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Relativistic Foiiaulation of the SU(6) S~trtetry Scheme*

BUNJI SAKLTA AND KAMEBHKAR C. %ALl

A.rgonne Xaf4ona/ Laboratory, Argonne, Illinois

(Received 22 March 1965}

A relativistic formulation of the SU {6)symmetry scheme is presented, starting with the basic assumption

that the Gelds corresponding to elementary particles are tensors of M(12} for V(12) or SU(12)gj. In
particular a mixed second-rank tensor and a totally symmetric third-rank tensor are associated with the
meson and baryon Gelds, respectively. It is shown that if these 6elds are required to satisfy prescribed
free-6eld equations of motion, then one is led to a particle supermultiplet structure which corresponds to the
551 and 56-dimensional representations of SU(6} for the masons and baryons. It is also shown that the
spin-dependent and SU{3)-spin-dependent mass splittings can be included in the theory and that solutions
in terms of physical particle 6elds can be obtained. Effective trilinear meson-meson and meson-baryon
vertex functions, using these solutions and an interaction Lagrangian which is invariant under M(12), are
calculated in the lowest order perturbation. %e would like to note especially the following results: (a) From
the known pion-nucleon coupling constant, the width of the pion-nucleon {3,3}resonance is calculated to be
94 MeV. (b) The ratio of the magnetic form factors for the neutron and proton is —$ for all momentum
transfers and pp= (1+2'/ng„} nuclear magnetons. (c) The charge form factor of the neutron is zero for
all momentum transfers.

I. INTRODUCTION

'HERE has been considerable interest recently
in the SU(6) syrnrnetry scheme for elementary

particles. ' It is conceived as an extension of signer's
nuclear-supermultiplet theory' to elementary-particle
phenomena. Unlike other higher symmetry schemes, '
the SU(6) theory proposes to treat the ordinary spin
on the same footing as the isotopic spin and hyper-
charge. Clearly such a formulation is possible only if the
space-time variables and the spin variables are com-
pletely decoupled. This is possible only in a nonrela-
tivistic theory as in the case of %igner's supermultiplet
theory. Since Lorentz transformations mix the intrinsic
spin and the orbital angular momentum in an intricate
manner, it is not obvious whether the SU(6) theory can
be extended to the relativistic domain. It is therefore
not surprising that several attempts4 have been made
towards an understanding of this problem.
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The problems connected with a relativistic formula-
tion of the SU(6) theory may be discussed from a purely
mathematical point of view of 6nding an appropriate
group of invariance. For this purpose, we recall that the
irreducible representations of SU(6) can be decomposed
into irreducible representations of SU(2) SU(3), where
the SU(2) can be identified as the ordinary spin group
and the SU(3) as the familiar internal symmetry group
SU(3). If the theory has to contain orbital angular
momentum and spin mixed in a Lorentz-invariant
manner, the spin groups SU(2) has to be extended to
SL(2,C) which is the covering group of the restricted
Lorentz group. A fully relativistic SU(6) theory must
include in addition to the homogeneous Lorentz trans-
formations, space and time translations. The required
group G therefore must contain SU(6) and the Poincare
group as subgroups in such a manner that the intersec-
tion of SL(2,C)SU(3) and SU(6) is SU(2) SU(3).
It has been shown' that 6 must then contain the group
SL(6,C) Now depen. ding on how the translations are
imbedded in the group, one obtains two types of struc-
tures for G: (i) G is given by P'Q, where P' is a
group isomorphic to the physical Poincare group and
Q&SL(6,C); (ii) G is a semidirect product of Tss by
SL(6,C) where T„ is the group of translations in a
36-dimensional space. '

Once a group 6 is given, its unitary representations on
Hilbert space provide a set of symmetry transformations
on the physical states which are characterized by the
bases of the representations. The basis of an irreducible
representation gives a set of physical states which are
commonly identified as the particles belonging to a

'L. Michel and B. Sakita, Ann. Inst. Henri-Poincard ll, 167
(1965).

6L. Michel, Second Coral Gables Conference on Symmetry
Principles at High Energy, January 1965 (to be published).' L. Michel and B.Sakita (Ref. 5); W. Riihl (Ref. 4), T. Fulton
and J. %ess (Ref. 4}.
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supermultiplet of the system. One can construct a
unitary representation of G in case (i) by using Wigner's
method for I".Since G is a direct product of I" by Q,
the basis of such a representation must be a tensor
product of the basis of I" and the basis of the unitary
representation of Q. But QQSL(6,C) which is noncom-
pact. An irreducible unitary representation of Q is of
infinite dimensions. This corresponds, therefore, physi-
cally to an in6nite number of particles belonging to a
supermultiplet.

In case (ii), G contains additional translations other
than the usual four space-time ones. Clearly the physical
interpretation of the extra translations is not easy.
Further if one identi6es the usual space-time transla-
tions with four of the translations in T36, the physical
mass is no longer invariant under SL(6,C). It will change
continuously under the transformations of SI(6,C).
Physically this corresponds to a continuous mass dis-
tribution for a given particle state. Since the physical
world does not appear to admit either an infinite number
of one-particle states for 6xed four-momentum or a con-
tinuous mass distribution for a given particle state, we
are forced to conclude that there is no physically in-
teresting group of invariance which contains the Poin-
care group and the SU(6) group in a nontrivial way. '

A more physical description of the SU(6) theory is
provided by the quark model. A relativistic quark model
can be constructed along the lines of the three-field
Thirring model. The fundamental held in this model can
be described by a 12-component spinor Pz. A pair of
indices nx can be assigned to A, where i runs from 1 to 4
and can be identified as the Dirac spinor index. a takes
the values 1 to 3 and corresponds to the SU(3)-spin
index. If one decomposes a Dirac spinor Geld into two
two-component spinors (Weyl decomposition), f decom-
poses into two six-component fields p and x. The Gelds

p and x then provide vector and conjugate-vector repre-
sentations of SL(6,C) (Sec. II). As pointed out by
several authors, ' one can construct an interaction
Lagrangian which is invariant under SL(6,C). However,
it is impossible to construct a free Lagrangian which is
also invariant under SL(6,C) without encountering the
di%.culties mentioned earlier in connection with the
group of invariance. Without a free Lagrangian, the
standard quantization procedures and the particle inter-
pretation of the 6elds cannot be carried out.

In spite of this apparent dB5culty, the quark model
suggests an alternative approach. If we consider a model
of noninteracting quarks and construct a free La-
grangian in terms of f which is invariant under
PSSU(3) (2'—=Poincare group), we can obtain free
field equations of motion (Dirac equation) and com-
mutation relations. The solutions to these equations can
be interpreted as particle states which form a basis of

g S. Coleman, Phys. Rev. 138, B1262 (1965).
9 K. Bardakci, J. M. Cornball, P. G. O. Freund, and B.W. Lee

(Ref. 4); S. Okubo and R. E. Marshak (Ref. 4).

an irreducible representation of SU(6) for a fixed mo-
mentum q. This suggests the possibility that the basic
fields are tensors of SL(6,C) whereas the solutions to
appropriate equations of motion for these fields give the
desired particle-multiplet structure, even though the
equations themselves are not covariant under SL(6,C)
The purpose of the present paper is to examine the
possibility and consequences of such an approach. ""

If one assumes that the elementary particles are the
bound states of one or several quarks and antiquarks,
the bound-state wave function (or field in a phenomeno-
logical Lagrangian theory) can be described as a product
of the fundamental fields f's and f's. In the following
discussion, however, it is not necessary to assume ex-
plicitly such a quark model. We shall only assume that
the 6elds associated with the elementary particles trans-
form like the products of f's and P's. In particular, the
meson Geld is represented by a second rank mixed
tensor 4 zs (144 components). A totally symmetric third
rank tensor %~so (364 components) is associated with
the baryon 6eld. These tensor representations of
SL(6,C) together with their properties under space re-
flections are discussed in Sec. II. It also contains the
interaction Lagrangian which is assumed to be invariant
under SL(6,C) and space refiections. The interaction
Lagrangian assumed in the present discussion is in-
variant under a larger group of transformations M(12)
Lor U(12) or SU(12)r].i2 Section III is devoted to the
decomposition of 4 and 0 into appropriate auxiliary
fields and to the discussion of the symmetry properties
with respect to the interchange of Dirac and SU(3) spin
indices. In Sec. IV, the free Geld equations of motion for
the meson and baryon 6elds are given. It is shown that
the meson Geld equations admit solutions which corre-
spond to a nonet of 0 and a nonet of 1 mesons. The
baryon Geld equations lead to solutions which corre-
spond to a decuplet of ~~+ and an octet of —,'+ baryons.
The desired mass splittings are introduced and the
solutions for 4 and + are obtained in terms of physical
particle 6elds. These solutions are used to calculate
dfective vertex parts in the lowest order perturbation
calculation in Sec. V. The relations between diferent
coupling constants and some of their consequences are
also discussed. Finally, the concluding section is devoted
to a summary and the discussion of some of the diK-
culties of the theory.

"B.Sakita and K. C. Wali, Phys. Rev. Letters 14, 404 (1965).
The present paper is an extended version of this letter."A. Salam, Proceedings of the Second Coral Cables Conference
on Symmetry Principles at High Energy, 1065 (W. H. Freeman
and Company, San Francisco, 1965); A. Salam, R. Delbourgo
and J. Strathdee, Proc. Roy. Soc. (London) 284, 146 (1965);
A. Salam, R. Delbourgo, J. Strathdee, and M. A. Rashid, Proc.
Roy. Soc. (London) 285, 312 (1965); M. A. B. Bdg and A. Pais,
Phys. Rev. Letters 14, 267 (1965);W. Ruhl, Phys. Letters 14, 334
(1965); 15, 99 (1965); 15, 101 (1965).~ K. Bardakci, J.M. Cornball, P. G. O. Freund, and B.W. Lee,
Phys. Rev. Letters 14, 48 (1965); R. Delbourgo, A. Salam, and
J. Strathdee (to be published).
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II. ELEMENTARY FIELDS AND INTERACTIONS

Consider the group 6X6 complex matrices of determi-
nant one, which we shall denote SL(6,C). To every
matrix A (detA=1) belonging to this group, there
corresponds a linear unimodular transformation T(A)
over a six-dimensional complex vector space. A vector
p in this space is a fundamental representation of
SL(6,C) and undergoes the transformation

4 ~4'=~4
Tensors in this vector space are called tensors of
SL(6,C). Let us also consider a conjugate vector space,
in which a vector x is transformed under SL(6,C) as
follows:

x~x'=(A ')"x (2 2)

Tensors in the latter vector space are called conjugate
tensors of SL(6,C). The scalar products g*x and x*P are
invariant under the transformations of SL(6,C).

Let these tensors be functions of a space-time point so
that they can be regarded as tensor fields. One can then
construct a twelve-component tensor fieid f from p
and y.

(I'4)

E„i
(2.3)

4 ~4'=nv44 (2.4)

where g is a phase. We also note that if we use the
explicit representations

p0 1y (1 0)

E,1 oi E,o —1i
(2.5)

then + and Pygmy are invariant under SL(6,C), where

(2.6)

As stated in the previous section, we assume that the
fields corresponding to physical particles transform as
products of P's and P's under the SL(6,C) transforma-

"R. F. Streater and A. S. Wightman, I'CT, Spin and Statistics,
and All That (W. A. Benjamin, Inc. , New York, 1964),

f is then a 12-component tensor representation of
SL(6,C). If we want to identify P as the quark field
mentioned in the previous section, we must identify the
SL(2,C) group of SL(2,C)SU(3) as the covering group
of the restricted Lorentz group" and the SU(3) group
as the internal symmetry SU(3) group. The decomposi-
tion of P~(A = 1, 2, , 12) into the representations of
SL(2,C)SSU(3) can be done by assigning a pair of
indices in to A. The index i (i = 1, , 4) is the Dirac
spinor index and a (a=i, , 3) is the SU(3)-spin
index. Since to every ~ there corresponds a four-com-
ponent spinor, the properties of f under spatial reflec-
tions can be easily included in the formalism in the
usual fashion:

tions. We consider, in particular, a second-rank mixed
tensor-field C z~ for the mesons and a totally symmetric
third-rank tensor-field +~gq for the baryons. These
fields are assumed to be local and their properties under
space reflections are given by

C —+ 4'=y4f 44,

0' ~ 0"=y48y4y4%'.

Written out explicitly, the above equations imply

C'-"'= (74)"'C"-"(74)J"

(2 &)

(2 g)

(2 9)

III. DECOMPOSITION OF THE ELEMENTARY
FIELDS

The meson field 4 consists of 3.44 components which
are complex. In order to have antiparticles in the same
multiplet as the particles, we must impose the reality
condition:

y Iay C= —Ct. (3.1)

For fixed SU(3) indices, C is a 4X4 matrix in the Dirac
space. Consequently it can be expanded in terms of the
sixteen independent Dirac matrices:

C =1S+y„g V„+-,'0„.8T„.+y~ysSA„+ynSP. (3.2)

S, V„, , P are 3X3 matrices in SU(3)-spin space. "
Their properties under space-reQections can be easily

"Invariance under SJ (6,C) and space reflections permits also
the interactions Yr(~~~+), 4'(y~~(3181)+, 4 (p~kgry~(31)+
and 4'(4y~(sy~)+, which are not M(12) invariant. However, for
the present discussion we restrict our phenomenological I t, to
the form given in (2.11)."We use the hold-face letters for matrices acting in SU (3)-spin
space.

js&v'=, (,v4)~" (74)i '(V4)&
'

~ ~ 7'P &'7 . ( )

We construct the interaction Lagrangian I.;„t, in terms
of these fields by requiring that it be invariant under the
SL(6,C) transformations and also under the space re-
jections. If we restrict ourselves to trilinear meson-
meson and meson-baryon interactions, I.;„& can be
written in the form'4

L;,t,= ~moig Tr(CCC)+iG4'"n C~s+sDc. (2.11)

L;~t, in (2.11) is invariant under a larger group of trans-
formations M(12) [or U(12)j,"which is the group of
j.2&12 complex matrices M satisfying the following
condition:

Mt[~4@1)N =~4@I, (2.12)

where 1 is a 3X3 unit matrix so that [y48 Ij is a 12X 12
matrix and Mt is the Hermitian conjugate of 3L M(12)
is a 144 parameter Lie group which contains SL(6,C) in
its subgroups. The quark spinor f is a fundamental
representation of 3I(12) and f is the contragradient
representation so that ~ is invariant. However pygmy

which is invariant under SL(6,C) is not invariant
under 3f(12).
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DIRAC INDI CES NO. OF COMPONENTS

EXI3 20 Qx

SUI3) INDICES NO, OF COMPONENTS

CCZ3 10

rank tensor in SU(3) space and Vr is its transpose. Then

P =s' P P.;81;81+18&;8&;+&&818K;)+ps,
20 Qx i 0

p X.@

(3.10)

FIG. 1. Young diagrams corresponding to a totally
symmetric third-rank tensor. Pg= 111 —Pg) —Pg,

where e is given by

(3.11)

deduced from those of 0 defined in (2.7). They represent
a nonet of scalar, vector, tensor, axial vector, and
pseudoscalar Gelds, respectively.

The baryon Geld 4 has 364 components, since it is a
totally symmetric third rank tensor, i.e.,

La,jP,ky =+jP,ia, ky +ia, ky, jP ~ (3.3)

The condition (3.3) can be satisfied by suitably com-
bining dNerent symmetry properties of the Dirac and
SU(3) spin indices. It is convenient to describe the
di6'erent possible combinations with the help of Young
diagrams. The number of possible combinations is three
and they are as shown in Fig. 1. The Grst line in Fig. 1

represents a set of decuplet fields which are completely
symmetric with respect to the interchange of the SU(3)
indices as well as Dirac spinor indices. We denote these
by D[=Djjk p~]. The second line represents a set of
octet Gelds each of which is a third-rank Dirac spinor
with mixed symmetry properties. We denote these by
X[=X;;k, ', X;,k, =0].The mixed symmetry implies

(*)-p. ""'=p-pv p"'"
To make our computations more explicit,

s) aP& Diika'P' q,' &aPq& Djj k, a'P' q'

since D is symmetric in ik, p, y. Also

(S)aPV @ijk,a'P'y' PaPy[Xijk, a
and

a'O'V' . . .G. . —
6 g ~/ ap7 &a' p' y'~ij k &apy~ij k ~

Consequently,

(3.12)

(PD)ap~ Dijk, a'p'7' s[Dijk, pay+Dijk, ayp+Dijkypa],
Dijk, aPy p

(P )aDA ~ijka'p'y' ,s[flijk, pay++ijk, ayp+flijk,

gapa]

Xijk,asy+Xjki, asy+Xkij, aPy

=0
PD)as' Pa'P'y'Gijk= kasyGijk+PaPyGijk

a'p'y' . . ./
=0

Xijk= Xikj p

Xij k+Xjki+Xkij

(3.4)

(3.5)

We also note that the projection operator that gives an
octet component Zijk, ~ from 8 is given by

Finally the last line represents a singlet field which is
a completely antisymmetric third-rank Dirac spinor.
We denote this by G[=G;;k) where

0"k= —G.;k= —6 k (3.6)

where

Bijk,aPy= kLXijk, a &kPy+Xjki, P &ilya+Xkij, y &ilaP] ~ (3.8)

It is also easy to construct the projection operators
PD, P&, and Pz by means of which we can obtain the
Gelds D, 8, and 6 from O'. To construct these operators,
we note that

8

—,
' Q X;81;V=Vr, (3 9)

where X; (i=1 8) are the 3)&3 matrix representations
of the SU(3) generators" and Ill ——(gg)1. V is a second

'6 M. Gell-Mann, Phys. Rev. 125, 1067 I,'1962).

One can, therefore, decompose 0' uniquely as follows:

1
+;.,~p, k, D;,k,p,+&;;k..——p,+ p.p~G'jk, (3 7)

The symmetry properties of D, x, and G with respect
to the Dirac indices i, j, and k can be exhibited by a
further decomposition using the charge conjugation
matrix C which has the following properties:

Cr = —C, C—'y„C= —y„r. (3.14)

From (3.14) it follows that y„C and a„,C are symmetric
matrices whereas y„pe and y~C are antisymmetric
matrices. One can therefore write D;,k in the form

D;jk= 2&„„(y„C),k+kkk„-.„(o„.,C);k, (3.15)

which insures the symmetry of D@k under the inter-
change of j and k. Since D;;k is totally symmetric,

(C ')"D"=(C '7 Vk)"D"=(C 'vk)"D'jk=0 (3.16)

From (3.15) and (3.16) we obtain

(3.17)

In (3.15) P„has 16 components and antisymmetric
tensor p„. has 24 components. There are 20 relations
among them on account of (3.17). Hence (3.15) and
(3.17) correctly represent a totally symmetric third-rank
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Dirac spinor D;;I, with 20 independent components. where 5 is given by
Considerations along similar lines permit the expansion
of x and 6 as follows:

x 'jp= g [$Cr's+ ip(r, p'rsC) js+$ (r'sC)js] I

0 0 0
0 0 0.0 0 I.

where

and

where

5=VpVsr}p+Vs4,

Giis= p Lki Cjs+rlp i ('YpVsC)is+4'i (vsC)is] )

rl~'= V~V sk', O'= Vsf—

(3.18)

(3.19)

» G. R. Kalb6eisch et a/. , Phys. Rev. Letters 12, 527 (1964);
M. Gundzik et al., ill. 12, 546 (1964).

R J Dufrinr Phys. Rev. 5' 1114 (1938)& N. Kemmer&
Proc. Roy. Soc. (London) 4173, 91 (1939).Please note that (for
typographical reasons) primes are used with identity and 5
matrices instead of tildes to indicate the multiplication from the
right LEqp. (2.7}—(2.10}g.

IV. FREE-HELD EQUATIONS OF MOTION
FOR MESONS AND SARYOHS

The spinor 6elds described so far can lead to no physi-
cal consequences unless they are made to represent
physical particle states. As stated in the Introduction,
we may accomplish this by requiring that C and +
satisfy prescribed free field equations of motion. The
guiding principle in the choice of such equations is
provided by one of the most remarkable successes of the
SU(6) symmetry, namely the assignment of representa-
tions for the low lying baryonic and mesonic states. The
octet of ~&+ and the decuplet of ++ baryons can be
identi6ed as belonging to the 56-dimensional repre-
sentation. The octet 0 and the nonet 1 mesons can
be Gtted into the 35-dimensional representation whereas
the Xo meson'~ can belong to the singlet representation.
We shall choose the wave equations which lead to solu-
tions that correspond to the SU(6) supermultiplet
states.

The meson 6eld C is required to satisfy

-', [& a81'8181'—18~ a8181']C+me=0, (4.1)

which is the Dugan-Kemmer equation 8 rewritten in a
form more convenient for our purpose. To introduce the
desired mass splittings, we regard m as a matrix in both
Dirac-spin and SU(3)-spin space. It can be chosen in a
number of diGerent ways. One of the forms which leads
to the well-known empirical relations for the masses of
the pseudoscalar and vector mesons is as follows:

m= m, (181'8181')

+)ms(ys8$ s+vsvsSvsf s)8(181')

+',m'(181'+ysSfs) 8(&81'+181')
18 8

+ms P v~Svsf~vsS P &;SX;, (4.2)

We shall continue to use the direct-product notation
with the convention regarding matrix multiplication as
deaned in (2.7) and (2.9). (Also see footnote 15.) In
Eq. (4.2), the first term gives a common mass mp to
all mesons. The second term is a spin-dependent term
and is introduced to split the vector mesons from the
pseudoscalar ones. The third term is responsible for
Gell-Mann-Okubo (GMO)" splittings as well as singlet
and octet mixing. The last term splits the singlet
pseudoscalar meson from others, since it is proportional
to the projection operator of the singlet, pseudoscalar
term. If we assume a su%.ciently large value for ns&,
there would be little mixing between the singlet 0 (X')
and the octet 0 (rP) states. Since the GMO mass sum
rule is satisled very well for the octet of 0 mesons, we
assume this to be the case.

If we insert the expansion (3.2) for C in (4.1), multiply
by the Dirac matrices 1, p„, o„„y„&5,and p5, respec-
tively, and take trace, we obtain the following set of
equations in SU(3) space:

[(mp+4mr)181'+m'(581'+185')]S =0, (4.3)

[mpl8 1']V„+18

I'BENT&„=

0, (4.4)

[m,lS I'+m'(S81'+lSS')]T„,
+181'(t}„Vs—t}sV„)=0, (4.5)

8=0, (4.8)

(4.9)

[(181)Z —m, (m,181'
+m'(581'+185'))]V„=O, (4.10)

[(1 1')CI —mp((mp —4mt) 181'

+m'(gSI'+ISS') }]P=o. (4.11)

Equations (4.9), (4.10), and (4.11) represent the free
wave equations of motion for a nonet of 1 mesons and
an octet of 0 mesons. The physical states can be ob-
tained by diagonalizing the mass matrix in (4.10) and

"M. Cell-Mann, Phys. Rev. 125, 106'l (1962); S. 0&ubo,
Progr. Theoret. Phys. {Kyoto) 27, 949 (1962).

[m,181']A„+181'a„P=O, (4.6)

[(mp —4mr) 181'+m'(581'+185')]P
+18I'a„A„=O. (4.7)

From these equations it follows that
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(4.11), and are described by

~pQ+~0

generalized Bargmann-signer equations":

[y 81M]%'=0 (4.16)

a)Q —pQ
E*Q

V2

+QP yQ

where M is again a matrix. The desired mass splittings
can be introduced by choosing M to be a matrix in

SU(3) space" alone. The required form is

M = [Mpl@1 1+(M' —Ms —3Ms) Pts

+(Pn+Pts)(MsGs+MsGs)), (4.17)

xQ—+
V2 g6

/0

where PD and P& are the projection operators dered
in Eqs. (3.10) and (3.11).The 6rst term gives a common
mass to all the baryons. The second term splits the
decuplet masses from the octet masses. 6~ and G2 in the
third term are introduced so that they not only give
the GMO splittings, but also give the observed relations
between the decuplet spacings and the octet spacings.
They are given by

6,=S8181+lggel+ l18 S,
The masses corresponding to these particles are as
follows:

m, '= m '= mp', mtr'= mp(mp+mp');

mo =mo(mo+2mo ) ~

m =mp(mp 4ms);—msr =mo(mp 4ms+ms ); (4.12)
m„'= ms(mp 4ms—+xmp')

6,= p p,;g (w„l+ljglu. ;)

+symnmtrizing terms].

To be more explicit,

(Gs+).pt= [+sptb-'++-»bp'++-psbt']

(4.18)

(4.19)

It is clear that the squares of the 0 meson masses
satisfy the GMO sum rule for an octet and that

(Gs+)apt = [(+pot+ +tps) ba +(+ass+ +sat) bp

+(+ p.++- p». '] (4 2o)

my —m~' =m~' —St =PS~ —5$

From Eqs. (4.5), (4.6), and (4.12),

T„)„p=[1/(mr) p](BsV„,Jp B„V)„p), —
A„P= (1/,m, )B„P P,

(4.13)

e p~Ggg=0, (4.21)

where for convenience we have suppressed the Dirac
mdices.

As in the meson case, if we insert the expansion (3.7)
in (4.16), it follows that

where (mr) P are given by the eienmnts of the matrix

mt mt' "/mt
mt mtr '/mt

mx "/mt mos/m, .
5$p

SNAB fSp

.msr'/m

The solution of the wave equation (4.1) can therefore
be explicitly written as

%ith the identi6cation,

[y 8+(Mp+M' Ms 3Ms)— —
+(Ms+2Ms)(b s+bps+bts)] 'D;;o, pt 0, (4.22)——

(4.i4 [y a+(Mp —Ms)]'g', P't

+(Ms+-'Ms)(b '—bsP)x "s

+aoMs[(8 s+bsP)g;, o P—-', b Px;;s ']=0. (4.23)

@'* "= (vo)"V», '— j.
(~..)"F...'

2(mr) P
Dying= S ++,

D =S*,
Doss= &~/VS,

Dsss= S*+/VX,

DUs= &*+/~,

Dsss = * /v$

D333=0—,

Dsss=S P/VZ,

Dsss= V* /Q6,
Doss= z* /~&,

where mq is the mass of X' and Ii„„=B„V„—8„V„.
For the baryons, we assume that 0' satishes the

~ V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
34, 211 (1948)."We split the decuplet mass from the octet by using the SU(3)
spin-dependent term. We may, of course, use the ordinary spin-
dependent splitting. Because of the over-all symmetry of 4',
however, it can be proved that both methods are equivalent when
the mass matrix is operated on C.
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X~A.

+
v2 g6

P
Thus D,,&, p, is given by

Djik. ~pe= 2( Yl 'C)ikey'w ~pm (jjl»»&)ikjtl » «pv»
4M p~

where

k. 0M

j1y» = (jj~4'» ~ 4'I ) ~

Similar considerations lead to

(4.31)

the masses of the decuplet and the octet states are given ~ .. p 1/~ Cb . .I, . p
2k Y~ /i A''s, ~

by the mass formulas ,b.Vk~) jk~A*-' , (4 32)
2M p

MD= (Mo+Mk)+M —(Ma+ 2Mk) I' where p satisfies the Dirac equation
M*~'"+":F'j ('"' („a+M.p)p, .p+, (M,-M, )g.y, , =0 (4.33)

Mo = (M p+Mk) —(Mk+-', Mk) V
—M2LI(I+1)—-'I"]. (4.25)

and M P are given by the elements of the matrix

If we rewrite (4.22) as Lno summation is intended for re-
peated SU(3) indices).

Afar

Mg
.3fg

3fy, M~
My, M~
Mx ,'(3Mk M—z). — '

where
h ~+M p~7"'D' k, -pe=0 (4.26)

V. EFFECTIVE VERTEX FVHCTIONS

Lv ~+M p~j4. ,.p»=0

[v ~+M.p~)4",.p~=o.

(4.27)

Since D;,k, p, it totally symmetric, Eq. (4.26) can also
be written as

b'~+M-p~j"'»' k.pv=o,
If we now substitute the expansion

M p, = (Mk+M' Mk 3M—k)—
+(Mk+2M2)(8 '+ bp'+ g~'),

and substitute (3.15) in (4.26), we obtain

Since we have the explicit solutions of the equations
of motion for free 6elds, we can obtain effective trilinear,
quadrilinear, ~ interactions in the lowest order per-
turbation. For the present discussion we con6ne our-
selves to trilinear meson-meson and meson-baryon in-
teractions. The results without the mass dissymmetries
were given in Ref. 10. The solutions for the meson and
baryon fields in the previous section provide a natural
way of considering the modi6cations of the effective
interactions due to mass differences. The main purpose
of this section is to consider these modi6cations and some
of their consequences. The relations between the various
coupling constants are summarized in a more explicit
manner in the Appendix.

Dji'k, apT p24'j», j(risc)i'k+—kpj»»j(&j»»c)i'k, jape»

L(v ~+M-pv)v~c]'4~, -p7

+D'r ' jj+M»»py) jjj»»Qikfy», apy

Meson-Meson Interactions

If the solution (4.15) is inserted in I.; k

L„j(mesons) = jjjpgkk Tr(CCC),

(4.28)

From (4.28), if we multiply by C 'a„„and take the trace
we obtain

4'p»»»pv = (~»4'~ ~A'») ~

M p~

the following eGective VPP, VVP, and VVV inter-

,4 29)
actions are obtained:

The equations

Py 8+M p„]f„, p =0; y„P'„, p„=0 (4.30)

are the Rarita-Schwinger equations for a J= ~3 particle.
Equation (4.29) enables us to express the antisymmetric
tensor P„, in terms of the Rarita-Schwinger fields f„.k'

I.;,j(VPP) = 29ig Tr(V„PB„P),

(8,V.
I-;.j(Ij'&&)=3igp„„. Tr 8 V

I
P

k m

— 8„V.)+Tr ~B,V.P
hajj&

'

(5.1)

~ The equivalence between the Sargmann-%'igner wave equa-
tion and the Rarita-Schwinger equation for the spin-$ particle
has been shown by C. G. Oliveira and A. Vidal, Notas de Fisica
IX, No. 8, 226 (1962).

B„V, (B'AV.)+jjj, Tr
( ~P, (5.2)

jjk I jjj 3
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TAsLE I. Decuplet-decuplet and decuplet-baryon currents.
H=$(M;+MI)'+q ]/2MMy', I„,= (Hs„,+q„q./MaM y)

S I1zyggfy

If the SU(3) mass splittings are neglected, the vector
meson 6eld is coupled to a conserved SU(3) meson
current. Among the many relations between the di6'er-

ent coupling constants listed in the Appendix, we
consider

Pp
XIIII'Y4'+ Pp 4/ Y4' 4'» Y Iz"Y~~

3M; My

2= 2
gso pa =

gpss'I

~

8$p
2

(5 4)

Iwkv~'a~4'~

Iyz klz"Y4'~

2
&'RpA'

3M;

+ p.P.(p'v&- p, 'v.)vsa
3M;My

pp pF
Iv~kr Y5'Yfz4'r %PA'+

3 M;My

From the Gell-Mann, Sharp, and Wagner" model for
the or ~ 3m decay, the known p ~ 2x decay rate and
(5.4), the width I' of co-+ 3zr is I"=5.4 MeV. This is to
be compared with the experimental value of 9.4 MeV.
It would be interesting to see whether the difference
could be accounted for by a direct ou —+ 3' contribution
that can arise from Tr(CCCC) interaction.

To obtain the effective meson-baryon couplings, it is
convenient to define a current

J B +BDC@~ (5.5)

PW

L;.,(VVV)=3g m, Tr V„V,)

+isa, ' Tr ( )~
—)v.

k zrz 5 zzz

If we substitute the free field solutions (3.7), (4.31),
and (4.32) for 4' in (5.5), then

Jg~ Jx~(DD)+——Jgs(DB)
+Jg~(BD)+Jz~(BB). (5.6)

Each term in Eq. (5.6) can be separated into the SU(3)
singlet and octet parts. Further the space-time proper-
ties of each of the currents allows the decomposition
into the usual scalar, vector, tensor, axial vector, and
pseudoscalar parts:

J' "( )=-'[(1)'J'( )+(v.)'J."( )+(~,.)''J.,'( )
+(v.vz)"J."( )+(vz) "J'( )] ' (5 &)

with (zizz) ~ as defined in (4.14).

The results24 are given in Tables I and II. Table I con-

, (5.3) tains the contributions to the current J~s(DD) and
m m zzz J~ (DB) J~ (BD). can be obtained from Table I

since J~~(BD)=$Jg (DB)jt Table II .contains the
where V/zzz is a 3X3matrix whose elements are given by }&aryonic current separated into SU(3) parts that trans-

form like the symmetric (D) octet, antisymmetric (F)pip ps
octet and the singlet (S). The effective DDV, DDP,
DBV, DM', BBV, and BBP couplings are obtained by
combining these currents with the free-field solutions
for mesons (4.15). Thus,

where
I.;~z(baryons-mesons) =I,;„&(DDM)+I;„(DBM)+I.;„(BDM)+I.;„,(BBM),

p „
I-'~z( )=zG J~( )P+ J"( )8 P+J v( )V —J r( )

15p te
(5 &)

From Tables I and II and (5.8),

1 /' q„q. M;+My / V,
. I.inz(DDM) =

I
Jfb»+ 1+ ~~~'Yz4'.Pj+I!4'rr O'. VI j+2z '!'40'~ q i/"I—

iG k MMy
(5 9)

"M. Gell-Mann, D. Sharp, and VV. G. Wagner, Phys. Rev. Letters 8, 261 (1962).~ The expressions for different currents on Tables I and II reduce to the corresponding ones in Ref. 10 when the mass splittingsare neglected. Please note the following errors in Table I of Ref. 10.In the axial vector (A) current of BD, it should be y~y, instead
of y,y~. In the DB contribution there should be a negative sign before the pseudoscalar (E) current.
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TABLE II. Baryon-baryon current.

1 1 g (M;+Mf)
V — H /pe 2/0 pQrf

3 6 M;Mf 18M;Mf

(Mf —M;)+- '

imp~
18M;Mf

q' (M;+Mf)
$Pp P+ ZQK p+y'P

6M;Mf 6M;Mf

(Mf —M;)

6M;Mf

1 1 q (M;+Mf)
II—— $y pP

—z- Pcr p,

3 3 MMf 9M'
Mf —M;

+ zfpA'
9M;Mf

'sW~.A — V"P. P'Po)8-
18MJff

1 1 1

HU~. A+ (P'P P'P.—)Ff W~"—0 —(P'P. P'P.)A-

M;Mx 18 9M;M

(2l9)&kvsv A

(2/9)&A ~tI'

PQ7&7A'

4+4 Y4'

9+4 t/A'A'

9II474'

1—{L;~g(DBM)+l.;.g(BDM) )
iG

2 M;+Mr) p„p„2( M,+Mr)=—1+
l Lk.O~]+ [A.f ] +-l 1+

) m; u, 3k m )

c.(p'+ p.)
X &([4,»4 I,]+[Argb', ]) —(Ltt',»W ]—t,A'~4', & ])2M'

+~&~I LAP'I»~~1]+ L~l»'pi VI] ' (5 10)
t 1 1

(M; Mr
M;+My

I- s(BBM)—=k& 1+ (LA's4'f']n+KA s0&]~+k[AsH']s)
iG 78p

v3 / M+Mrq
+—&I 1+

I
Tri&»&]&'+ 2 (f~ LA@~.]~+f2 ~L0."V.W.]~) (511)

9 k ms i E,D.S

M '=I' '+(1/vS)X'08
(5.12)II= ((M+Mf)'+q')/2M JEI

and for the vector mesons,

In order to write the above interactions in as simple a should be noted that in the present model, for the
form as possible we have used the following definitions pseudoscalar mesons,
and abbreviations:

where M; and Mf refer to the initial and 6nal baryon
masses. q„=p„'—p„where p„and p„' are the four mo-
menta of the initial and 6nal baryons.

g„OQ.M]=$ ~&QP., P,M
g„CPM]=$„»s'eg~ M

P~„M]="«+s&.P,M

gOQM]p =+Tr(/0M') Tr(/~M)— (5.13)

fgM]g) =Tr(QChPM)+ Tr(/0M')
—2 Tr($0$) TrM,

[$0/M]g Tr[fCsp] TrM, ——

M '=V

where P and V are de6ned in the previous section. In
the case of vector-meson interactions,

(1/~)%VI']= L~(I'/~)]
and fq, q~ are given in Table III.

If the SU(3) mass splittings are neglected, the
Yukawa-type meson-baryon coupling constants have a
D/F ratio of $ which agrees with the corresponding re-
sults in the nonrelativistic SU(6) theory. "From the

where 0 is any Dirac matrix and M represents either» p. GQrsey, A. pais, L. A. Ragicati, phys. Rev. Letters &3
the pseudoscalar mesons P or the vector mesons V. It 299 (1964).



B. SAKITA AN D K. C. KALI

TA'BIE III. Expressions for f&, p~ de6ned in Eq. (5.11).

( W+~i)
I 1+

3 18M3lxk m

M+Mf 2 1 g'
+-—a+

18';Mf 9 m 4M;off

f.W'

q' ( &+My)
6M;SIC ( m i

t+
6M;My m i

H g' N;+My

1 3E~+Mi 1 1 q+-—~+
9 M;3' 9m M;3Eyi

results in the Appendix,

4 [1+(M~*+M~)(mp]'
g&.++ p + =

y

9 N~'
(5.14)

The contributions of these terms to the charge [F,l,(q')]
and magnetic [F „(q')7 form factors" are given in
Table IV. From these results it follows that'~

50 m '~'~ 2M&~'
g», -"=—1- ii 1+ iG, (5.»)

S1 4Mi& ~ i

1
Fv(~2)J (v)g FT(q2)J TP (5.17)

2 1m, 5(m,
g», o'=

, 1 —-— ———
I

G'. (5.16)
9 3M~ 12(M~

The requirement that gpp, 0' ——15 leads to a value of
G'=2.05. The width of E~ and happ, ,"calculated using
this value of G' are 94 MeV and 0.21. In spite of sig-
ni6cant changes in the expressions for these coupling
constants due to relativistic efkcts, the values obtained
are in good agreement with the corresponding ones in the
nonrelativistic SU(6)."Since in the present considera-
tions, the vertex functions are characterized by
momentum-dependent form factors, a direct comparison
with the experimental values needs further investigation.

It is interesting to note that in the zero-momentum-
transfer limit, y„-type coupling of the vector meson to
the baryons is pure F-type. Thus the vector-meson 6eld
is coupled to a conserved SU(3) current. Further, both
the F- and D-type strangeness non-changing currents
are conserved even in the presence of SU(3) mass
splittings.

Although our treatment has been without reference
to quarks, it is helpful to consider the quark model to
specify the electromagnetic interaction. In the quark
model, the electromagnetic current is described by a bi-
linear form of the quark 6elds. As is evident from Table
III, if we take only the minimal electromagnetic inter-
action for the quarks, we shall not obtain the correct
value for the magnetic moment of the proton. Ke
assume, therefore, that there is in addition an anamalous
magnetic moment interaction. Now the bilinear form in
quark 6elds is a 144-dimensional tensor representation
of M(12) and the minimal and anamalous parts trans-
form as a vector and a tensor, respectively. If we assume
these transformation properties under M'(12), then the
electromagnetic interaction has the general form

and

F.h"(v') =o (5.19)

for all values of q'. These consequences are certainly
consistent with the presently available experimental
information. Another very interesting property of these
form factors is that they satisfy the required threshold
condition. "

In the low momentum transfer region, the electro-
magnetic structure of the proton and neutron may be
dominated by the vector mesons. If we therefore make
the further assumption that the electromagnetic 6eld
couples to the baryon in exactly the same manner as
the Vy' component of the vector meson octet in the low
momentum transfer region, we can calculate the
absolute values of the total magnetic moments of all
the baryons from Table III. %e only note here that

and p,~= —
3p,p (5.20)

in units of nuclear magnetons. Equation (5.20) gives
@~~3.4 as compared with the experimental value
of 2.79.

"F.J. Krnst, R. G. Sachs and K. C. Wali, Phys. Rev. 119,
1105 (1960)."K.J.Barnes, P. Carruthers, and Frank von Hippel, Phys. Rev.
Letters 14, 82 (1965)."i.e., F,h(q')=2MF~~(g') at q'= —43P. V. Barger and R.
Carhart, Phys. Rev. 136, 8281 (1964}.This condition is trivially
satis6ed since F,h( —4M') =Pm„(—4M )=0.

VI. SUMMARY AND DISCUSSION

The starting point of our formulation was the assump-
tion that 6elds corresponding to elementary particles
are tensors of M(12). The particle multiplet structure
itself, however, was derived by the requirement that
these 6elds satisfy prescribed free-6eld equations of
motion which are not covariant with respect to M(12).
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TABLE IV. q' is the square of the momentum transfer. The form vectors F~{q') and F~(q') that multiply the
vector and tensor contributions respectively are omitted from the table.

Contribution of J~ Contribution of J

(m;+u, )2 q
~,h(q') &+

6M;Mf (M;+Mf)~

(M;+Mf) q' q'
1+

ys;+m )'

M;+Mr q' M, +Mf t' q' ) (M;+My)' 1 q' (M;+My)' t
t

q'
——t+

I
t+

I

—1+ —— —
I

t+
9M~My (M;+My)' 6M;My ( (M~+Mg)'j 9M;Mf m (M;+My)' 6M;My m ( (Me+My)'j

It is remarkable that there exist tensors" and equations
of motion (Bargmann-Wigner equations) which lead to
a supermultiplet structure which corresponds exactly
to that of SU(6) symmetry It w. as also shown that the
observed mass splittings can be easily incorporated in
the equations of motion leading to solutions in terms of
physical masses.

The interaction Lagrangian was assumed to be in-
variant under M'(12) and effective vertex functions were
obtained in the lowest order perturbation calculation
using the solutions of the held equations. The relations
between various coupling constants were discussed in
the text and are also summarized in the Appendix in
some cases of interest. In the few cases where an attempt
has been made to compare the results with experiments,
the results are certainly consistent with available
information.

So far we have restricted our attention mainly to ver-
tex parts. The problem of obtaining effective matrix
elements for scattering processes remains to be dis-
cussed. Let us consider meson-baryon scattering as an
example. There is a set of one-particle exchange dia-
grarns such as vector-meson exchange diagrams, which
have singularities near the physical region. If we take
the M(12) invariant vertex, this set of diagrams does
not have an over-all M(12) invariance except in the
special case when the four-momentum in the propagator
is zero (i.e., forward scattering). Thus, in general, even
for the Born terms we do not obtain M(12) invariant
results. There are more complicated diagrams, which
are in general responsible for the short-range forces.
It is reasonable to assume that there are stronger sym-
metries in the short-range forces. From this basis we
would like to propose the following model for the scat-
tering problem. The Born terms for two-particle scat-
tering amplitudes are to be obtained from one-particle
exchange graphs which represent long-range forces and
from the M(12) invariant direct graphs which represent
short-range forces. The latter contributions can be

~ Similarly, other tensors with appropriate symmetry properties
have the content of SU(6) multiplets; R. Delbourgo and M. A.
Rashid, international Centre for Theoretical Physics, Trieste
(to be published).

derived from the following effective Lagrangian:

L =G~+ABC+ABC@D@@ED+G8

ABC@~A�

"(g&g„

+G34" 4'~" @'a
'

~ a'c.

The complete scattering amplitude can then be obtained
from these Born terms by using unitarity relations in a
suitable way, e.g., dispersion relations with subtractions.

Perhaps it is also worth pointing out some of the
difficulties in the formulation. M(12) contains SL(6,C)
which is noncompact. Hence, it is not possible to con-
sider this group as the group of transformations acting
on physical states because of the difFiculties discussed in
the Introduction. Since the free-held equations are not
covariant with respect to M(12), the physical states do
not form a unitary representations of M(12). On the
other hand, our procedure of calculating the efI'ective

vertex functions is equivalent to assuming forrnal in-
variance under M(12) for these functions. Clearly such
an invariance is not maintained when higher order cor-
rections are taken into account, since the internal lines
violate M(12) invariance. Hence, it is hard to under-
stand the various relationships between diferent cou-

pling constants from the point of view of conventional
renormalization procedures. Our assumption therefore
has to be regarded only as a working hypothesis and its
justification has to be sought on some dynamical basis.
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APPENDIX

The purpose of this Appendix is to collect together
the relationships between diferent coupling constants
for some cases of interest. In each case an interaction
Lagrangian which conserves ordinary isotopic spin and
hypercharge is written. The coupling constants are
identified with the appropriate vertex functions of the
present model with all the particles on the mass shell.
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VPP Interactions

j. ++

Lint=& gpw~fip KXBp's+gpxxsp'E 'HpE+gx'x~(Ep eE Bpir —H.c.)

+Gx x„(EpPtEBp~ H—.c )+g..xx~~ BpE+g,x~pEtBpE . (A1)

Comparison with (5.1) gives

and
g,-=(9/~)g (A2)

gp =2gpJrx=2gx'Jrr= (2/~)gx'x p= 2g'mxx=~~gpxK.

Relations (A3) are consequences of just SU(3) symmetry and id-p mixing.

(A3)

VVP Interactions

Lint i'fppxs[gpru~BpgpBLRi'R+gx x ~BpEp %8gEb '05+gpx x(Bppp'BXEs &E H c—)+g.px. x(Bp(0„8iE E H.c.)—
+gpx'z(Bpk BA'i E H c )+gpppBpti Bi pi'il+geaqBpidpB&&lrl+g~pBp4 BXArl+gJr'xqBpE BiEii 's3 (A4)

+gppxpBpg& BipiEO+gppxpBp~~Bx&PO+g~xpBp4&'BiiliiEO+gJr x xpBpEBA PO ~

Comparison with (5.2) gives

g...= (9v2/pl, )g

gx X x 2+ gpcotr q g~= 2 g

SPYp

gpK X= ~+2 gpcyx p

6 m~'
gx x sI 2+ gpss~ p

2

gatE', X + ~+2 gpss' ~

6 mg'
gp pXO

=g4sryro =
3+6

(pmp
1+2~ gp~l q

&ms
(A6)

gp pV gosh% Mpcs~ p

2V3

VPP and VVP coupling constants are related because of (A2) and (A5):

g.-= (2/ihip)g p-

DBP Interactions

The space-time structure of the interaction is given by

Pp(80/»p)4, (AS)

where P represents the pseudoscalar meson 6eld. If the coupling of the baryons and pseudoscalar mesons is de-
composed into the conventional isotopic-spin representation, ' then from (5.10)

2 1 Ms +3fs
gB,BP gB,BP ~+

3MB Slp

(A9)

"For the is«opic-spin decomposition of DBP and BBP interactions see, for example, A. W. Martin and K. C. Wali, Nuovo Cimento
31, 2324 {2964);Phys. Rev. 130, 2455 {2963).
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where Mg and M~ refer to the masses of the members of the decuplet and the baryon octet respectively. g~', g~
are determined by SU(3) symmetry and they are given by

G= gN' N '= gN—' zx'= —(/6)gr*, z.'= —~2gr' L '= (/6)gr' Nx'. = (/6)gr'. =-x'

= V2gr ', z 0= (+6)g '"zx,'= —(+6)g=-', =-
' =&2g=-,gx' ———&2g=-', =-„'=go, =-x'. (A10)

BBP Interactions

With the usual decomposition of the interactions into isotopic spin representation and (5.11), we have

1 ((Ms+Ms )' tag' Mz+Ms)'
g»'& g»'& 1+

18k MsMs. MsMs. m,

where g» Q' a're determined by exact SU(3) symmetry and a D/F ratio of z'. Thus

gN~ '=5(G/v2), gxxx'= 3~(G/~&—) ~ g~~w=~~(G/~&)

gzz„= 2'(G/v2), gz~x' ——G/v2, gpss„= —2VS(G/v2) )

gzz. '= 4(G/v2), hg„-.x=v3(G/v2'), gzz„= 2v3(G/v2),

g=-=- '= —G/8, hz-. x= —5(G/V2), g=-=-„= —3'(G/v2) .

The y„- and r„;type SSV interactions can be easily read from Table III.

(Ai 1)
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Su~rnf~g Certain y' Graphs Using Integral Equations*

S. NUssINov

University of Washington, Seattle, Washington
(Received 23 April 1965)

It is shown that the problem of surrirrii~g certain graph chains occurring in p' theory in which we have
three (or four) particles in the intermediate state is reducible to an integral equation. For forward scatter-
ing and zero-mass Geld, this equation can be solved exactly using a method for solving the Bethe-Salpeter
equation which has been recently suggested. As an example, the case of the truss-bridge diagrams is worked
out in detail.

INTRODUCTION

A N exact solution for the forward-scattering Bethe-
Salpeter equation in p4 theory for zero internal

masses and a kernel which is any arbitrary 6nite sum
of irreducible primitively divergent graphs was recently
obtained. ' This was achieved by VVick-rotating and
performing a four-dimensional partial-wave projection, ~

and 6nally utihzing the dilatational invariance by
transforming to Mellin space' and obtaining by simple
algebraic calculation an exact solution. It was shown
that the inverse Mellin transform yields a partial-wave
amplitude with 6xed cuts. '

In the present paper we show that integral equations
can be used to sum a certain c1ass of diagrams —those
shown schematically in Figs. 1 and 2. These diagrams
do not contain two-particle intermediate states so that
their formal sum does not lead to the ordinary Bethe-
Salpeter equation. However, these diagrams may be
divided into links by cutting across a line and a vertex
or 2 vertices. This will allow us to write down simple

FIG. 1.Generalized diagrams
which are separable by cutting
across a line and a vertex.~ Supported in part by the U. S. Atomic Energy Commission

under contract A.T. (45-1)-1388,program B.
'M. K. Banerjee, M. Kugler, C. A. Levinson, and I. J.

Muzinich, Phys. Rev. 137, 31280 {1965).
~ J. D. Bjorken, J. Math. Phys. 5, 192 (1964).'P. Morse and H. Feshbach, Methods of Theoretical Physics,

{McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1,
p. 9768.

4 The Gxedness of the cut is shown in detail in a forthcoming
paper.

FIG. 2. Generalized dia-
gram separable by cutting
across two vertices.
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