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The fully quantum-mechanical description of the Compton scattering of a photon beam is shown to be
equivalent under certain conditions to a semiclassical description, thereby confirming the prediction by
Brown and Kibble and by Goldman of an intensity-dependent increment to the frequency shift. If the
incident beam is in a coherent state, the equivalence is exact under all conditions. If it contains a definite
number of photons, the equivalence is approximate, and requires many photons and convergence of the
expansion in powers of the photon density. The demonstration is based upon the explicit use of wave packets
to introduce the boundary conditions, and the equivalence is shown to hold in the sense that the transition
probabilities, but not the transition amplitudes, are the same in the quantum and semiclassical treatments.
The apparent failure of energy-momentum conservation implied by the incremental shift is seen to be
accounted for by the energy-momentum uncertainty of the ensemble of localIzed wave packets even in the
monochromatic limit. It is proved in the Appendix that the coherent states are the only kind for which
the equivalence is exact.

I. INTRODUCTION

HE Compton scattering of an intense photon beam
has been studied by several authors who have

reached conAicting conclusions. Brown and Kibble' and
Goldman' (BK, G), using a semiclassical approach
without radiative reaction effects (the electron and the
scattered photon are treated quantum-mechanically,
and the incident beam is replaced by a classical electro-
magnetic field), have predicted an intensity-dependent
increment to the frequency shift of the scattered photon.
Fried and Eberly' (FE), using a quantized electro-
magnetic Geld but also neglecting radiative corrections,
do not 6nd the additional shift. Stehle and DeBaryshe, 4

on the basis of certain properties of the electron propa-
gator (as defined in the presence of the photon beam),
have been led to a diGerent interpretation of the energy-
momentum variable that appears in the semiclassical
calculations. As a result, they conclude that there is no
shift. The issue is resolved below with a proof that the
semiclassical treatment is the proper one to use in that
it is equivalent to a correct fully quantum-mechanical
treatment; furthermore, it is shown by explicitly using
wave packets to de6ne the momentum of the free
electron, that the interpretation which leads to the pre-
diction of the incremental frequency shift is correct.

The difference between the BK, 6, and FE treatments
can be stated in terms of their methods of handling
certain types of Feynman diagrams. ' FK observe that,
since they use a monochromatic beam, there are diagrams
in which the electron returns one or more times to the
mass shell in intermediate states. These diagrams are
intensity-dependent analogs of the ordinary self-energy

*Supported by the U. S. Army Research Ofhce-Durham.' L. S.Brown and T.W. B.Kibble, Phys. Rev. 133,A705 (1964
~ I. I. Goldman, Phys. Letters 8, 103 (1964).' Z. Fried and J. H. Eberly, Phys. Rev. 136, 3871 (1964).'P. Stehle and P. G. DeBaryshe, University of Pittsburgh

Pittsburgh, Pennsylvania (unpublished).' P. J. Redmond, Conference on Quantum Electrodynamics o
High Intensity Photon Beams, Durham, 1964 (unpublished}.

corrections to the free-electron line, and their treatment
by FE is analogous to ordinary wave-function re-
normalization. They are discarded, and then corrected
for by the introduction of an intensity-dependent wave-
function normalization constant. In the approach of
BK, G, on the other hand, these diagrams are retained.
In the latter case, the incident beam must be described
by a spread of frequencies so that the pole on the mass
shell can be de6ned by an integration over the electron
energy. The use of a frequency spread also allows the
incident beam to be localized spatially, and therefore
permits an introduction of the boundary conditions,
viz. , that the beam and the electron are isolated from
one another in the remote past and future. FE, since
their renormalization procedure requires quanta of a
unique frequency, rely instead on the usual adiabatic
switching of the coupling constant to introduce the
boundary conditions.

The following comparison of the two treatments
might now be made. The BK, 6 method takes proper
account of the boundary conditions, but is not mani-
festly fully quantum mechanical. The FE method is
fully quantum mechanical, but uses an artificial, and
hence questionable device to introduce the boundary
conditions.

It is the principal purpose of this paper to demon-
strate that a completely quantum-mechanical descrip-
tion in which the correct boundary conditions are
guaranteed by the explicit use of photon wave packets is
equivalent to a semiclassical description, and therefore,
if radiative corrections are ignored, to that of BK, G.
Furthermore, it will be seen that in the original
quantum-mechanical picture the energy-momentum
variables of the free electron can be identihed un-
ambiguously. The identi6cation can then be easily
carried through to the semiclassical version, where it
agrees with the interpretation of BK, G. It then follows
that the intensity-dependent frequency shift is, in fact,
predicted by quantum electrodynamics.
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Kibble, ' in a subsequent paper, has also studied the
connection between the semiclassical and the fully
quantum-mechanical pictures. He makes use of the
coherent states, discussed by Glauber and others,

~C)=e ~"exp .V'" dk C"(k)u„~(k)
~
vac), (1.1a)

dk C„'(k)C~(k)=1, (1.1b)

which are normalized eigenstates of the photon annihila-
tion operators a„(k),

a„(k)i C)= i
C)$'i'C~(k) (1.2)

and therefore also of the positive-frequency part of the
vector-potential field operator,

A &+~(x) = (2s.)
—»' dk(2(vp)-'~'e '~ *a (k) . (1.3)

A (x)=(21r) "'lv"' dk(2CJI, ) '"

X Le
—"*C„(k)+e"*C„*(k)],(1.6)

at all but one of the external photon vertices. The
result is

&yx,ke,ci S
i pX,C&= &pV, ke

i S(A) i yX&, (1.7)

where Sg) is the S matrix in the presence of the
external classical 6eld A. The right-hand side of (1.7) is
the desired semiclassical expression, and the use of the

6 T. %.B.Kibble, Phys. Rev. 138, 8740 (1965).' R. J. Glauber, Phys. Rev. 131, 2766 (1963).
8 E. C. G. Sudershan, Phys. Rev. Letters 10, 277 (1963).
I S. S. Schweber, J. Math. Phys. 3, 831 (1962}.I J'dl is a volume integral in three-space, J'dx is a volume

integral in four-space, and our notation for the four-vector inner
product is illustrated by k x=k&x„=Px' —k x. Also, we use units
in which k=c=1."G. C. Wick, I'hys. Rev. 80, 268 (1950).

BrieQy, he observes that if one calculates the 5-matrix
element &f~S~i) with the initial state ~i) taken to be a
coherent photon state plus an electron of momentum p
and spin state X,

Ii) =
l p~, C&, (1.4)

and the final state
~ f) taken to be the same coherent

photon state plus an electron of momentum y' and spin
state V and a scattered photon of momentum k and
polarization e,

i f)=
i pÃ, ke, C),

then after the %ick expansion of the field operators into
normal products" the property (1.2) of the coherent
states permits the replacement of the vector potential
field operator by the classical vector potential,

photon wave packets J'dk Cl'(k)u„t(k)
~
vac) guarantees

the initial and 6nal isolation of the photon beam from
the electron in the fully quantum-mechanical expression
on the left-hand side.

However, as a justification of the semiclassical de-
scription, the use of Eq. (1.7) is subject to the criticism
that while &f~S~i) is well deaned mathematically, its
physical interpretation is not at all clear. The final
state

~ f& is composed of wave packets, instead of being
an eigenstate of the momentum. Therefore, (f~S~i) is
the overlap of the state vector in the remote future with

~ f), rather than the projection of the state vector onto
an eigenstate of some set of commuting Hermitian
operators that correspond to observables. The projection
onto an eigenstate has a well-known interpretation,
according to the postulates of quantum mechanics, as
the probability amplitude that a measurement of the
observables will result in the corresponding eigen-
values. " The overlap integral, however„has no such
clearly defined meaning.

In the present treatment the Anal state is always
taken to be a momentum eigenstate, although the initial
one is a "prepared" state composed of localized photon
wave packets. It will be shown that it is nevertheless
correct, under certain conditions, to use the semiclassical
expression (y'X', ke~ S(J)

~
y) ).The conditions referred to

depend on the specific nature of the incident beam, and
we shall treat two cases of particular interest. In the
first case, the beam contains an arbitrary but precise
number E of quanta, all having wave packets of the
same functional form C„(k).We shall show that if X is
suKciently large compared to unity, and if the local
photon density Ldetermined by 1V and the shape of the
packet C„(k)j is small enough to permit a sufficiently
rapid convergence of the series expansion in 2, then the
transition probability obtained from &p'X', ke~S(J) ~yX)
is a satisfactory approximation to the exact transition
probability. The approximation can be made arbitrarily
accurate by increasing X while adjusting C„(k)to keep
the local photon density axed, i.e., by approaching the
monochromatic limit at fixed intensity. It is of con-
siderable interest to note that. it is not the quantum
mechanical and semiclassical transition amplitudes which
become equated, but only the transition probabilities

In the second case considered, the incident beam is
described by a coherent state, such as (1.1). Again we
find that the quantum-mechanical and semiclassical
probabilities transition probabilities, but not the ampli-
tudes, are to be equated. However, this case has the
remarkable feature that the semiclassical description is
exactly correct, regardless of the value of E, the mean
number of quanta in the beam. " In the Appendix we

1' J. Von Neumann, Mathematical Fmcm4tions of Quantlm
&echoes (Princeton University Press, Princeton, New Jersey,
1955), Chap. III.

'g See Refs. 7 and 8 for further discussions of the connection
between quantum-mechanical coherent states and classical
electrodynamics.
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show that the coherent states are the only kind for which
the semiclassical description is exactly correct.

II. DEFINITE NUMBER OF PHOTONS

In this section we shall consider the Compton scatter-
ing of a beam of precisely X photons, all of which have
identical wave packets described by the normalized
wave functions C&&(1),

dl Ce*(1)Ce(1)= 1, (2.1)

where 1 is the wave vector and P is the polarization
variable. The probability amplitude f(E~) for 6nding
the system in the state E~ in the remote future, is in
terms of the 5 matrix,

with the creation and annihilation operators satisfying

[a„(k),a„t(k')j=h&'&(k —k')l&„„. (2.8)

When %'ick's theorem" is applied to the expansion
of S in (K»rlSlLN), only terms with certain types of
normal products will survive, viz. , those with no more
than X photon destruction operators A„'+'(x),and no
more than M photon creation operators A„' '(x). We
consider here only cases for which S&M, i.e., only cases
for which the number of outgoing photons equals the
incident number, or for which frequency harmonics are
generated by the absorption of more photons than are
re-emitted. If the number of creation and annihilation
operators in a given term is m and n, respectively, then
the operators applied to lL~) create a state with

E+ns —n photons, so we have the relation

&&C 0)" C (1 )P"&) '", (22)
e=X—M+m. (2.9)

where E~ and L~ are momentum eigenstates of the
system for M and E photons, respectively,

la~&= l pV, k,a, , k~a~&
=a,t(k&) . a~~t(k&&r) l yV&,

(2 3)
IL~)= lpl, 4a, ," I~P~&

= ae, '(1&) as~'(1~) I pl&),

and yX and p'X' are the initial and final momenta and
spin states of the electron. Strictly speaking, the initial
state of the electron should also be described by a wave
packet, i.e., the replacement

I L~& ~2 dpi pe%, AN&C'(u7), (2 4)

dx& dx„PfH(xg) H(x„)g, (2.5)
n=o n~

where the Hamiltonian density is

H(x)= j(x) A(x). (2 6)

A(x) is the vector-potential field operator, whose posi-
tive and negative frequency parts are

A„&+&(x)= dkB(co&,)e '" *a„(k),- (2.7a)

A„&—&(x) = dkB(cu&, )e*" *a'(k)'.(2.7b)

B(~~)—= (2s.) "'(2co~) '&', k =—raq, (2.7c)

should be made. However, we shall not complicate our
expressions by doing so explicitly, since the electron
variables are not manipulated below, and (2.4) may be
invoked, if desired, at the very end.

The 5 matrix is given by

S=P

In the Wick expansion of the operators comprising
5 into sums of products of contractions and normal
products there is complete symmetry with respect to the
integration four-variables in each order. In other words,
if the vertices in each diagram are labeled by the x's that
appear in the corresponding operators, then for any
diagram having, for example, x; and x, appearing at a
given pair of vertices, there is another diagram with the
two labels interchanged. Since the x's are dummy inte-
gration variables, all of the topologically identical
diagrams give identical mathematical contributions, so
that they can all be grouped together and a unique
labeling of the vertices assigned to their total contribu-
tion. Furthermore, all of the contributions from dia-
grams having the same number n of external absorption
vertices and the same number m of external emission
vertices can be grouped together and written in the
form)

dx& dx dy& dy P f(xgll' ' x && ly1pg' ' 'y p )

&(A„,& &(x ). A & &(x )A„,&+'(y ) A,,&+'(y„),
(2.10)

where the external absorption vertices are labeled by
the dummy variables yv, and the external emission
vertices are labeled by the xp, . The ordering of the xp
in the function f corresponds to some unique relative
ordering of the external emission vertices in each dia-
gram, and similarly for the yv and the absorption vertices.
For example, if Fig. 1 corresponds to f(xuq, x2&«2ly» &),
then Fig. 2 corresponds to f(xmpm, x~&ly»&). Uertices
involving only virtual particles are not explicitly indi-
cated, and the integrations over their variables are
implicitly contained in f.

The expression for the matrix element (IC~lS&&L~&
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0 is not the classical vector potential A that we are

seeking. Because of the normalization,

dklC(k) l'=1,
x2 /42FK'. 1. Feynman dia-

gram in which the rela-
tive ordering of the
external photon emis-
sion vertices corresponds
to the ordering of x~1
and x2y2 in the function
f(»vi, *s 2 I yin).

0 describes an electromagnetic field whose total energy
corresponds to that of only one of the incident quanta.
It differs from A, according to Eq. (1.6), by an "in-
tensity" factor S'1"

x) P)&

v] I 2=1&'/'I'Q. (2.14)

Later it will be seen that the intensity factor E'I'
emerges from the numerical terms like (1&&!)'"/(1V n)—!
in (2.12), which express the indistinguishability of the
photons. That is, these terms are consequences of the
fact that there is an identical contribution to P(K&&r) from

the amplitude for absorbing each of the E photons at
any given external absorption vertex.

f(Kjr) has the appearance of an amplitude for n

absorptions from the "classical field, " m emissions of

photons, and the direct transmission without scattering
of the remaining M—m=E —n incident photons. The
field 0 has appeared at the absorption vertices because
the corresponding vertex functions are weighted by the
wave functions C(k) of the incident photon wave

packets. No such weight factors occur at the emission

vertices, because the final state E~ is a single mo-

mentum eigenstate, not a weighted superposition of
momentum eigenstates. Thus the quantum-mechanical
amplitude is not equal to an equivalent semiclassical

amplitude. However, the emission vertex operators will

acquire weight factors C~(k) when the transition proba-
bility is formed. %e shall see below that 0{ ' appears
as a consequence of quantum-mechanical interferences,
i.e., because of the interference between (a) amplitudes
in which one final-state photon has been emitted into the

beam, while a second has been in the beam from the first
and never interacted, and (b) amplitudes obtained by
interchanging the variables of the two photons. The
interference terms thus occur because of the indis-

appearing in (2.2) can now be written as"

dx, "dx„dy," dy.
m-0

X&K~lf(x& .x ly& "y.)
XA' '(xi) A' '(x )

XA &+&(yg) A &+&(y ) l
1.&«), (2.11)

with n&, and n related by (2.9). It then follows from a
straightforward evaluation of the now normally ordered
operators between lK~) and

l
I.n) that the transition

amplitude $(Ks&) can be reduced to

f(K»r)= Q dx& . .dy„

xB(, ).'- *-f~& &(y,)" f1&'&(y.) II)

XC(k~g) . C(kjr)D1&&'&) I /('1&r'n)—!j, (2.12a)

(2.12b)n=E —M+m,

where P~&q& means sum over all permutations of k& to
k~. We have de6ned the positive frequency part 0&+&(y)

of a "classical vector potential" O(y) by

x
FIG. 2. Feynman dia-

gram in which the labels
of the external emission
vertices have been in-
terchanged relative to
those of Fig. 1, so as to
correspond to the order-
!»s &n f(xya2, xg &!y&va).

0&+&(y) = dk B(co&)e *' &C(k) (2.13a)

x2 p2Later we shall also need the negative frequency part

Q&—&(y)= dk B(co„)e'"«C*(k). .(2.13b)
Y~ I&'~ i

'4 ln the remaining discussion, the polarization and spin variables
are suppressed, so as to make the notation less cumbersome. This
abbreviation does not alter the essentials of the argument.

COM PTON SCATTERING OF INTENSE PHOTON BEAM
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tinguishability of the unscattered photons from those
scattered back into the beam. This indistinguishability
will also be seen to result in a summation over many
identical integrals, and therefore to produce a depend-
ence on the number of incident photons, and, ultimately,
the desired intensity factor Ã'I'.

Now, let us evaluate the probability that precisely
one photon scatters out of the beam. %e 6rst specify
that the wave vectors of the incident packets occupy
some volume hs of wave vector space, i.e., C(k) is
nonzero if k is in the volume A~, and is zero if k is outside
of b.g. Note that if a photon's 6nal-state wave vector is
inside h~, one cannot tell in principle whether it scat-
tered back into the beam or did not scatter at all. Next,
we specify a larger region 6+, which ilc4uks 6&. This
is the region of small-angle or /cborutory forward scatter-
ing, where we cannot distinguish an unscattered from a
forward scattered photon because of practical limita-
tions. Finally, we specify a region 68 outside of 6p, where
the 6nal-state wave vector of an observably scattered
photon may be found.

We denote by P,(A) the probability that of the X
incident photons one will be found in the scattered
region 6,8, and X—j —r will be found in the forward

region A~. Therefore we have

(2.15)

and r is the order of the approximate frequency har-
monic generated in a process in which r fewer photons
come out than go in. The probability is given by"

P„(&V)= dk
(M —1)!

dk2 dk" IP(E")I'.

(2.16)

The factor 1/(M —1)!has the following origin. Since the
photons are indistinguishable, it does not matter which
wave vector is integrated over 68 and which ones are
integrated over 3,&. Ke merely ask for the probability
of a state in which some wave vector is in 68 and the
rest are in d~. However, by the same token, in inte-
grating k2 to k~ all over the same region hp, we are
counting each state (M—1)!times.

In performing the integrations indicated in (2.16), we
are concerned only with the Anal-state variables k& to
k~, so we shall abbreviate the notation and simplify
the accounting by defining

d» "dx-&& If(»" *-lx~" x.)~(»)s'"" "&(~~)s"-'""'+'(yi) "~'+'b.) lp) (2 17)
P(k}

This definition permits P,(E) to be written as

P„(X)= dk, dk, ".
(M —1)!

dk~l Q Q W(kg k )C(k„+$)'''C(kM)l
m, 00(k)

(2.18)

where Pg&a& means sum over all groupings (combinations) of the k s into "scattered" and "unscattered" variables,
a scattered variable being one that appears in a 8' function and an unscattered variable being one of the com-
plementary set that appears in a C function. Note that of these groupings only those for which k& is a scattered
variable will contribute, since C(k~) vanishes in hs.

Now, the acquisition of the weight factors C'(k) by the emission vertex functions occurs in the following step.
Consider any product term resulting from the squaring operation in (2.18).It will contain one W function and one
5'* function, as well as a number of wave functions C and complex conjugate wave functions C*. If any variable
is common to 8' and 8'*, there is no wave function containing it in the product term. If any variable does not
appear in either W or W', it appears in a factor ICI' in the product term. Furthermore, if a variable appears in
lV but not 8', there is a factor C containing it, and similarly if it appears in 8' but not 8'*, there is a factor C*
containing it. A typical product term contributing to (2.18) with j variables common to W and W* is then

dkg dk2
(M—1)!

dk~W(kg k;,k,+g. .k;+ )C(k,+~))

&&C(»+.+~)W*(k~ » k~+~i k'+~~)C*(k+~)".C*(»+-)IC(»+~~') I' IC(k~) I'

dkg dks dk (u!)U~(kg k-)(b!)Ug*(kg. k,), (2.19)
(M —1)!

"There is also, of course, an integration over the 6nal electron momentum; for simplicity are shall not make it explicit.
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where we have defined

1
U.(k, k,) = — dk;+, dk,+.C (k;+&) C (k,+.)W(ka k,+.)

C. ggt d,g

(2.20)

In a moment we shall interpret U, (k~ k;), but 6rst we note that because of the symmetry of the quantities in
the integrand above, and because the regions of integration for k~ to k~ are identical, there are many identical
multiple integrals of the form (2.19) contributing to I'„(/&/). The number of such identical terms is equal to the
number of combinations of M—1 variables taken in a common "scattered" group of j—1, two diGerent "scattered"
groups of a and b, respectively, and a common "unscattered" group of E—j—a—b, viz. ,

(M' —1)!/L(M—j—a—b)!(j—1)!a!b!].
As a result we have

P,(Ã)= p p p dkg dkm . dk;U. (kg k;)U&,*(k& k,). (2.21)
g-& (j—1)!e~ ~-0 (N r—2' —a —b)!—

Now let us look at U (kz . k,). In its present form it is not readily interpretable, so we first note that by using
the definition (2.1/) of W, one can manipulate the expression (2.20) into the form

U.(kg k,)= dx& dy. (p', k& k;~ f;(x& x,+.~y& y„)

XA&—
&(x,) A&—

&(x;)0&—
&(x;+,) 0&—

&(x,q, )0&+&(y&) .0&+&(y„)~p), (2.22)

n=Ã M+j+a=—r+j+a.

The function f; is simply a summation of f functions
with the ordering of the variables specified in a particu-
lar way,

f/(»»+ I y& y.)
Z&&&& f(x& ' 'x&'+oIy&' ' 'y~) ~ (2 23)

where gg &, &
means sum over all arrangements of xq to x;

among the emission vertices, but maintain the se-
quential ordering 1 to j, and also maintain the se-
quential ordering j+1 to j+a among the variables
x;+i to x;+,.

In view of the definition of the f functions associated
with expression (2.10), one can now interpret U, in
terms of an S matrix S(0) with an interaction Hamil-
tonian density H(x) involving the "classical field" Q(x)
in addition to the quantum 6eld A (x),

H(x) = j(x) fA(x)+Q(x)$. (2.24)

U, (k &k;) is the sum of contributions to (p', k~ k;~
XS(0)

~ p) from all diagrams with n=r+j+a vertices
at which the positive frequency part of the "classical
field" interacts, c vertices at which the negative fre-
quency part of the "classical field" interacts, and j
vertices at which photons are emitted.

This interpretation, however, is not yet the antici-
pated one in terms of S(Z). Furthermore, the expression
(2.21) for E,(Ã) is not in the form of the magnitude
squared of a transition amplitude. Equation (2.21) is
exact; to obtain the desired result we must now make
some assumptions and approximations. First we assume

that the number of incident photons X is suSciently
large, and the density of incident photons (as determined
by the wave packet volume) is sufficiently small that
one may neglect those terms in (2.21) for which
r+ j+u+b is comparable to X. In other words, we
assume that the series converges rapidly when the terms
are ordered according to the number of vertices involv-
ing the "classical field" Q. This assumption permits us
to make the approximation

which in turn suggests de6ning the quantity

V.(ky k,) =/&/&~~"& "U.(k&. k,). (2.26)

The number of factors of A'I' in V is equal to the
number of vertices involving 0 in Uo, so that V,(kq. k, )
is de6ned by (2.22) with 0&+& replaced by A '+' =/&/'"0&+'
and 0& ' replaced by 2&—

& =.V'"0&-&

By virtue of our assumption of "sufFiciently" rapid
convergence we may make the additional approximation
of extending the summation limits in (2.21) to in6nity
and write

dig dk2 ~ ~

b,y

X dk;~P V„(k& . .k,) ~', (2.2'/)

which has, finally, the anticipated form of the magni-
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tude squared of a transition amplitude. The quantity
& (ki .k, ) is the sum of contributions to

(p', kt k, l&(Z)lp) from all diagrams in which the
number of classical absorption (positive frequency)
vertices exceeds the number of classical emission (nega-
tive frequency) vertices by j+r. Let us now make the
assumption that the momentum spread bk~ of the
incident beam is small compared to the mean mo-
mentum k/i l both of these are defined by C(k)], i.e.,
that the beam is highly monochromatic, and let us take
6+ only slightly bigger than 6&. Then energy-mo-
mentum can be conserved for these diagrams only if Az
occupies some small range in the vicinity of the rth
harmonic of k~. Furthermore, in this same range, which
we denote by As(r), no other diagrams can contribute
because all others fail to conserve energy-momentum
except in the vicinity of some other harmonic. There-
fore, for a highly monochromatic beam we may set ~8
equal to 68(r), and write's

tion term in powers of the electronic charge is retained),
it reduces to the description used by Brown and Kibble,
and Goldman. "

HI. COHERENT STATE

In this section, instead of describing the incident
beam by a state vector with a precise number of
photons, we shall describe it by a coherent state

l C), as
given by (1.1).The state vector l C) is norma1ized, '"

(ClC)=1, (3.1)

and corresponds to a meae number S of incident
photons. That is, according to (1.2) the expectation
value of the photon number operator is

(X.,)=(Cl dkat(k)u(k)lC)

=1V dklC(k) l
s=X. (3.2)

00

P,(.V) = P
=i (j

dkg dkg . .
LLy

lp, C)=e ~/s exp E'/' dk C(k)/st(k) lp). (3.3)

—1)! se(.) In addition to the photon beam, the system contains an
electron of initial momentum y, so we take for our

x dk,
l
(p', k, k/ls(A) lp) l

s. (2.2g)

Now, provided the various hs(r) do not overlap, which
of course they do not in the monochromatic limit, we

may take a hs which is a sum over all of the hs(r),
and evaluate the total probability of scattering, regard-
less of the harmonic generated,

By expanding the exponential one can immediately see
that

l p,C) is a weighted superposition of states with all
possible numbers of identical incident photon wave
packets,

P($)=Q„P„(X),
which is immediately seen to be

(2.29)
l p,C)=e / Q(1/rs l) dkt dk +i/sC(kt)

xw "c(k.) l p,ki k.) . (3.4)
P(V)= P~-i(j-1)' se

d&2 ~ ~ ~

x d»l(p', ki" »l~(~) lp&l' (23o)

P(cV) is the probability that of the X incident photons
one will be found in 68 and all others will be found in
Ap, with no restrictions on how many others there are.
It has the anticipated form of a semiclassical description.
If radiative corrections are neglected, and the summa-
tion is limited to j= 1 (that is, if only the first perturba-

Each state in the superposition is of the type used for
the initial state in the previous section. Ke take the
same final momentum eigenstate as before,

le~&= lp', ki k~&, (3.5)

and again evaluate the probability amplitude tf (It se) for
finding the system in the state E~,

f(E:~)=P~I5'I p,c& (3.6)

As before, this can be expressed in terms of normally
ordered products of field operators,

P(Esr)=(Esrlp dxi dx dyi dy. f(xi x lyi . y.)A' '(xi) .A' '(x )A+'(yi) A&+'(y. )lp,C), (3.7)

"For nonzero ~kz these energy-momentum conservation arguments are true only out to some Gnite order in the number of
vertices involving the classical 6eld. However, the order in which the approximation fails can be made arbitrarily large by taking
5k~/k~ arbitrarily small, i.e., by taking the wave packets to be sufBciently monochromatic. The approximation is then consistent
with our previous ones based on the assumptions of large photon number but limited photon density."This follows from the identity e~e "~ = e"~"eI ei&, which holds if Lo,o j= 1.
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(+) i . . . ) (3]2)(—) x. —,. . .g(—)(x, ) (+) y

g~ ' ' ' 'J — dxi' ' 'dxj+gdyi' ' kU,.(ki k, = xi

is a d b (2.23). Theis again defined y
dil 't tbl

)
lons lnThe existe

f absorption ver i
'

c
ce of the fact that y,sequence o t e

possl e'ble numbers o p o
Finally, we define

P(N)= Q P(M,X),
M=1

P(&)= 2 dk2

dk;f p', ki k, /S(Z) Jp) '. 3.15

tof the1't independen

k of the shape C( opendent o e

s over a/l possiblenow ranges over athe summation
b tion and emissionnumbers o

e uivalent to hseen to be exactly equ
description,

~ ~h' h is the probability of
all the rest in h~,

d
' 6 . It follows ifound ln p.

P(&)= 2

one photon in ~s and

K' late the ampli-

fi d

K', d Goldman calcu aBrown and K

rictions on e

Kibble, an
t order in

mmediately from

ld For the initial and a
of the electron they

uantized e ec ro

the classical elec r-
dk2 ~ ~1

the presence o t e c
hy

ltd bt' d' h
k,

~ P U..(k " u )t'. (3.14)
that the amp i u

IV. DISCUSSION

a, n



8 1334 LEE M. F RANTZ

identical to that obtained by summing the diagrams of
(p', k

~
S(S)

~ y), provided only that radiative corrections
are ignored. This completes the connection between the
treatments of BK, G and the fu1.ly quantum-mechanical
picture, except for a comment on the interpretation of
the electron-moment~ variables. It follows from
Kibble's work that the quantities taken by BK, 6 to
be the initial and final momenta of the free electron y
and y', respectively, are the same quantities that appear
in the matrix element (p', k ~5(A)

~ y). It is now
abundantly clear from the original quantum-mechanical
expressions (2.2) and (3.6), in which the incident beam
is initially isolated from the electron by the use of
photon wave packets, that these are indeed the free-
electron momenta. To emphasize the initial separation,
one may also describe the incident electron with a wave
packet C'(y), as in (2.4).The eBect will be to replace the
above matrix element by J'dy(p', k j5(J)~p)C'(p) and,
consequently, to replace the BK, 0 initial-state wave
function, corresponding to a unique electron momentum,
by a similarly weighted superposition. However, if C (y)
is sharply spiked, the calculation remains unchanged.

On the basis of the fully quantum-mechanical picture
one may easily resolve the paradox concerning energy-
momentum conservation, which appears to exist in the
monochromatic limit. The problem is that since the
Compton shift is a direct consequence of energy-mo-
mentum conservation in the scattering of a photon from
an electron, then any additional shift would appear to
be in confiict with the conservation laws, regardless of
the mere presence of other photons. The resolution is
simply based on the fact that each incident photon has
an energy-momentum spread hk~, corresponding to the

volume in momentum (or wave vector) space
spanned by the wave packet C(k).

A photon which "forward scatters" does so, then,
only in the sense that its initial and 6nal momenta are
both within A~. These momenta are not, in general,
identical. Nevertheless, one cannot tell by observation,
even in princip/e, whether or not such a photon has
"physically" scattered, since its measured 6nal mo-
mentum is within the range of uncertainty of its initial
momentum. Although true forward-scattering diagrams
(those in which the initial and final momenta of a
scattered photon are identical) do exist, their contribu-
tions to the transition probability have measure zero,
since they correspond simply to points in the volume
integrals over initial and 6nal momenta. Therefore, the
photons that interact but do not leave the beam may,
nevertheless, partake in the overall energy-momentum
conservation of the system. If the incident beam contains
a definite number Eof photons, then there are transition
amplitudes for which the latitude on energy-momentum
conservation (by the electron and the photon scattered
out of the beam) is as much as

(bk) o= Soaks =X(2s/I. ), (4.1)

where I. is the linear dimension of the wave packet.
Since the sum of the energy-momentum uncertainties of
the photons in the beam" (bk) ~ depends on the number
of photons per unit length rather than on the linear
dimension I alone, it evidently remains nonzero even
as the monochromatic limit is approached. Ke may
verify that (bk)U is actually large enough by comparing
it with the magnitude of the intensity-dependent shift
(bk) s predicted for a plane-wave beam, '

(ap) c'/w) sm'(-'e)
(bk), =

L1+(2ks/m) sin'(-,'8)jt 1+(2ks/m+ap) c'/s ks) sin'(&8) j (4.2)

(bk) p=2vrAp, (4.3)

where A is the area of the beam in the plane transverse
to the propagation direction, and then note that for the
plane-wave approximation to be applicable the area A
must be much greater than the effective cross sectional
area seen by the electron. In this case the latter may
be well represented by the Thomson cross section

'8 (bk) p is not the same as vrhat is normally called the energy-
momentum uncertainty of the ensemble of photons comprising
the beam. The latter is equal to Ã»hkz by virtue of the quite
general relation that the standard deviation of a sum of E in-
dependent but identically distributed stochastic variables is
equal to JP» times the standard deviation of a single variable.

where 0. is the 6ne-structure constant, p is the photon
density, Xq is the electron Compton wavelength, te is
the electron mass, and 8 is the scattering angle. First we
may rewrite (bk)~ as

ar = (8s/3)r02= (8s/3)a9, &', so that the inequality

(bk) v»(1&n'/3)o'~o'p, (4.4)

must hold, and it follows immediately that (bk)o/
(bk)s»1. Thus, there is ample energy-momentum un-
certainty among the photons in the incident beam to
allow for the predicted frequency shift, even though the
monochromatic limit is approached.

The principal conclusion of this paper, viz. , that under
certain conditions the fully quantum-mechanical de-
scription is equivalent to a semiclassical description,
may be thought of as a particular veri6cation of the
correspondence principle. Actually it is somewhat
broader in the sense that the equivalence has been shown
to hold for coherent beams regardless of the mean num-
ber of photons involved. On the other hand, it is some-
what more restricted in the following sense. For the
scattering of a coherent beam, the Brown and Kibble
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closed form results may be used to provide an analytic
continuation from the domain in which the series ex-
pansion in powers of the photon density converges, to
the domain of arbitrarily high photon densities. How-
ever, one should recall that for the scattering of a beam
with a definite number of photons the closed form
solution is only an alternative representation of the
convergent, infinite series, which appronnsates the true
finite series (2.21). It is by no means obvious that at
ultra-high intensities, where the infinite series fails to
converge, the closed form solution continues to con-
stitute a satisfactory approximation to the true finite
series. It would perhaps not be surprising if the corre-
spondence principle were inapplicable in this latter case,
since it is well known that an ensemble of photons of
definite number is not classical, because of the un-
certainty relation that exists between number and phase
for bosons. "

V. CONCLUSIONS

It has been shown that under certain conditions the
fully quantum-mechanical description of the brompton
scattering of a photon beam is equivalent to a semi-
classical description, i.e., one in which the incident beam
is treated classically, but the electron, and all virtual
and scattered photons are treated quantum mechani-
cally. %hen taken to first order in the quantized electro-
magnetic field, the semiclassical description becomes
that used by Brown and Kibble, and Goldman, ~ so that
their prediction of an intensity-dependent increment to
the Compton frequency shift is vindicated. The condi-
tions under which the equivalence holds depend upon
the nature of the incident beam. If it is in a coherent
state, the equivalence is exact under all. conditions. If it
contains a definite number of photons, the equivalence
is approximate, and requires that the total number of

photons be much greater than one, and that the expan-
sion in powers of the photon density converge. The
demonstration of the equivalence is based upon the
explicit use of wave packets to describe the photons and
to guarantee the boundary conditions, viz. , the initial
and final isolation of the beam from the electron. The
equivalence has been shown to hold in the sense that
the transition probabilities, but not the transition
amplitudes, are the same in the two treatments.

APPENDIX

The coherent states' —' can be shown to be the only
kind for which the fully quantum-mechanical picture
of Compton scattering is exactly equivalent to the semi-
classical picture. To do so we take an arbitrary super-
position of n-photon states to describe the incident
beam, calculate the transition probability, and require
that the latter be equal to the corresponding semiclassi-
cal expression. The conditions imposed on the weight
functions of the e-photon states are such that the initial
state must be coherent.

The incident beam is described by the state vector

C =P g(n) dli dl.C(li)

&&C(l„)
~ p, li 1)(n.!) it2 -(A1)

with the normalization conditions

(A2)

The probability I' of finding one photon in Az and an
arbitrary number in 6p can be evaluated as in the text,
and found to be

~ h(s j a+—n)h—~(s j a+—m)—P=P $r—(a+en+ b+n) /2

j 1 (J—1)!abmn~ I 0 (s j a b—)!——

dki dk2 ~ ~

d,g

dir, U,„(ki k,)Us (ki .k,), (A3)

where U (ki k,) is defined by Eq. (3.12), and

h(n) = (n!)'~'g(n)

The constant is immediately required to be unity by the
normalization condition (A2). The equation may be
simplified in appearance by defining

The semiclassical probability expression is given by
Eq. (3.14). In order for I' to be equal to it to within a
constant multiplicative factor we must have

t=s—j—a—b, Ij, =n+b, v=m+a,

h(n) = e ~12.V"Imf(n)

(A5)

(A6)
~ h(s j a+n)h~(s—j—a+nt)— —

(a+m+5+m)/-2 P = const.
~ 0 (g—j—a—b)!

to obtain
gt

f(t+n) f"(t+v) = e"—,
t-0 tf

(A7)

~%. Heitler, The Quggtlm Theory of Radiatiow (Clarendon
Press, Oxford, j.954), 3rd ed. , Chap. 2, Sec. 7. where p and s are arbitrary non-negative integers.
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The solutions to Eq. (A7) determine the class of
quantum states for which the equivalence of quantum
and semiclassical descriptions obtains. An obvious solu-
tion is

(—N) "/r! and sum over r,

~ (—N)" ~X'
f—(t+r+p) f*(t+r+v) =1. (A11)

r-o t! c-o l t

or

f(t) = e'~ (A8)
Next we make the change of variables t=s—r, and
invert the order of summation,

~ S'
f(t+r+—p)f (t+r+v)=e",

&o]t
(A10)

where r, p, and v are arbitrary non-negative integers.
Then we multiply both sides of the equation by

g(g) = (rt l) &/2N&—l&c &I2c~—e (A9)

which defines the coherent states, as can be seen by
comparison with (3.4). We shall now show that this
solution is unique. This can not be done by expanding
the right-hand side of (A7) in a power series and
equating the coeKcients of S' on both sides. The reason
is that f(t) may itself be a function of N. We proceed
instead by rewriting (A7) as

EX=EX,
r Oa r e Or 0

(A12)

00 I (—1)'
Q N'f(s+tl, )f~(s+v) Q =1. (A13)
s~O .-0 r!(s—r)!

The sum over r is unity for s=0, and it is the binomial
expansion of (1—1)'/s! =0 for s&0, so that

f(p)f*(v) =1. (A14)

Since p and v are arbitrary, the solution is f(t)=e'~
with qb constant.
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It is shown that ~$, ES, and EÃ elastic-scattering and charge-exchange data at high energy and small
momentum transfer can be well fitted by assuming that the amplitudes are dominated by a few Regge poles
in the crossed channel. The constraints imposed by the factorization principle are included. Unitary sym-
metry (SVI) is approximately satis6ed. Sample predictions of ~p polarization and E++n —+ X'+p charge
exchange are made.

1. INTRODUCTION

HIS paper shows that the present pion-nucleon
and kaon-nucleon data, at high energy and small

momentum transfer, are consistent with the dominance
of a few Regge poles in the crossed channel. Explicit
models are constructed which give good fits to the data
in the range of incident momentum 6 to 20 GeV/c and
squared momentum transfer

~
t

~

(1 (GeV/c)'. Possible
branch points in the complex angular-momentum plane
are neglected. Mandelstam' has shown that such branch

*%'ork done under auspices of the U. S. Atomic Energy
Commission.

t Permanent address: A. E.R. E., Harwell, Berkshire, England.' S. Mandelstam, Nuovo Cimento 39, 1127, 1148 (1963).

points are probably not negligible at asymptotic ener-
gies; however, there seems to be a good chance that
over a considerable energy rang- perhaps up to 100
GeV or mor- their eGects are not important. '

There have already been several Regge-pole models' 4

(some including a cut' ') for the pion-nucleon and
kaon-nucleon systems. However, the authors have not
included the helicity-Sip terms, have largely ignored
the question of isospin dependence, and have not at-

' G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964).' A. A~rr adzadeh and I. A. Sakmar, Phys. Rev. Letters 11, 439
(1963).

4 T. O. Binford and B.R. Desai, Phys. Rev. 138, B1167 (1965).
s P. G. O. Freund and R. Oehme, Phys. Letters 5, 353 (1963).' I. R. Gatland and J. %. Moffat, Phys. Rev. 132, 442 (1963);

Phys. Letters 8, 359 (1964).


