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The solutions to Eq. (A7) determine the class of
quantum states for which the equivalence of quantum
and semiclassical descriptions obtains. An obvious solu-
tion is

(—N) "/r! and sum over r,

~ (—N)" ~X'
f—(t+r+p) f*(t+r+v) =1. (A11)

r-o t! c-o l t

or

f(t) = e'~ (A8)
Next we make the change of variables t=s—r, and
invert the order of summation,

~ S'
f(t+r+—p)f (t+r+v)=e",

&o]t
(A10)

where r, p, and v are arbitrary non-negative integers.
Then we multiply both sides of the equation by

g(g) = (rt l) &/2N&—l&c &I2c~—e (A9)

which defines the coherent states, as can be seen by
comparison with (3.4). We shall now show that this
solution is unique. This can not be done by expanding
the right-hand side of (A7) in a power series and
equating the coeKcients of S' on both sides. The reason
is that f(t) may itself be a function of N. We proceed
instead by rewriting (A7) as

EX=EX,
r Oa r e Or 0

(A12)

00 I (—1)'
Q N'f(s+tl, )f~(s+v) Q =1. (A13)
s~O .-0 r!(s—r)!

The sum over r is unity for s=0, and it is the binomial
expansion of (1—1)'/s! =0 for s&0, so that

f(p)f*(v) =1. (A14)

Since p and v are arbitrary, the solution is f(t)=e'~
with qb constant.
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It is shown that ~$, ES, and EÃ elastic-scattering and charge-exchange data at high energy and small
momentum transfer can be well fitted by assuming that the amplitudes are dominated by a few Regge poles
in the crossed channel. The constraints imposed by the factorization principle are included. Unitary sym-
metry (SVI) is approximately satis6ed. Sample predictions of ~p polarization and E++n —+ X'+p charge
exchange are made.

1. INTRODUCTION

HIS paper shows that the present pion-nucleon
and kaon-nucleon data, at high energy and small

momentum transfer, are consistent with the dominance
of a few Regge poles in the crossed channel. Explicit
models are constructed which give good fits to the data
in the range of incident momentum 6 to 20 GeV/c and
squared momentum transfer

~
t

~

(1 (GeV/c)'. Possible
branch points in the complex angular-momentum plane
are neglected. Mandelstam' has shown that such branch

*%'ork done under auspices of the U. S. Atomic Energy
Commission.

t Permanent address: A. E.R. E., Harwell, Berkshire, England.' S. Mandelstam, Nuovo Cimento 39, 1127, 1148 (1963).

points are probably not negligible at asymptotic ener-
gies; however, there seems to be a good chance that
over a considerable energy rang- perhaps up to 100
GeV or mor- their eGects are not important. '

There have already been several Regge-pole models' 4

(some including a cut' ') for the pion-nucleon and
kaon-nucleon systems. However, the authors have not
included the helicity-Sip terms, have largely ignored
the question of isospin dependence, and have not at-

' G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964).' A. A~rr adzadeh and I. A. Sakmar, Phys. Rev. Letters 11, 439
(1963).

4 T. O. Binford and B.R. Desai, Phys. Rev. 138, B1167 (1965).
s P. G. O. Freund and R. Oehme, Phys. Letters 5, 353 (1963).' I. R. Gatland and J. %. Moffat, Phys. Rev. 132, 442 (1963);

Phys. Letters 8, 359 (1964).
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tempted accurate numerical fits to all the data. Also,
high-energy charge-exchange measurements' —' have not
been made until recently, and are not considered in
these earlier works. "

A characteristic of Regge-pole models is that the
forward-scattering ("diffraction") peak shrinks with
increasing energy when a single pole dominates. Proton-
proton diGraction shrinks at present accelerator ener-

gies, but pion-nucleon and kaon-nucleon scattering
show little or no eGect"; and this has sometimes been
taken as evidence against Regge poles. However, in
the range considered here there is no question of a
single pole dominating; at least three poles are needed
to explain the pion-nucleon data and 6ve for the kaon-
nucleon data. Various authors" ~" have shown that
when several poles are significant the shrinking eGect
may be enhanced or even reversed. In the models which
we construct below there is little shrinking for elastic
scattering, partly because of secondary poles and
partly because the slopes of the trajectories are not
large. In xX charge exchange, however, a single pole is
operative: Here we expect shrinking to be seen, and
indeed the data show this eGect, as already reported
by Logan. '0

Another important characteristic of Regge poles is
the "signature factor, " which 6xes the phase of each
pole contribution in terms of its energy dependence.
The phase of the scattering amplitude in a Regge pole
is thus fairly well determined by other aspects of the
fit to data. When this phase can be measured directly,
it oGers a stringent test of the model. For the xX system
this phase is known for forward elastic and charge-
exchange scattering; for the XE system it is somewhat
less well known; in all cases our models make satis-
factory predictions (see Sec. 6). This is further evidence
to support the Regge-pole hypothesis. ""

In Sec. 2 we describe the Regge poles that are used,

P. Astbury, G. Finocchiaro, A. Michelini, C. Verkerk, D.
Kebsdale, C. Nest, Vi7. Beusch, B.Gobbi, M. Pepin, M. Ponchon,
and E. Polgar, Proceedings of the Twelfth Annus/ International
Conference on High Energy Physics, DNbne, 1964 (Atomizdat,
Moscow, 1965).

8A. V. Stirling, P. Sonderegger, J. Kirz, P. Falk-Vairant, O.
Guisan, C. Bruneton, P. Borgeaud, M. Yvert, J. P. Guillaud,
C. Caverzasio, and B. Amblard, Phys. Rev. Letters 14, 763
(1965);J. Kirz (private communications).

9 L Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodickson,
Phys. Rev. Letters 14, 408 (1965).

'o R. K. Logan, Phys. Rev. Letters 14, 414 (1965), has recently
analyzed the charge-exchange data of Ref. 9 using one Regge pole;
however, he does not include elastic scattering or total cross
sections.

"K.J. Foley, S. J. Lindenbaum, %. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11,425, 503 (1963)."R. J. N. Phillips, Phys. Letters 5, 159 (1963)."B. R. Desai, Phys. Rev. Letters ll, 59 (1963).

"The asymptotic phase of a Regge-pole contribution follows
from its simple power-law dependence on energy, as shown by
dispersion relations (e.g., Refs. 10 and 15}.So the part of the
Regge pole hypothesis that is being tested here is the assumption
that the complete amplitude is a sum of a few terms, each pro-
portional to a power of the energy, and each having a simple
isospin and G parity in the crossed channel. This is a nontrivial
assumption.

"A. Bialas and E. Bialas, Nuovo Cimento 37, 1686 (1965}.

the forms of the scattering amplitudes, and our par-
ticular parametrizations of trajectories and residue
functions. Within this framework there is no unique
set of parameters that 6ts the data. We have found
several kinds of solution, which are illustrated.

Section 3 concerns the "crossover" eGect: The diGer-
ential cross section for 7r+p scattering intersect in the
small-momentum-transfer region, and thereby pose a
problem for Regge-pole 6tting. E+p scattering shows

the same eGect. One of the main diGerences between
our various models is how they explain this
phenomenon.

The factorization principle relates the residue func-
tions of a given Regge pole in different physical ampli-
tudes, as described in Sec. 4. These constraints have
been included in our models.

In Sec. 5 we discuss the relations implied by the
unitary symmetry group SU3. These are ignored in
the process of 6tting the data, but are approximately
satisfied by the results.

The experimental data and the method of fitting
parameters are described in Sec. 6.

Various fits to the data are summarized, illustrated,
and discussed in Sec. tt. A partial-wave analysis of some
typical solutions is given, to be compared to other
models that have been proposed, and to show that the
unitary bound is respected. The ratio of real to imagi-
nary part of the forward-scattering amplitude is com-
pared to experiment. Some predictions of high-energy
mE polarization and E+n +E'p ch—arge exchange are
made.

2. FORMALISM

Consider 6rst xE scattering. Then at least
three Regge poles are needed to 6t the data. The
Pomeranchuk pole P describes the asymptotic limit;
a second vacuum pole P and the p pole are needed
to give the differences of ~+p amplitudes from the
asymptotic limit and from each other. We take just
these three.

Singh" among others has described the Regge-pole
formalism for this case. There is a helicity-6ip ampli-
tude 8 and a nonflip amplitude A (which Singh calls
A'), in terms of which the total and differential cross
sections are

(rr(s) =InL4(s, t=o)/P,

da 1tm~ '—(s,t) =—
i

dt ms (4k k 4mpPJ

t ( s+Pis—
4mN2 & 1—(t/4m+) I

Here s and t are the invariant squares of energy and

"V. Singh, Phys. Rev. 129, 1889 (1963).
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momentum transfer, p is the pion lab momentum, k

is the c.m. momentum, and m~ is the nucleon mass.
Each pole gives to A and 8 terms of the form

A,= —C,(exp( —isa;)a1/si nn.n,)(8/Eo) ',
(3)

8;= D—;(exp( o—s a;)+1/sins a~) (E/Eo) ~ ',
in a high-energy approximation. Here the label i denotes
P, P' or p, a;(t) is the trajectory, E= (P'+no, ')'~' is the
total pion lab energy, and, Eo is an arbitrary scale
parameter, which we take for convenience to be 1 GeV.
The sign + in the signature factor is + for I' and I"
but —for p. C;(/) and D;(t) are real functions related
to the pole residues. When units A= c= 1 are used, A;
and C; have the dimension (length), 8; and D, have
the dimension (length)'.

For dedniteness, let the contributions A; and J3,
defined above refer to o. p scattering. Then the various
m X amplitudes of present interest have the forms

In the range considered, data 6tting is not very
sensitive to the form of the trajectories a;(3). Probably
straight lines wouM suKce, but we have used a two-

parameter form suggested by Pignotti~ which includes
some curvature:

(~)= —1+[1+ (0)3'/[1+ (o)—'(0)~3. (13)

The two parameters are a(0) and a'(0), the value and

slope at t=O.
For the residue functions C;(t) and D;(t), the data

suggest something approximately exponential in the
small-t region, decreasing less strongly at larger values
of t. The data we seek to Gt lie mostly in the former
region. Accordingly, for the even-signature poles I',
I", and E we generally take the empirical forms

C(~) =Cw(~)[2a(~)+1j e~(C&~), (14)

D(~) =D~(~) e~(D,t). (15)

In a few cases exp(c~t) in Eq. (14) is replaced by
exp(c~t+CP). The factors (2a+1) in C(t) and a(t)
in D(t) are angular-momentum weight factors; the
factor a(t) in C(t) is to remove the unphysical singu-
larity ("ghost state") that would otherwise occur,
when and if the trajectory passes through a=O in the
region t (0.

For the odd-signature poles p and co, the crossover
phenomenon (see Sec. 3) suggests that the residue
functions may change sign. For this possibility we use
a diBerence of exponentials.

C(t) =C~(0)[2a(&)+1][(1+G)exp(c, t)
—G exp(cot)], (16)

D(1)=Doo(l) [(1+K)exp(D~t) —B exp(Dot)]. (17)

(4)A(n +p~n +p)=Ap+Ap+A„
A(n.++p ~ n++P)=A p+A p —A„
A (s-+p ~ xo+ n) = —v2A, .

(5)

(6)

The helicity-fIjtp amplitudes are similarly related.
Consider now EN and EX scattering. Regge poles

in this context have been discussed by Sakmar. '~ Besides
the poles already described, two more poles with nega-
tive G parity (which cannot aifect sS) are needed to
fit the total cross-section data. '8 These are the cy pole
(in which we include any contribution from the nearby
g pole) and the R pole proposed by Pignotti. "oo The
argument for an R term in kaon-nucleon scattering is
given in Ref. 21.

Just as for nX scattering, there are two amplitudes
for each process and the pole terms have the same forms
as in Eqs. (3). The various amplitudes of present
interest have the forms

In the limit G=O, Eq. (16) reduces to Eq. (14),
except that the ghost-»lling factor (not needed for odd
signature) is replaced by the constant n(0). For H=O,
Eq. (17) reduces to Eq. (15). Another way to parame
terize a sign change is to multiply a single exponential
by a factor (t—fo); we tried this but found Eqs. (16)
and (17) more satisfactory.

The parameterizations above are intended only for
the range under discussion, 0&~ (t~ &1 (GeV/c)'. It is
not suggested that they can be extrapolated as they
are beyond this range. They are purely empirical.

3. CROSSOVER EFFECT

A (K—+P —+ K—+P) =A p+A p.+A „+Ao+A a, (7)

A(E +n —+E +n)=Ap+Ap. +A~ Ao Aa, —(8)—

A (K++P-+ E++P)=A p+A p A Ao+Aa, —(9)—

A(K++n —+ E++n) =A p+A p A+A, A—s, (10.)—
A(E +p —+K+n)=2A, +2Aa, (11)

A (E++n ~Eo+P) = —2A, +2Aa (12)

We come now to the parametric forms assumed, for
thea;, C;, and D;.

'7 lsmail A. Sakmar, them. s, Lawrence Radiation Laboratory
Report UCRL-10834, May 1963."%.Galbraith, E. W. Jenkins, Y. F. Kycia, B. A. Leontic,
R. H. Pb»»ps, A. L. Read, and R. Rubinstein, Proceedings of the
Twelfth Annua/ I&ernutional Conference on High Energy Physics
Dubs, XN4 {Atomizdat, Moscow, 1965).

'9 A. Pignotti, Phys. Rev. 134, B630 {1964).
'0 A. A&~adzadeh, Phys. Rev. 134, 3633 {1964}.
I' R. J.N. Phillips and O'. Rarita, Phys. Rev. 138, B723 {1965).

Near k=0 the n p diBerential cross section is slightly
greater than the n+p value, at each energy. For larger
t, however, the m+p cross section is greater. The cross-
over point seems to lie near t= —0.05 (GeV/c)'. This
effect has special implications for the p pole.

It is natural to suppose 6rst that the nozdIip ampli-
tude A dominates at small t and is responsible for the
crossover effect. Then the n+p cross-section difference

~ A. Pignotti, Phys. Rev. Letters 10, 416 (1963}.
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Q; (wE) =Eog;I g|~+g2,t/(4m+ —t)j,
D;(wE) =g.q2;,

(&g)

(19)
"M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962).
~4 V. N. Gribov and L Ya. Pomeranchuk, Phys. Rev. Letters S,

343 (1962).

is due to the interference term betwee~ (A p+A p ) and
A p. Since this interference term changes sign at the
crossover, either A, changes sign or the relative phase
passes through &w/2. However, in a Regge-pole model
the phase of each term is tied to its energy dependence,
and it can be shown that in our case this relative phase
cannot approach &w/2 for small t. Hence, if A, domi-
nates the crossover, it must change sign.

Now in fact the amplitude 8p is not negligible at the
crossover point. If it were, the w +p ~ w +I charge-
exchange cross section would vanish, whereas nothing
of the kind happens.

If we include a substantial Bp eHect, A, ca,n still
explain the crossover by changing sign, but an alterna-
tive explanation also appears. Suppose that the inter-
ference term between (B~+B~.) and B, is rather
strong, and that it has the opposite sign to the inter-
ference between (A~+A~. ) and A, . Then at t=0 the
w+p cross-section dilference is given by the A term,
since there is no helicity-Rip contribution here. How-
ever, as ~t~ increases the B term can overtake the A
term and reverse the cross-section difference.

We thus have two simple explanations: (a) A,
changes sign, (b) A, and, B, elfects have opposite sign,
but neither goes through zero. Of course other ex-
planations can be constructed by combining or modi-
fying (a) and (b). For instance, (c) A, and B, effects
have opposite signs and A, goes through zero, (d) A,
and Bp both change sign, at different values of t, etc.

A similar but stronger crossover seems to occur with
the K+p differential cross sections. Though we have no
small-angle K p da, ta, the total cross sections with the
optical theorem suggest the forward cross section is
greater for K p; in our model this is certainly so. At
larger angles, however, the K+p value becomes much
the larger, by a factor of 2 or more. In our models the
crossover must be due to the p and cv poles. The same
general types of explanation can be constructed as in
the mE case, subject to certain constraints. If A„
changes sign, then so does B„(see Sec. 4). The total
cross-section data also require both A„and A, to have
the same sign at t=o.

Because the K+p crossover is a bigger eBect, it is
harder to 6t the data purely by a helicity-Qip effect of
type (b) than in the case of the w+p crossover. A good
6t seems to require a sign change in a residue function
(see Sec. 7).

4. FACTORIZATION CONSTRAINTS

The factorization theorem of Gell-Mann" and Gribov
and Pomeranchuk~ states that the xE residue functions
have the forms

5. UNITARY SYMMETRY

The unitary symmetry group SUB gives several
relations that are interesting to consider, even though
the symxnetry is not exact. '8

Now, m. , E, and E are supposed to belong to a
common unitary octet; hence the mm and EE couplings
to a singlet, such as the Pomeranchuk pole P, should
be equal:

'Q~p exp ~ (2&)

Hence A r (wE) =A r (KE) and Br (wE) =Br (KE). The
same holds for P', if it too is a unitary singlet.

The p pole belongs to an octet. The coupling between
this particular octet and the xx and EE octets must be
pure Il type to preserve charge-conjugation invari-
ance.~ Hence there is a precise relation between the
couplings,

ga p 2QEp p (22)

~~ M. Gell-Mann, in Proceedings of 196Z Annual International
Conference on High-Energy Nuclear Physics at CERlV', edited byJ. Prentki, {CERN, Geneva, 1962), p. 533."W. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206
(1964).

'~ A sin~&ar conclusion is reached in Ref. 4.
~ See, e.g., M. Gell-Mann, Phys. Rev. 125, 1067 (1962).' H. Lipkin, Phys. Letters 7, 221 (1963}.

following the notation of Ref. 2S, where Eo is the same
scale constant as in Eqs. (3); g., characterizes the
coupling of Regge pole i to the ~x system, while p&;

and p2; give its coupling to the ES system. The ES
residue functions are similar, with q; replaced by pz, .

This immediately gives a relation between the mX
and EX terms:

A; (wE)/B, (wE) =A; (KE)/B; (KE) (20)

for the Regge poles common to both problems, i=P,
P', and p.

The factor functions q;, g~;, g~;, and q2; are usually
assumed to be analytic and real in the scattering region
of interest. Hence if A, (wE) changes sign near the
crossover (Sec. 3), either g, or gi, must change sign.
It cannot be g „since that would make both A p and
Bp vanish at the same point, giving zero charge ex-
change. So q1, must change sign. Hence A, (KE) also
changes sign at the same point.

In the EE and EX problems, residue functions
(g|;)', (gm;)', and g~,qm; appear. Clearly there are many
constraints, relating these to each other and to the mX
and EX problems. Rarita and Teplitz"" have argued
that the residue function corresponding to (qq )' must
change sign in order to explain a crossover eGect
between the pp and pp differential cross sections. Such
a sign change would contradict the assumption of real
analyticity for the p;. However, the actual residue
functions themselves would remain real in the example
cited. if (g1„)', (gm„)', (pz )', and all the other squared
~-factor functions changed sign at the same point.
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where the relative sign is given to agree with the con-
ventions of Eqs. (4)—(12) and (18), (19). Hence
A~(sX)=2A~(EN) and B,(sÃ)=28, (EÃ).

The co pole we have introduced is meant to stand for
both ~ and p, which belong partly to the same octet
as p but partly also to a singlet. No useful relations
concerning them can be inferred without further speci6c
assumptions.

The E. pole is supposed to belong to an octet and
Pignotti'9 suggested that the isoscalar member of this
octet (let us denote it S) might in fact play the physical
role usually ascribed to a second vacuum pole P'. Now
this octet must have pure D-type coupling to the ~x
and EE octets, ~ so we have

(1/ /3) llxs = —rlzs = s 's~s . (23)

This implies As(mi1 ) = 2As(—EE) and &s(sN)
= —28s(EE), and shows that Pignotti's suggestion
about the role of 5 is untenable: 5 cannot substitute
for P', since total cross-section data require at least
that As (s.X) and Ar. (EÃ) have the same sign at
t=0. However, our empirical P' term may in fact
include a contribution from S, and may, therefore, not
behave like a pure singlet.

We cannot compare the complete R and S ampli-
tudes, since we do not know the F/D ratio of their
coupling to XX.

I'D. Hartig, P. Blackall, B. Elsner, A. C. Helmholz, %. C.
Middelkoop, B. Povrell, B. Zacharav, P. Zanella, P. Dalpiaz,
M. N. Focacci, S. Focardi, G. Giacomelli, L. Monari, J.A. Beany,
R. A. Donald, P. Mason, L. %'. Jones, and D. 0. Caldwell, Nuovo
Cimento (to be published).

6. DATA AND PARAMETER FITTDTG

The experimental data used are as follows. Total cross
sections for vr+p, E+p, and EW at 6, 8, 10, 12, 14, 16,
18, and 20 GeV/c are taken from Ref. 18. Elastic dif-
ferential cross sections are taken from Ref. 11 for s.+p
at 6.8, 8.8, 10.8, 12.8, 14.8, and 16.7 GeV/c; for s p
at 7, 8.9, 10.8, 13, 15, 17, and 18.9 GeV/c; for E+p at
6.8, 9.8, 12.8, and 14.8 GeV/c; and for E p at 7.2 and
9 GeV/c. For ~ +p —+ s +e charge exchange, we use
data from Ref. 9 at 6, 8, 10, 12, 14, and 16 GeV/c and
from Ref. 8 at 5.9, 9.8, 13.3, and 18.2 GeV/c. Our
E +p +E'+I da—ta are at 9.5 GeV/c, from Ref. 7.
In all we use 334 m.E data points, plus 225 more for EE
and E'E; most of these are illustrated in the next
section.

Recently fresh s+p dilierential cross-section meas-
urements have been made" at 8.5, 12.4, and 18.4 GeV/c.
These results are very similar to those of Ref. 22, but
there are small systematic differences which make it
hard to 6t both sets simultaneously. Accordingly we
have chosen to omit the data of Ref. 30 from the 6nal
analysis.

The ~X charge-exchange data of Ref. 8 show a
minimum near t= —0.6(GeV/c)', followed by a slight

rise. It is not clear whether we should seek an explana-
tion of this in terms of the p Regge pole. We therefore
constructed two kinds of solution, one including and
one excluding the charge-exchange data beyond this
minimum.

The parameters of our models were optimized by
least-squares 6tting to data, using the IBM-7094 com-
puters at the Lawrence Radiation Laboratory, with
programs based on a variable metric minimization
method. " The parameters were also restricted to
satisfy reasonable physical criteria. The coefBcients
C&, C3, D&, and Da appearing in exponentials Lsee Eqs.
(14)—(17)$ were not allowed to become negative, nor
very large; a practical upper limit (4m ') '=12.5
GeV—' was imposed. The zero intercept of the P
trajectory was axed at ns(0) = 1:Some empirical sup-
port for this choice is described in Sec. 7.

Perhaps the most important constraint we applied
was unitarity. Each solution was decomposed numeri-
cally into partial waves and the partial amplitudes
were compared with the unitary bound. Violations of
unitarity were tolerated only if the partial amplitudes
concerned were essentially zero and contributed nothing
to the fit to data; we regard these marginal violations
as being consequences of imperfect parameterization
and having no physical signi6cance. Substantial vio-
lations of unitarity were not tolerated; the corre-
sponding solutions were modi6ed and constrained until
they conformed.

It is interesting to note the types of unitarity viola-
tion that occurred. We did not find the type most
expected, in which the lowest partial amplitudes become
too large, but we found two unexpected types. (i) To
illustrate the first type, consider a spinless problem at
some given energy, with a pure imaginary amplitude
i exp(at). It can be shown that all the partial-wave
amplitudes are positive imaginary, because of the
special properties of Bessel functions. However, if
instead the amplitude is i exp(at+ bP), the partial ampli-
tudes do not all have the same sign; some are negative
imaginary and violate unitarity. We met this type of
violation when the parameter C~ was used [see below,
Kq. (14)j; fortunately the offending terms were usually
very small and in high angular-momentum states, and
had no physical importance. This kind of violation
seems clearly due to oversimplified parameterization
of the amplitudes. (ii) To illustrate the second type,
consider the usual "nonrelativistic" de6nition of non-
Qip and spin-Hip amplitudes. For given orbital angular
momentum I, the nonfiip contribution contains a sum
of partial amplitudes (1+1)ac++lar and the spin-
Qip terms contains the difference al, —u~. Suppose
the partial amplitudes al.+ are imaginary: then for a
fixed nonQip term, the spin-Rip term cannot increase
indefinitely without either az+ or aL, becoming negative

"%.C. Davidon, Argonne National Laboratory Report No.
ANL-5990 (Rev.), 1959 (unpublished).
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and violating unitarity. The relation of our amplitudes
A and 8 to partial waves is more complicated, " but
we did find essentially this type of violation when 8
contributed too strongly to high partial waves; the
remedy was to reduce and restrain the coeKcients Do
and D& Lsee Eq. (15)j.

We began by fitting the mX data. With this analysis
used to fix the ratios A/8 (from factorization) and the
trajectories a(t) for P, E', and p, the EX and EX data
were htted by adjusting the remaining parameters.

The value of y', characterizing the goodness of 6t to
data, requires some comment. Ideally, with data free
from systematic error and a perfect theory, the expected
value is the number of data points less the number of
adjusted parameters. However, when the quoted ac-
curacy of data becomes less than the systematic errors
of experiment or theory, the value of y' soars. We found
two places where this happens. Firstly, the K+p total
cross sections" are given to +0.1 mb, and in the mean
are almost constant with energy; however, there are
some fluctuations of order 0.3 mb, so that no theory
with a smooth energy variation can give a textbook 6t.
These eight points contribute typically about 23 to p'.
Secondly, the x +p —+ 7r +n data from Ref. 8 show
systematic deviations at small angles from the single-
power energy dependence of our models; the apparent
rate of change, comparing 5.9 and 18.2 GeV/c data, is
greater than that obtained by comparing 9.8 and 13.3
GeV/c. The quoted uncertainty is as small as 3'Pc for
many points. As a result, the 40 data points with
~t~ &0.2 (GeV/c)2 contribute typically about 100 to x2

With data of such precision, even a small systematic
divergence between theory and experiment has a big
e6ect on g', whether theory or experiment is at fault
we cannot say. However, the charge-exchange data

have appreciable uncertainties in t, which we have not
folded in.

'f. RESULTS AND DISCUSSION

Four solutions are given in the tables. Table I lists

the parameters a, (0) and n (0) of the trajectories
(abbreviated to e; and n, '): ap=1is not listed. Tables

TABLE I. Trajectory parameters. The slopes e' are
in units {GeV/c)~.

I
Solution a~ otp ap n p exp RQ Exp

0.34 0.50 0.34 0.54 0.65 0.32 0.80 0.52 0.60
0.34 0.50 0.34 0.53 0.71 030 0.55 0.50 0.60
0.34 0.50 0.34 0.54 0.78 0.30 0.75 0.52 0.60
0.34 0.50 034 0.53 0.75 0.31 0.55 0.52 0.50

II and III give the coefEcients of the amplitudes

A, (AX) and 8;(n.X), respectively. Table IV shows

parameters that connect the ES and ~X contributions
from P, P', and p, in the notation

A;(KÃ)/A, (~X)=8,(EX)/8'(~$) =Fo exp(F't). (24)

Table V gives the coefBcients for the R and co KE
amplitudes.

The 6t to data is illustrated in Figs. 1 through 7 for
the typical case of solution 1.

Solution 1. explains the mX crossover e8ect both
because A, changes sign and by 8, interference; in
terms of the discussion of Sec. 3, it is of type (c). The
ES crossover is explained with the help of the change
of sign A „.The dip and second maximum in xX charge
exchange is explained because 8, goes through zero
near t= —0.6 (GeV/c)'. The fit to 334 mX data, with

TABLE II. m.cV nonQip amplitude coefBcients.

Solution
Cp

(mb XGeV)

6.55
6.60
6.52
6.58

C1
(Gev ')

2.51
2.24
2.58
2.44

Cp
{mbXGeV)

19.6
18.6
20.0
18.9

pl
C1

(GeV )

4.04
2.48
4.01
2.24

C2
(«V ')

~ ~ ~

—10.3
~ ~ ~

—11.2

Cp
(mb)( GeV)

2.45
2.61
2.45
2.60

C1
(GeV )

5.6
9.6

11.4
12.5

Cg
(GeV~)

0.14
0.00

0.50
0.47

TABLE III, mE helicity-Hip amplitude coeKcients.

Solution
Do

(mb)

—7.5—6.5—11.4—22.3

D1
(GeV~)

0.51
0.65
0.90
1.73

Do
(GeV~)

—101
~ ~ ~

—101

p/

D1
(C V~)

8.1

8.1

Dp
(mb)

56.9
69.5
62.4
67.5

(GeV~)

1.64
2.50
3.17
3.39

D3
(GeV )

0.31
0.59

0.90
0.51

"The relation is provided by combining Ref. 16 with G. Chew, M. Goldberger, F. Low, and V. Nambu, Phys. Rev. 106, 1337 {1957).
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FIG. 1. Total cross sections for ~+p, X+p, and X+n from Ref. 18,
compared mth solution 1.

21 adjustable parameters, has p'=504. The 6t to 115
ES data, with 18 parameters, has y'= 152.

Solution 2 gives essentially the same explanation
for the crossover and charge-exchange eQ'ects. However,
the BI term —whose main role is apparently to give
some convexity to the cross-section plots —is dropped
and a factor exp(CqP) introduced in A~. instead. The
6t to 334 mX points with 20 parameters has y'=482.
The fit to 115 ES points with 18 parameters has
y'= 139.

Solution 3 explains the mE crossover by B, inter-
ference; in terms of Sec. 3, it is of type (h). A corre-
sponding explanation for the EE crossover, adding B„
interference eBects, was tried but proved unsatisfactory.
Accordingly, the EE crossover here relies on a change

40

~l~ 10

40

IO

O. l

0 0.2 04 0.6 0.8
—t (GeY/c)

/c

l

I.O

TA'BLE IV. Parameters relating I, I', and p contributions
to ~N and EE.

FIG. 2. a+p differential cross sections at 6.8, 8.8, 10.8, 12.8, 14.8,
and 16.7 GeV/c, from Ref. 11, compared vrith solution 1. The
diBerent sets are spaced by a decade.

Solution

1
2
3

0.901
0.896
0.905
0.900

—0.23—0.22—0.21—0.18

0.279 —1.61 0.527
0.285 —1.19 0.521
0.280 —1.72 0.529
0.281 —1.27 0.480

p(
(G V~) Z, (G V-~) (GeV~)

0.01
0.01
0.01
0.00

of sign in A„, and B„is not used at all. Solution 3 con-
tains no explanation for the second maximum in xN
charge exchange: in making the Gt, the data of Ref. 8
for ~t) 0.6 were omitted; +=502 for 322 s.X points
with 17 parameters; g~= 155 for all 115EXpoints with
18 parameters.

TAsLE V. EX amplitude coeKcients for R and co.

Solution
C0

(rnb XGeV)

3.34
3.69
3.50
3.71

C;
(Gev~)

2.16
2.81
2.21
2.83

Do
(mb)

—31.2—29.3
3202—29.5

Ds
(GeV~)

1.76
1.77
1.73
1.78

Co
(rnb XGeV)

5.99
6.62
6.14
6.34

Cg
(GeV )

10.5
10.0
10.0
10.0

CI
(GeV~)

0.17
0.02
0.27
0.00

0.86
0.66
0.99
0.69
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Solution 4 explains the crossover and ignores the
second maximum in xX charge exchange in the same
way as solution 3. However, like solution 2, it drops
BI. and, introduces a factor exp(Cqt') in A p instead.
The 6t to 322 mX points with 16parameters has g'= 445.
The Gt to 115 EX points with 18 parameters has
y'= 145.

We now discuss several points, under separate
headI. ngs.

(i) Agreement with Experiment

If the Regge-pole hypothesis is correct, we may
perhaps expect the few leading poles to give 90-95%
of the scattering amplitude, in the nonasymptotic
region considered here. In any case, our simple parame-
terizations of the t dependence can hardly be more
accurate than this. We might therefore expect an

- t (GIV/c)
Q Q2 0.4 0.6

0.6 t ~ r

Q.4

0.2
Q. t

0.4'

O. I

4)
0.4'

E

O. I

+

t

0.4

a
+ O. I

0.8 I.O

5.9GeV/c-
d ~t ~

V/c

-t {GIV/c)

600 0.2 0.4 0.6 0.8 I.O
1 t I ) I

O.OI

V/c

IO QOQI ( I i 1 s I I I t t

0 0.2 0.4 0.6 0.8 I.O
- t (GeV/c)

F&G. 4. m +p ~ m +s differential cross sections at 5.9, 9.8,
13.3, and 18.2 GeV/c, from Ref. 8, compared with solution 1.The
sets of data are spaced by a decade.

40'

IO

40'

C3

IO
E

4Q'

Y/c

/c ~

IQ
Y/c

40

/c

10

0.2 I t l c I i l

0.2 0.4 0.6 0.8
-t (GIV/c)

I.O

Fro. 3. m p diBerential cross sections at 7, 8.9, 10.8, 13, 15, 17,
and 18.9 GeV/c, from Ref. 11, compared with solution 1. Suc-
cessive sets are spaced by a decade.

accuracy of 10-20% for diiferential cross sections, but
in fact the agreement with experiment is much better
than this.

Thus, although the values of g' are not impressive
when taken at face value (see Sec. 6), the fit to data is
really surprisingly good.

(ii) Parameters of Trajectories

We have given no statistical uncertainties in Tables
I through V, since in many cases they would have
dubious physical significance. However, there is special
interest in the trajectory parameters a;(0) and a (0).

The statistical standard error on the intercept a;(0)
is typically about 0.002 for p, 0.01 for P', and 0.03 for
R and ~. Such a small error for a, (0) is meaningless
when compared with systematic diGerences between
solutions.

The intercept a~(0) has been assumed fixed at 1.0.
It is interesting to test this theoretical choice empiri-
cally. ~ In solution 2 we varied az(0) near 1.0; the x'
mi»mum seemed to lie between 1.0 and 1.005, with a
standard error about 0.01.

The standard error on the slope a (0) at t=0 is
typically about 0.01 for p, 0.03 for P and P', and 0.05
for E and co. Again, systematic differences are bigger
than this for p.

It is satisfactory that az(0) agrees with the value
0.31&0.05, deduced by Ahmadzadeh from EN data. ~

"A suggestion due to H. Lubatti.
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0.2 0.4 0.6 0.8 I.O l.2

alone, in terms of the p trajectory, following the pattern
of solutions 1 and 2. Assuming 6rst a curved trajectory
according to Eq. (13), we found the trajectory parame-
ters n, (0)=0.540&0.002 and a,'(0)=0.65&0.02. For
this fit to data, y'=144 with 75 data points and 10
adjustable parameters.

Assuming next a Linear trajectory, instead of the form
in Eq. (13), we found a best 6t with intercept
0.530&0.003 and slope 0.47&0.02. For this fit to data,
y'= 175, with the same number of points and parameters
as before.

The best 6t with no shrinking (horizontal trajectory)
has intercept 0.45~0.1 and g'= 265.

(iv) Spin Dependence

I.O

O. I

To determine the spin dependence of xE or ES
scattering purely from experiment, polarization and
triple-scattering experiments are needed, and they are
still lacking. However, the spin dependence of our
models is an important help in fitting the data. In
particular, the sudden rise in mX charge exchange as

04 i I i I ~ I g I

0 0.2 04 0.6 O.S
-t {GeVlc)

I.O l.2

FIG. S. E+P differential cross sections at 6.8, 9.8, 12.8, and 14.8
GeV/c from Ref. 11, compared with solution 1. Successive sets
are spaced by a decade.
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ential cross sections
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(iii) Slope of y Trajectory

There has been great interest in whether the latest
mX charge-exchange datas' really establish a shrinking
diffraction peak —i.e., a slope for the p trajectory.
Logan" concluded that they do, using the data of Ref.
9 only. However, to determine an accurate value for
the slope he had to assume a straight-line p trajectory
passing through 1.0 at t= m, '.

Our models give strong evidence for shrinking. Ke
do not require the p trajectory to extrapolate to the p
pole, but we do include a lot of noncharge-exchange
data which help to tie down the trajectory. Also we
include the more accurate data of Ref. 8.

As a further check, we analyzed the data of Ref. 8

o+ 0.05
IY

0.02

0.01

~t~ 0.005

0002 i I i I i I ~ I

0 0.2 04 0.6 0.8
- 1 {Gev/c)

l.0

FIG. 1. The K +p~K'+n differential cross section at 9.5
GeV/c, from Ref. 7, compared with solution 1.

the scattering angle increases from zero is most natu-
rally explained by a strong spin-flip term —which has
to vanish at zero angl" coming from the p trajectory. '4

The corresponding effect in ES charge exchange calls
for spin dependence from R as well as from p (which is
constrained by factorization). Also, spin dependence
allows an alternative explanation of the m-X crossover
effect (Sec. 3).

For a particular model, therefore, there is an optimum
spin dependence that gives the best fit to data. But in a
broader sense the spin dependence is not really well
determined. It may be changed considerably while a
5 to 10%%uo fit to data is still preserved; it may be changed
radically if we use a completely different parameteri-
zation. For an example, compare solutions 1 and 2 (or
3 and 4), which show how the Br term may be traded
for a change in A p.. Also note in the EX case that we

0
1 e I i 1 s t e 1

QZ OA G6 0.8 IQ I.2
(6eV/cl

3' The large Qip term is adopted as a reasonable physical expla-
nation of the data and is not a special characteristic of Regge poles.
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FIG. 8. ~+p polari-
zations at 10 GeV/c
corresponding to
solutions 1—4, rela-
tive to the normal
vector k;nXkout
{Basel sign conven-
tion).
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happens to require the interference of two amplitudes
that are out of phase, and hence requires two poles.
However, second-rank polarization effects (e.g. , spin
correlation, depolarization) can come from a single pole.
If the I' pole has spin dependence, some of these eGects
tend asymptotically to nonzero values.

Second-rank polarization measurements at high
energy would, therefore, be very interesting. With
polarized targets now coming into use, they are not
unthinkable.

On this question of the Qip and nonQip effects, having
the same energy dependence, " there is already some
afBrmative evidence in the case of p. Assuming the
small-angle bump in mS charge exchange is due to,
and dominated by, the Qip term, we have a measure
of its energy dependence. The nonQip term is isolated
in charge exchange at t =0, and in the total cross-section
differences. Our fl.ts to data illustrate that the energy
dependences of the Qip and nonQip eGects are closely
comparable.

have not invoked the 8„term; in fact, a wide range of
values are consistent with the data.

The s.p polarizations shown in Fig. 8 are therefore
illustrations rather than hrm predictions. It is inter-
esting to note that the value may be as large as 20%
at 10 GeV/c, and that the B, term suggested by the
mX charge-exchange data is strong enough to reverse
the sign between n.+p and v p polarization, at some
angles. But ~N charge-exchange polarization vanishes,
of course, since 3 and 8 have the same phase when
both come from a single trajectory.

Although some parameter freedom remains, polari-
zation data of all kinds would make a valuable test of
Regge-pole models.

There is an over-all sign ambiguity for the helicity-
Qip terms 8; with the data we have. This has been
resolved by assuming the ratio A„/B, to have the same
sign at 1=0 as at the p pole, t= m, '. It is interesting also
to consider the magnitude of this ratio. Taking theif' vector and tensor coupling constants to be pro-
portional to the nucleon isovector charge and anoma-
lous moment form factors, we find that A,/ ,B= 20K

at t=ns, ', whereas at 1=0 the value is 0.08E—0.09E
for our models. This decrease seems consistent with
the fact that, for Jl&0, A, goes on decreasing faster
than 8, in these models.

(v) Characteristic of Regge Spin Dependence

A signi6cant feature of the Regge-pole formalism is
that the spin dependence of a pole contribution does
not vanish asymptotically '—unlike what one expects
in a simple diffraction situation. Ordinary (first-rank)
polarization vanishes asymptotically only because it

"As we have deined them, the amplitudes A and 8 do have
different energy dependences. However, their actual contributions
to scattering have the same asymptotic dependence: see, e.g.,
Eq. (2).

6 IO 14 18
I I I I I l

O

O
FIG. 9. The ratio ~

of the real to the E
imaginary part of ~
the forward scatter- ~
ing amplitude for ~
~+p and E+p scat- ~~

tering: Solution 1 is
shown but the others
give very similar pre-
dictions. The ~+p ~
data are from Ref.~~
40; the inner error
bars are statistical,
the outer ones are
estimated limits of &
systematic error.
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gl S. Minami, Phys. Rev. 133, B1581 (1964).» M. L. Perl and M. C. Corey, Phys. Rev. 136, B787 (1964)."E.M. Henley and L J. Muzinich, Phys. Rev. 136, B1783

(1964)."A. O. Barut and VV. S. Au, Phys. Rev. Letters 13, 489 (1964)
have considered adding spin dependence in the lowest waves only.

(vi) Partial-Wave Analysis

Our models oGer an interesting contrast to various
empirical partial-wave analyses of xE scattering in the
multi-GeU region. "—~ The latter have generally had
to'assume a purely imaginary amplitude with no spin
dependence"; we have neither of these restrictions.

Table UI illustrates the partial-wave amplitudes for
solutions 1 and 2, for vr+p scattering at 10 GeV/c. They
are dehned by

ac~——Lexp(2Hz~) —1]/i, (25)
where hz~ is the (complex) phase shift for orbital
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TanLz VI. Partial-wave atnplitudes of solutions 1 and 2 for e+p scattering at 10 GeV/e.

RCGL+

Solution 1

Impel, +. RCQ I, Rcsl,+
Solution 2

Imer, + Real. Imsg

0
1
2
3

5
6
7
8
9

10
11
12
13
14

—0.056—0.092—0.098—0.087—0.073—0.060—0.049—0.038—0.029—0.022—0.016—Q.012—0.008—0.006—0.004

0.224
0.259
0.269
0.257
0.233
0.205
0.176
0.148
0.121
0.098
0.077
0.060
0.045
0.034
0.025

~ ~ ~

—0.018—0.033—0.043—0.043—0.037-0.030—0.024—0.019—0.014—0.010—0.007—0.005—0.003
-0.002

~ ~ ~

0.161
0.151
0.143
0.128
Q.109
0.088
0.068
0.051
0.036
0.024
0.016
0.009
0.005
0.002

—0.050—0.081—0.078—0.072—0.062—0.051—0.040—0.030—0.023—0.017—Q.012—0.009—0.006—0.004—0.003

0.248
0.268
0.269
0.257
0.234
0.206
0.175
0.145
0.117
0.092
0.072
0.055
0.040
0.030
0.022

~ ~ ~

—0.057—0.040—0.042—0.041—0.038—0.034—0.029—0.025-0.021—0.018—0.015—0.012—0.010—0.008

~ ~ ~

0.212
0.185
0.162
0.140
Q.118
0.096
0.076
0.058
0.043
0.030
0.021
0.014
0.009
0.005

angular momentum I. and total angular momentum

The partial-wave analysis was made by continuing
the model amplitudes to all scattering angles, well
beyond the range where they are 6tted to data. How-
ever, only the lowest partial waves are sensitive to the
wider angles; the higher ones are mainly determined
by the forward peak.

Unitarity requires u&~ to lie within a unit circle in
the complex plane, centered at i. In the pure diffraction
approximation, el,+ would be pure imaginary and re-
stricted to lie between 0 and i, the latter corresponding
to complete absorption. Notice that the low partial
waves in Table VI do not approach complete absorption.

(vii) Phase of the Scattering Amplitude

The phase of the scattering amplitude in our models
is not freely disposable, but is d.etermined by the 0.;
through the signature factors. %here this phase can be
measured directly, it offers an important test of this
kind of model. '4

The ratio of the real to the imaginary part of the
forward elastic amplitude has been measured for high-
energy w+p scattering. ~ The results are shown in Fig.
9, together with the theoretical predictions of solution
1 for w+p and Z+p scattering (the other solutions all
lie within &0.01). The models agree with experiment
in sign, in magnitude, and in giving a larger value for
w+p than for n.—p. There have also been various dis-
persion-relation calculations of this ratio. "~'The results
depend on what asymptotic behavior is assumed for
total cross sections, but on the whole they are consistent
with experiment and with our models.

The phase of the forward elastic. X+p amplitudes
~ S. I.indenbaum, rapporteur report to the 1964 International

Conference on High Energy Physics at Dubna (to be published)."V. S. Barashenkov and V. I. Dedyu, Dubna report R-1598
1964 (unpublished).

~ H. I. Saxer, University of Michigan, Ann Arbor, 1964
(unpublished}.~ G. Hohler, J. Baacke, J. Giesecke, and ¹ Zovko, Karlsruhe,
1965 (unpublished).
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FIG. 10. E++n -+ IC +p dilferential cross sections at 10 GeV/c
for solutions 1, 2, and 3.

has not yet been measured at high energy. It would be
a valuable test.

The phase of the wX forward charge-exchange ampli-
tude is also known. The imaginary part is determined
by the total cross-section di8erence or(w p) —or(w+p)
and the optical theorem; the real part then follows from
the differential cross section; the two are approximately
equal, within a sign. This is an important test of the
consistency of the model. In fact, the test is even
stronger than this; at t=0, A, is determined by just
two parameters, a, (0) and Ce(p). These two successfully
account for four independent experimental quantities-
the magnitude and the energy dependence of forward
charge exchange and the difference of w+p total cross
sections.

The phase of the K p charge-exchange amplitude is
also roughly known, from similar arguments. The
amplitude appears to be mainly imaginary. The differ-
ence between this and the xN situation is neatly ex-
plained by the R contribution —the presence of which
is required by the total cross sections. "This is another
example in which the phase is correctly given by the
Regge-pole model.

The other possible charge exchange, X++I~ pe+ p,
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has not been measured at high energies. The p+E.
Regge-pole model predicts that the forward amplitude
is mainly real—i.e., the forward cross section greatly
exceeds the optical limit —since the p and R terms now

change their relative sign, and the real parts ad.d while

the imaginary parts cancel." More speci&cally, the
models we have constructed give predictions for this
cross section in the range ~t

~
(1 (GeV/c)', which are

illustrated in Fig. 10 at 10 GeV/c. The nonfhp term is
much stronger there than for K +p ~EO+n, giving
a bigger cross section and eliminating the dip near I=0.
Measurements of this process would be very interesting,
and would. make a good test of the models.

for forward scattering amplitudes, inferred from the
wider SU6 synunetry":

'PA (K-+p) A(K—p) j=-A (K'P) A(K—'P)
= A (n-+p) —A (n.—p) . (26)

In terms of our models, if we disregard the small difI'er-

ences between a, (0) and a (0), this implies

1Lc KN(~)+Q le%(p)] c KK(~) Q xN(p)

=Co "(p) (2&)

This in turn, when the SU3 relation for p couplings
which we have already seen to be verified is used,
reduces to

(viii) Second Me~1~um in nN Charge Exchange C Kx(~) —aC ~x(p) (28)

Solutions 1 and 2, which set out to explain the dip
and second. maximum, do so by making the factor
(1+&)exp(D~t) —H exp(Dat) in Eq. (17) change sign,
so that 8, goes through zero. There are of course other
possibilities.

One attractive idea is that 8, does indeed go through
zero, but because of the kinematical factor 0., instead
of the other empirical factor in Eq. (17). The curved
trajectories we have used, which are rather arbitrarily
made to go to 0.= —I at t= —ao, do not pass through
zero in the right region. However, if we assume an
almost linear trajectory going through the p pole
[a,=1 at t=m, '=0.56 (GeV/c)'j and through a,=0.5
at 1=0 (as indicated by much data), it goes through
a,=0 near 1=—0.6(GeV/c)' —precisely where the dip
occurs in xX charge exchange. This is a remarkable
coincidence.

To explore this idea, we constructed a model similar
to solution 1 but with a linear trajectory of the kind
described, above and with II lying between 0 and —i..
The resulting 6t to wide-angle charge-exchange data
was less good, and g' was over 600 for the mE data.
However, we believe that an explanation along these
lines is tenable.

(ix) Unitary S~~etry
The prediction of SU3 symmetry is that, in Table IV

the coefncients Fo should. be 1 for P and P', but 0,5 for
p; also, the coeKcients Ii should all be zero (see Sec. 5).

These predictions are M~&&ed remarkably well for P
and p,~ but both fail for P'. This may be due to 5, the
isosinglet member of the R octet, which wouM con-
tribute with opposite signs to vrE and Eg amplitudes;
if so, it would appear that the contributions of S and
the "true" I" are roughly equal in the mX case, for the
energy range consid. ered.

Let us also consider the Johnson-Treiman relations

~We remark, however, that Py for p was constrained to be
non-negative.

Comparing Tables II and V, we see this is quite well
fulhlled, showing that the data we. 6t are at least
approximately consistent with Eq. (26). A test of lower
energy EE and XS data has been made previously. 6

The corresponding relation for helicity-Qip ampli-
tudes is irrelevant here, since there are not enough data
to fix B„and we have arbitrarily set it equal to zero.

Equation (26) would. also follow from SU& symmetry
alone, if cv and p belonged to the same octet and had
pure F-type coupling to baryons. "

(x) He1pful Experiments

Finally we summarize briefly some measurements
that would help to test Regge-pole models of the kind
we have made: n +p polarization, to tie down the spin-
Qip terms and test the relations between phase and
energy dependence (K+p polarization too, of course);
K++n-+K'+p charge exchange, to test the p+R
model; K+p Coulomb interference, to test the phase of
the forward scattering amplitude; z. +p ~ r'+ n
polarization, to see if a single pole really dominates;
mS second-rank polarization tensors, to test the Regge
characteristics mentioned in (v); E +p~E0+n at
other energies, to test the energy dependence of the
p+R model.
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