coming from the
projection of the term T 8 p in Eq. (4.3). Separating The subspaces hp, h reduce the total energy operator 8
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defined on h as follows:

if fcrohp, then H fcr (co——+v) fcr
(4.16)

if f oh, then Hf =(-B +or )f .
Here H is the total energy of a free or "asymptotic"
system, either a bound state plus a free particle or all
particles free. The total Hamiltonian H acts on a space
h which is formally identical to hp. We now define an
isometric operator 0 which maps h onto h. It is reduced
by the subspaces ho, h with

E=ix
BToo BToo

r Toot —Too

B B
dE Tr To ~ To —To Toat

BE BE

The W operators are given in Eq. (2.16), and the actual
calculation of the traces is done in Appendices A and B.
The number of three-body bound states is given by

oo B
+P T.p' T.p T.p

T—.p'
—min(Bar&P) '-

Qfo= Qofo

Qf =0f (4.17)
If we write the T matrix in block form,

Too Tpl
T10 T11
T2p T2]
T8p T81

T02 T08

T12 T]8
T22 T28

T82 T83.
QptQ =I lr p

——5(or —or ')c1 p,

0'0
then

rr

)V=zm. dE Tr Tt T—T Tt
BE BE

Qpt0p = Ip = cr(or —co') cr(v —v') 8(X,X') (4 18)

The states fp and f are continuum states, and they are
mapped only onto continuum states of II in h. Hence if

fp is a discrete eigenst. ate of H, then Qtfo 0 Th——e.
orthogonality relations

. (5.2)

(5 3)

also hold where Ip a,nd I are the identity operators on
hp and h, respectively. Finally, then, we have

The S matrix can also be written in block form,

S=I 2+i "p(E L")T—,
— (5.5)

('4 19) wit, ll0.0,t+Q 0.0.t =I P. , —
Io 0 0 0
0 I1 0 0
0 0 I2 0
.0 0 0 I8

where I is the identity on h and I'd, is the projection
operator on the space spanned by the discrete eigen-
states of H. Since h is formally the same space a,

is the same as Ip, and (4.19) becomes

Ap=QptQp —QpQpt —Q 0 0 t.

sh(), I
and Ip, I are defined in Eq. (4.18).With the use of the
above relation, the expression for E can be rewritten

(4 20) in a form similar to Eq. (3.8):

By taking the trace of (4.20) we have an expression for
the number of bound states of H.

BS
iV=— dETr St —S

4m BE

BSt
+ (S"—S) . (5.6)

BE BE

5. THREE-BODY LEVINSON'S THEOREM IN THE
PRESENCE OF- TWO-BODY BOUND STATES

The trace of the first two terms of the Eq. (4.20) has
already been evaluated with the exception of the parts
having an over-all delta function. Tha, t pa,rt wa. s given
in Eq. (2.18),

[W t, W ]=6(co co ')P =I P—

Since the trace of each amplitude T p i.s assumed to
vanish at its threshold and at infinite energy, and since
the a,mplitudes are continuous through other thresholds,
the term

dE Tr (St—S) =—0.
BE

When there were no two-body bound states, I was
zero, but now it must be included. The identity opera, —

tor is replaced by 0 t0, since they are equal, and then
Ad becomes

Define a, unitary operator U by

51~52~53t 0 0 0
0 I1 0 0
0 0 I2 0
0 0 0 I,I

(5.7)

'a, /=0; a&P
[W t,Wpj+[Wpt, Wp]

+Q (P 0 tQ —0 0 t). (5.1) S,=c US, (5.8)

The operator 51t$2~58~ was discussed in Sec. 3. A uni-
tary connected 5 matrix can now be defined by

I
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and a connected T matrix by

S,=I 27r—i6(E E'—)T, .

states is

(5.9) &=2 [&-(0)—~-( )j

Substituting Uts, for S in Eq. (5.6), we obtain

z B B
Ã= — dE Tr (S.tU) (UtS,)—Uts, (S,tU)

4x BE BE

With theuseofs, S,t=I, UtU=I, andTr(AB —BA) =0,
the above expression simplifies to

i ' BU~
E=— dE Tr U

4m BE BF

BS, BS,t-
+S,t —S,

BE BE
(5.10)

The prime on the integral requires that the terms with
an over-all delta function be omitted, that is, the U
terms. Finally, then, we have

BS,t-

BE

Z BS,
X=— dETr S ~ —S,

4m BE
(5.11)

and it is square integrable, since all integrations are
over a finite range and there are no singularities in T,.
Hence it has a spectral decomposition

The eigenfunctions of T, are used to compute the trace.
For 6xed energy T, is a normal operator, since unitarity
requires

T 'T.= T.T.t

The phase shifts are determined only modulo m, and
since they must be a multiple of m at inlnite energy, we

are free to choose them to be zero. We can further re-

quire them to be continuous across the thresholds of

newly opening channels. Rather than require the phase
shifts at infinite energy to be zero, we will specify that
only a finite number can be nonzero. The sum of the

phase shifts will converge at any energy, and the only
contribution will be from the elastic phase shifts at their
thresholds

& =2 2 ~.."(—&-)+2 ~-"(0)—2 |'-(") (5 15)
n na
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APPENDIX A

In this Appendix we evaluate the trace of the right-
hand side of Eq. (2.17),

T,= Pe""sinb„~ y„)Q—„~, (5.12)

O, , p=o asap
[W t,Wp]+[Wpt, Wp].

where @ form an orthonormal set not necessarily com-
plete. To make the set complete, an orthonormal set of
functions spanning the null space of T, is added. The
trace in Eq. (5.11) is computed with the ct 's as a basis.
The diagonal elements are given by

We have left out the term [W t,W ], since it is given

by Eq. (2.18).Although there are a great many terms to
evaluate, only three of them are diferent, so it is
sufficient to calculate

BS. B5,t db„
(y. ls.'

'—s. '
Iy.)=4i ".

BE BE dE
(5.13)

and

A =Tr[W ~W j,
Ao =T [W t,Woj,

App
——Tr[Wp", Wpg. (A1)

Suppose the thresholds are ordered in the following way:

0& —8,& —8,& —8, ;

then the answer for the number of three-body bound

It is convenient to use the set of variables used by
Omnes" and discussed in Sec. 2. We add one redundant
variable, the total energy E=cd~+cdp+cdp. With this
choice of variables, the operators W become

fa(cdl) cd2) cdp ) cdl |cd2 q cdp q
S=cdl +cd2 +cdp cda +ZC j M& M )

(cdycdpcdpMiW icdg, cdp, cdp, M )=b(cd —cd'), (A2)
E—E'—i&

(cd', cdp, cdp&M
~
Wp

~

cd', cdp, cdp~M )= Tp(cd'& cdp, cdp', cd' cdp ~ cdp ~
s=cdc +cdp +cdp +zE;M, M ) . . (A3)
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The total T matrix as given in Eq. (2.20) is just the sum

Tpp=g 5(M M )f +Tp (A4)

The variables M, 3f', and s are omitted, as the M, M' variables are always involved in 6nite sums vrhich present no
problem. The arguments co are always positive, so if one of them is replaced by E—co&—co2, for example, the entire
expression is to be multiplied by a step function 8(E—Ml —MR). This is also omitted, but implicitly understood to be
present. To further simplify the notation, the set of variables ~~, ~2, A&3 is denoted by co whenever there can be no
misunderstanding.

In this notation, the expression for A~2 becomes

A. )2 ——Tr
31 (M)M )i2(M IM )8(M1 Ml )5(MR M2 ) 4(MP& )Il (M IM )8(M1 Ml )5(MR MR ) l

(E, 5:" —i p)(E—' F."+—i p) (I' E" i—p) (E—' E"+—ip)

To evaluate this expression, we separate the singular denominators into principal parts and delta jkunctions. '6 e
assume that all integrals converge absolutely and uniformly at in6nity so that it is permissible to interchange order~
of integration except at the point where the denominators both vanish. For simplicity of notation, we let A be the
contribution from the product of the two delta functions, C be from the product of the principal parts, and 8 be
from the cross terms. A and C are shown to be zero. A» is easy to evaluate because of the delta functions

~ 12 Rr Tr~(E E ){~l (Mly M2yl E Ml MRj Ml)I M2 )I E Ml M2 )

X/2(Ml)M2IE Ml M2 jM1)M2)E Ml M2) fl(MlqMR)E Ml MRjM1)MR)E Ml MR)

X32(Mlp M2I E Ml M2j Ml I MR) E Ml ' MR)) ~ (A6)

The diagonal elements ot the term in the brackets vanish identically, and, since 25(x) =0, 312=—0.
The trace in C» is written out explicitly:

C» ——P dE
dc' g

{~1 (Mlt M2I E Ml M2 j Mlt MR) E Ml M2)
(E—E') 2

X/2( lM) MR) E Ml M2 j Ml) MR) F Ml M2) fl (Ml) MR) F Ml MRj Mlq MR) E Ml M2)

X/2(MR» MR, E—Ml —MR', Ml, MR, E —Ml —MR)) . (A7)

Since the numerator vanishes at E=E and the integrals converge absolutely and uniformly at in6nity, i.t is per-
missible to interchange the orders of integration. Since the integrand is antisymmetric in E and 2,, C&&=—0. The
only nonvanishing contribution to A~2 is 8»,

By2= $~ Tl
P

1IM1~MR{il (Mlp M2) E Ml M2j Mly MR( E Ml M2)

X t2(Mlp MR) E Ml M2j Mlq MR) E Ml M2) fl (Ml) MRg 2 Ml M2j Ml) MR) E Ml MR)

Xfp(M1) MR) E Ml M2j Ml) MR) E Ml MR)+/1 (Ml) MR) E Ml MRj Ml) MR) F Ml MR)

X IR(M1) MR) E Ml M2j Ml) MR) E Ml M2) $1 (M1~ MR) E Ml MRj Mlq MR, I Ml M2)

This is of the form
X4(M1~ M2y E Ml M2j Ml, M2, E Ml MR) t) ~ (A8)

T L&l(E E')j{f(»E)a(E E—) f(E E')dE' E'))—

which, when we take the limit E —+ E' and integrate, becomes

gg(E E)
dE f(E,E)
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Finally, then, we have

~12 2)r dE dM11fM2{~1 (Ml) M2) E Ml M2j Ml) M2) E Ml M2)
0 0

B
X ~2(M1) M2) E Ml M2j Ml) M2) E Ml M2) 4(Ml) M2) E Ml M2) Ml) M2) E Ml M2)

BE
8

X 31 (Ml) M2) E Ml M2 j Ml) M2) E Ml M2)) (A9)
BE

This can be put in a compact form by using Tl and T2 Lsee Eq. (2.10)j, where Tl is now an on-the-energy-shell T
matrix,

The analysis for Apy is quite similar:

BT2
dE Tl Ty~

p BE
—T2 (A10)

(E—E"—20) (E'—E"+io)

~1 (M)M )Tp(M )M )~(M1 Ml ) Tp(M»M )~1 (M )M )~(M1 Ml )
Apy= Tr

p

(A11)

Proceeding as before and doing all the traces except the E trace, we have

Apl=)r Trp(E E ) ZM2 dMl)fM2{fl (Ml) M2) E Ml M2j Ml) M2 ) E Ml M2 )

XTO(M1) M2 ) E Ml —M2 ) Ml) M2—
» E —Ml —M2) —$1 (Ml) M2 ) E —Ml —M2 ) Ml) M2) E Ml M2)— —

XTp(M1) M2) E—Ml —Mpj Ml) M2") E—Ml —M2")) . (A12)

Interchange co2 and co2" in the second term, and then the expression is explicitly antisymmetric in E and E' and
hence vanishes. In the expression for Cpj, we do all the traces explicitly:

do)2 des jdko2
Cpl= dE dE {f1(Ml) M2) E Ml M2) Ml) M—2 ) E Ml M2 )

0 0 0 (E E')'

XTO(M1) M2 ) E Ml M2 j Ml) M2) E Ml M2)

31 (Ml) M2 ) E Ml M2 ) Ml) M2) E Ml M2) Tp(M1) M2) E Ml M2j Ml) M2 ) E Ml M2 )) ~ (A13)

Again we interchange ~& and co2 in the second term. The expression is then explicitly antisymmetric in E and E,
and the integral therefore vanishes. As before, the entire contribution comes from 8:

Bpj=l& Tl dM1)fM21fM2 {~1 (Ml) M2) E Ml M2j Ml) M2 ) E Ml M2 )

X Tp(Ml) M2 ) E Ml M2 j Ml) M2» E Ml M2) ~1 (Ml) M2 ) E Ml M2 j Ml) M2) E Ml M2)

XTO(Ml) M2) E Ml M2j Ml) M2 ) E —Ml —M2 )+$1 (Ml) M2) E Ml M2j Ml) M2 ) E—Ml—M2 )

X Tp(Ml) M2 ) E Ml M2 j Ml) M2) E Ml M2) tl (Ml) M2 ) E Ml M2 j Ml) M2) E —Ml M2)

XTO(M1) M2) E Ml M2j Ml) M2 ) E Ml M2 )) ' (A14)

After interchanging ~2 and co~ in the appropriate places and taking the limit E—+ E, we obtain

t
BTO BT1

Bpg=im dE Tr, Tg~ —Tp
p l BE BE

(A15)
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The final term we have to calculate is Aoo.

Apo= Tr
2 0''(M, M")2 0('M", M') —Tp(M, M")To'(M",M')

ZM

(E E"—i.)—(E' E"—pi.)
(A16)

For App, we have,

App=lrp Trb(E E ) dM18MRdM1 iEMR {Tp (Ml, MR& E Ml —M2j M—l, M2 ~
E Ml M2 )

XTp(M1, MR, E—Ml —MR j Ml, MR, E Ml —
MR) To(MR) MR) E Ml MRj Ml y MR ) E Ml 2 )

XTo (Ml) M2)E Ml MR jM4MR) E

Upon interchange of co&', co2' and co&, co2 the expression inside the brackets vanishes identically, and therefore
Hop=0. For Coo we have,

Cop ——Tr dE
dcvydR2lco] F2

{To (Ml, MR, E—Ml —MRj Ml, MR, E —Ml —
MR )

p (E—E')'

XTp(M1 &
MR

&
E Ml MR j Ml& MR& E Mi MR) T0 (Mi y M2 y

E Ml M2 j Mls MR& E Ml MR)

XT0(M1~ MRp E Ml M2j Ml p M2
&
E Ml M2 )}' ( 8)

The integrand is antisylnmetric upon interchange of all variables, and hence Cpp vanishes. The 6nal contribution
comes from Bpp..

Bpo=w" Tl
E —E

~M1~MRdM1 dM2 {Tp (Mlp M21 E Ml M2j Ml ) M2 ) E Ml M2 )

X TO(M1 &
M2

&
E Ml —M2 j Ml, M2, E —Ml —M2) —Tp (Ml, M2, E Ml M2, Ml, MR—, E ——Ml —M2)

XTp(M1, MR& E—Ml —MRj Ml
&

MR ~
E —Ml —MR )+Tp (Ml, MR, E—Ml —MRj Ml ~ MR

&
E Ml —MR )

X Tp(M1 q M2 ) E Ml M2 j Mly M21 E Ml M2) Tp (Ml 1
M2

y
E Ml M2 j Mly MRy E Ml M2)

XT0(M1)MR) E Ml MRjM1 )MR q
E Ml MR )j. (A19)

This reduces in the usual way to

BTp~
Bpp= '4Ã dE Tl Tp

p BE

B~o
Tot . (A20)—

BE

3

All ——Q Tr{P„Q„tQ —Q Q t).

The Q operators were defined in (4.10),

From Eqs. (A4) a,nd (2.20) the three-body T matrix
associated with Spp is given by

Too= Tl+TR+Ts+To,
5„=1—2n.iB(E—E')Too.

Combining all the results of this Appendix, we have

I p(M, P Il M )
Q.=P

p M+V M» +B» 20

and the I. p and K.p in (4.7) and (4.8),

I..p=(~.+B )0-(")~(M- M-')~.p+&—-p

Ap ——i
B~ooB~oo

dE Tr Tppt Tpo (A22)
BE E

(~-+B-)4-(~-)P-p(M-' Mp')
E p Gp+——

M» B» Mp +Bp zE—.

where the prime on the integral means that the dis-
connected parts —that is, the terms with an over-all
delta function —are to be left out.

Here I' is a projection operator on the two-body bound

state,
(82)

APPENDIX B The 6rst term factors into P (v,v, ') 5(M —M '), and the

In this Appendix we derive in detail the trace of the trace of I' is unity; I. p has a term which is essentially

third term in Eq. (5.1), which we call All. a unit operator and commutes with the other terms to
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give zero. Therefore Ap can be written in terms of E:

(Qlgg 8(g M V ZD) ((d(g BN CO V +ZD)

Kp~((d)v)X j dD~ )Kggp(M~ l c0 )v )X )

(%+V M~ +8(g 2D)(M +V GO&g +B~+ZD)

The usual assumption is made that the orders of integra-
tion could be interchanged except for the singularities
from the denominators. There are two sources of singu-
larities which occur when co '=~ and ru'+ 'v=ra+ .V
The erst is exhibited explicitly above and is located at
~"+v"=~ —8 . The second is hidden in the K term
itself, and can be seen in Eq. (4.8). It is located at

8=&up—" Bp and—will occur only when P=y in
Eq. (83).The two singularities occur at different points,
so they can be discussed separately.

In the proofs there will be many changes of variable
of an essentially trivial nature. As in Appendix A, we
omit all explicit reference to changes in the integration
region. If an argument of a K or an Ii function is nega-
tive, the function is taken to be zero; that is, a step func-
tion of all arguments is implied. With this restriction, the

integration on all variables is taken over the region of
positive arguments of the functions E and Ii. The varia-
ble E is used for the total energy, either &o+v or cv —8 .
Hereafter the operation "trace" will refer only to E.All
other traces will be done explicitly.

First the singularity at co"+v"=~ 8 is —discussed
as though the one from the Ii term did not exist. Then,
presuming that the first singularity is absent, we treat
the Ii term. The evaluation follows the procedure, that
is by now familiar, of splitting the denominators into
principal parts and delta functions. The term from the
product of delta functions is called A~ or A~, depending
upon which singularity is being discussed. The term
from the product of principal parts is called C~ or C~.
The cross terms are B~ and B~. The first contribution
to be evaluated is A~.

Arr ——Q Trp(E E") Q dv/E—p(E v, v, X; E'+8—)K 7(E+8;E" v, v, X)—
Kp (E v, v, —X; E"+8—)K,(E+8;E v, v, X)]. (84)—

The term in brackets vanishes at E,=E", so A~ ——0. Hereafter the variable X will be omitted, as it adds nothing to
the proof. The evaluation of C~ is straightforward:

Clr ——Q I' dE
o

dv/K, (E+8;E'—v, v)Kp (E' v, v; E+8 )—
(E E)2 D

—Z ~(E'+8;E v, v)Kp (E v, v;E—'+8 )j. —(85)

The term in brackets vanishes at E=E', so the principal part integration is well defined. Therefore the orders of
integration may be interchanged, and C&——0, because of the antisymmetry of the integrand.

We now consider the contribution from the term involving only one delta function.

00

8~=i2r Q Tr dv(K ~(E+8;E v, v)Kp (E v, v; E'+—8 )—
~pm E —E p

K,(E+8;E' v, v—)Kp (E' v, v—, E'+8 )+K—~(E+8;E' v, v)Kp, (E v, v; E+8—)—
K,(E'+8; E'—v, v—)Kp (E v, v; E'+8 )) . —(86)

To evaluate BE:, take the limit E—+ E, which gives a derivative, and then integrate over E. The final result in-
cluding the angular variable 'A is

00 00 B
dA' dv K ~(E+8;E—v, v, X) Kp (E v, v, X; E+8,)— .

B—Kp (E v, v, X; E+8 ) K ~(L'+8—;E v, v, X) . (8'7)—
BE
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In terms of the transition operators Tp de6ned in Eq. (5.12), the result is

B~pa BToa
dE Tr Tp~ ——To~ -—

BE BE

In addition to the singularity from the three-to-two amplitude, there is a term from the two-to-two amplitude.
It comes from the singularity of the F term implicit in (33).Referring to Eq. (4.8) and substituting the F term for
the E term, we see that the only new singularity will come when P= &. Therefore we have

Av= P 5p» Tl dvp
a, P, y p

d~"F-p(~-; ~p")Fp-(~p", ~-')(v p+Bp)'IA(v p) I'

p [(Ma Ba R v ) (Ma Ba N v )j[(Rp Bp Ma +Ba zE) ((d» B» Ma+Ba+ $6)j
d~-"Fp-(~p ~-")F-p(~-" ~p')'(vp+Bp)'IA(v p) I'

89
L( + "+—B-)( '+' -"+—B-)][( p Bp+—B- -" —)( ' —B. -—"+B—-+ )j

The i& has been left out of the denominators already treated, as they are presumed to be nonsingular. The p de-

pendence has been indicated in the denominators to make it clear that only P =y terms are singular. The expression

is now evaluated in the usual way in terms of principal parts and delta functions. For A p we have

Av ———~'P Tr
a, P

dv
I Pp(v) I

'("p(~, (u.')F.p((u—.; Bp+cu. B.)Fp.(B—p+(o B„;cu.)—

A simple change of variables,
&(&p—&p)~—.p(&p Bp+—B ) &p)Fp (&p') &p Bp+—B )) (&Io)

&a )&a ~E +Ba)E+Ba

a)p', (op ~E'+Bp,E+Bp

puts the expression in a form in which it is explicitly antisymmetric in E and E . It therefore vanishes, since it
multiplies 8(E—E ). The calculation for Cv proceeds along similar lines. We change variables to E=co» B» and-
obtain

Cv ——g P dE dE'
(v+Bp)'I A(v) I

'
dp-

(E—E') 2

J) p(E+B;E'+Bp)Fp (E'+Bp, E+8 ) Fp (E+Bp, E'+B )P p(E'+B; E+Bp)
~ (II11)

(E v E' Bp)'—— — (E+Bp+ v E')'—
The integrand vanishes at E=E', and therefore the principal part integration is well de6ned. Interchanging orders

of integration and using the antisymmetry of the integrand, we obtain C&=0.
The 6nal term to be evaluated is Bg,

(v+Bp)'I4(v) I'
Bv= 1')l P Tx'

(E'-E)

F p(E+B; E'+Bp)Fp (E'+Bp, E'+B ) P p(E+B; E'+Bp)Fp (E+Bp, E+B )

(v+Bp) (E'+Bp+v E)—(E'+v+ Bp E)(v+Bp)—
F p(E+B;E+Bp)Fp (E+Bp, E'+B ) J) p(E'+B;E'+Bp)Fp (E+Bp, E'+B )

(B12)
(Bp+v)(E+v+ Bp E')—(E+v+Bp E )(v+Bp)

Upon expansion of the term (E'+v+ Bp E) ' in powers of (E——E'), it is easily seen that the only term that need be

kept in the expansion is the constant term, as all others cancel in the limit E~E . From Eq. (4.2), we have the
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normalization integral

&vlA(~) I'=1

In the limit E—+ E', the remaining terms give a derivative to yield

Bp isr P——
—m xn (Beg,Bgati)

BIi p
dE F p(E+B; E+Bp) (E+Bp, E+B )

BE
B—Fp (E+Bp, E+B ) F p(E+B; E+Bp) ~ (813)

BE
This expression can be rewritten in terms of T p defined in Eq. (5.11),

Bs ——isr P
—

min�(Beg,

Bp)

BTpot B
dE Tp~ —Tp Tpt

BE BE

Combining Eqs. (814) and (88), we have

AD ——isr P
B B 00

TOa TOu Tse TOa +2
—m in (Bee,Bp)

B B
dE Tpt Tp Tp Tp —. (815)

BE BE
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A combination of Lorentz invariance and spin independence may restrict scattering amplitudes so severely
that no interesting reaction can be described. This is demonstrated for the scattering of taro spin-~2 particles
with spin independence defined as in a definition of SU(6) for quarks.

PPLICATIONS of SU(3) and SU(6) symmetries
to strongly interacting particles are achieved in

coexistence with a number of theorems' delineating a
growing class of situations in which a nontrivial com-
bination of the symmetry group with the Poincare group
is impossible. Situations in which these group-theoretic
theorems are not applicable are characterized most
noticeably by commutators of generators of the sym-
metry group with generators of the Poincare group

i W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964); F.
Coester, M. Hamermesh, and W. D. McGlinn, Phys. Rev. 135,
3451 (1964); C. W. Gardiner, Phys. Letters 11, 258 (1964); A.
Beskow and U. Ottoson, Nuovo Cimento 34, 248 (1964); O. W.
Greenberg, Phys. Rev. 135, 31447 (1964); M. E. Mayer, H. J.
Schnitzer, E. C. G. Sudarshan, R. Acharya, and M. Y. Ban, ibid.
136, 3888 (1964); W. Ruhl, Phys. Letters 13, 349 (1964); L.
Michel, Phys. Rev. 137, 3405 (1965); U. Ottoson, A. Kihlberg,
and J. Nilsson, ibid. 137, 3658 (1965);L. O'Raifeartaigh, Phys.
Rev. Letters 14, 332 (1965);E. C. G. Sudarshan, J. Math. Phys.
(to be published); M. Y. Ban, Phys. Rev. 138, 3689 (1965);Y.
Tomozawa, J. Math. Phys. 6, 656 (1965); L. Michel and B.
Sakita (unpublished); S. Coleman (unpublished); L. O'Raifear-
taigh (unpublished) .

failing to be linear combinations of generators of the
two groups. Here a different kind of theorem is to be
expected. If a generator of the symmetry group and a
generator of the Poincare group both commute with
the scattering operator, then their commutator also
commutes with the scattering operator. If this com-
mutator is not a linear combination of the generators of
the symmetry and Poincare groups, it represents an
additional symmetry which may put entirely unwanted
restrictions on the scattering amplitudes. A particularly
simple example of this is demonstrated in the following:

Consider two particles each with positive mass and
spin —,'. ~e describe the rtth particle (st=1,&) by
Hermitian position and momentum operators Q &"& and
P&"& (which satisfy canonical commutation relations)
and Hermitian spin operators S t "& (which commute with

Q &"& and P t"& and satisfy angular-momentum commuta-
tion relations) in terms of which the generators of the
Poincare group for two noninteracting particles have


