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In ~X scattering, using an X/D static model with linear approximation to the D function, the reciprocal
bootstrap between the nucleon and the ($, $) resonance is shown to hold for any l, with an I=g, j=$—)
and an I=„j=1+)isobar supporting each other. It is also shown that this is in fact the only pair of multi-
plets capable of reciprocally bootstrapping. The following question is then raised: Given the existence of the
pion, what is the simplest possible set of baryon multiplets which can support itself P It is found that the
aforementioned pair is in fact the simplest set. All these results are then generalized to SU(3), where this
pair becomes aj=l—j' octet and aj=l+$ decimet.

that the aforementioned case is also the simplest from
this point of view. Finally, we generalize this SU(2)
model to the corresponding SU(3) case, where similar
conclusions are reached for the j=l——,

' octet and the
j=l+2 decimet.

1. INTRODUCTION

'HE 6rst bootstrap scheme for bar yons was
proposed by Chew' who suggested that the

nucleon (X) and the (-'„2) isobar (6) are capable of
supporting each other. The model he used was the
static limit of the X/D method for m.lV scattering in
which only baryon-exchange forces are considered and
the D function is approximated by a straight line. In
this approximation the baryons are considered so
heavy compared to the mesons that their recoil can be
neglected. Using the same approach, a similar scheme
has also been shown to hold in the corresponding SU(3)
model, with the E and 6 generalized to the —', + octet
and the (-,')+ decimet, respectively. "We find that this
is in fact the case for any / in the static approximation.
There exists a reciprocal bootstrap between the I=-,',
j=l—2 and I=~, j=l+~ isobars. ' In the d wave
this would explain the physically observed xS De~2
resonance.

In the simplest version of the above model, only
ratios of coupling constants can be calculated. This,
however, is sufhcient for checking whether a given set
of particles is c(:nsistent with the model. If, for instance,
the coupling for some particle turns out to be small or
negative, we can certainly rule out the existence of this
particle within our scheme. This means that we have
a particularly simple approach for studying the question
of whether the physically observed particles are the
only possible set within a bootstrap approach, or at
least whether they are in some sense the simplest.

The first such question we study is whether other
pairs of multiplets can support each other in xX
scattering. We find that the I= ~, j=l——,

' and I=»j=l+ ,'isobars are t-he only consistent pair. We then
ask the question: Given the existence of the pion, what
is the simplest set of baryons which can support itself
in a nonstrange SU(2) model/ For instance, could there
be a world having only an isosinglet baryon' We 6nd

2. THE STATIC MODEL

We shall begin by reviewing the static E/D model
with linear D. A meson-baryon state is specified by its
spin J, isotopic spin I, orbital angular momentum l,
and total energy 8'. For a given / we use the amplitude

gl J(cd) = e*' sinb/q"+', (1)
where 8=phase shift, q'= oP—1, co = 8'—ll, and
M= baryon mass, with the meson mass taken to be
unity. The forces can be obtained through the crossing
relation

gIJ(&) 2 IIII'PJJ'gl' J'( &) y (2)

where u and P are the crossing matrices for isotopic
spin and spin, respectively. Of course, in the static
limit, the g's on the right-hand side of Eq. (2) all have
the same l as the g on the left-hand side,

If some isobar (a bound state or resonance) occurs in
the (I,J) state, the corresponding amplitude has a
pole yl J/(cor J—co). From Eq. (2), the force (Born term)
in the 1th wave then has the form

BIJ(~) 2 &lr'P JJ'(VI' J'/(~I' +~I)) ~ (3)

In the sum we take yg J-= 0 whenever there is no particle
in the (I,J) state. If we use BIJ(cd) as the input to an
X/D calculation, we obtain

gr J(~)=~ IJ(~)/Dr J(~), (4)

+IJ(~) p IIII'P JI'( /I' I'/(~I' I'+~))D ( ~I' I') q (5)
g/ J/

(~&~ 1)(~o rgT (~&)
d(o'

0) —
GO
—Zq

Dl J((u) =1— (6)' G. F. Chem, Phys. Rev. Letters 9, 233 (1962).' R. Dashen, Phys. Letters 11, 89 (1964).' Y. Hara, Phys. Rev. 135, B1079 (1964).' The arbitrary / case has also been discussed by P. Carruthe
Phys. Rev. Letters 10, 538, 540 {1963)and Phys. Rev. 133, B4
(1964), who did not find such a reciprocal bootstrap. He, howev
did not use a static model.

where ~0 is some subtraction point and p is a cutog97 which parametrizes high-energy effects. Equations
(4)—(6) are constructed so as to satisfy elastic unitarity
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7l JI

It is convenient to introduce'

FIJ= Q &Il'0 JJ' YI' &'
I' J'

even if the (I,J) state does not have any particle in it.
As discussed in Ref. 5, FIJ provides a measure of the
force in the (I,J) state. For instance, we would expect
a low-lying particle to exist in a state (I,J) only if Fr&
is positive and large, at least with reasonably smooth
high-energy behavior in Eqs. (5) and (6). Of course, if
we had a particle in a state for which EIJ is negative,
we would have had pr&&0 from Eq. (8); this is clearly
impossible.

3. THE BU(2} CASE

Chew's reciprocal bootstrap' follows directly from
Eq. (8) if we assume the existence of a (q, —,') and (3~,q)
isobar, i.e., the X and d. Here

(10)

for I=&, ~3 and P=a. In this case, the two equations
(8) are identical, and give

YH= 2'YB )

a result which agrees with experiment. If this is sub-
stituted into Eq. (9), we obtain

F@=F))=0,
~H= 2Vkk.

(12)

Thus it is consistent to assume only the N and d, .
Suppose we now generalize the above result to any

l&0. %e have

1

(
—1 21+2)

(13)

but with the same n as in Eq. (10). The most natural
generalization of Chew's reciprocal bootstrap is to
assume that a (& l—q) and a ($, I+-,') isobar bootstrap
each other. In this case the Eqs. (8) become

pt ~1= (4(t+ 1)/(3t+ 1)gy t+~ (14)
' E. S. Abers, L. A. P. Bal6,zs, and Y. Hara, Phys. Rev. 136,

81382 (1964).

and at the same time give the correct force singularities
coming from the J31J contribution to g~J.

If we have an isobar in the (I,J) state we can approx-
imate D by a straight line

Drr(~) = (~re ~)/(arrz ~0)
Then

y&, t+&= (2t/(3t+ 1)h&. t-&. (15)

121 4
Fk, 4-4 71,~1+ Ttt+y,

3 2l+1 3 2(+1

2 1 1 2l+2
F5.t-1 Y5F1+, -7tt+1,

3 23+1 3 2l+1

(18)

If we substitute either Eq. (14) or Eq. (15) into Eqs.
(16)—(19), we 6nd that Ft, ~y and Fy, ~y are suKciently
small compared with Ii~ ~y and Fg ~y to make it
consistent to have only the (-'„ t——,') and (-'„I+-,') isobars
support each other. In higher waves these isobars are
simply the Regge recurrences of the (x~,2') —(+,s2) and
(~~,$)—($$e2) pairs. In the s wave, the j=t—~ states
are absent and the Kqs. (8) when combined with (10)
and. (13) ca,n be easily seen to be inconsistent; there
would thus be no s-wave isobars in our model.

We now turn to the question of whether the above
pair is the only one capable of supporting itself. Now
the only other possible pairs are (~~, t—2')-(q, t+~~),
(' t—')-( I—-') (-' t+-')-(-' I—-') (-' t+-')-(-' I+-')
(~, l—~)-(~s, t+ ~). In the fLrst and. second cases, Eq. (8)
leads to negative ratios of y's; these cases are thus
automatically excluded. In the remaining cases the two
ratios of y's that one gets by looking at Eq. (8) for the
two members of the pair are grossly inconsistent with
each other. We thus conclude that the (-'„ I——,') and
($, l+2) pair is the only one capable of reciprocally
bootstrapping.

So far we have been restricting ourselves only to
pairs of particles in the nX system (this also trivially
includes the case of one multiplet by itself). If we go
beyond pairs, then, as pointed out in Ref. 5, it is possible
to have other consistent solutions. For instance, in the
p-wave case, we can have such a solution with (~,—,')-
(~2,~)-($,~)-($P); Chew's solution is only a particularly
simple case of this more general solution. Of course, if we
had a better calculational technique, we might have
found that this more general solution is inconsistent.
Lacking this, we shall fall back on the criterion oj
simplicity 'We shal. l pick out the Chew solution in
p-wave ~$ scattering because it is the simplest.

' W. Oakham (uIIpublished).

These two equations agree exactly for l= 1, as we have
already seen. For all E&1, they agree to quite a good
approximation, e.g. , for 1=2 we get y11/y11=1.71
from Kq. (14) and equal to 1.75 from Eq. (15). If we
now use Eq. (9) we 6nd

1 1 42t+2
7), l—$+- Y$.t+$ ~

3 2l+1 3 2l+1

2 2l 1
F),~)=— y), w)+—

3 2l+1 3 2l+1
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Suppose we now assume the existence of only the pion
with I= i and try to see what baryons are demanded
by a static SU(2) model. We shall start with the
simplest possibility, and then go to more and more
complicated sets until we find one which is consistent
for our model. %e can then use our criterion of simplic-
ity to select out this solution.

The simplest possibility is to start with the scattering
of a pion with an isoscalar spin-~~ baryon. The spin
crossing matrix is again given by Eq. (13) while the
isospin crossing matrix is just unity. Using Eq. (8)
we see that although we can have a (1,xo) baryon
supporting itself in the s wave and a reciprocal bootstrap
between a (1, I—xo) and (1, l+-,') baryon for higher
waves, we cannot get out the original (0,—,') particle for
the simple reason that the external isospins i and 0 can-
not be combined to give an I=O composite. We might
get it out if we consider or—(1,—,) scattering in addition
to or —(0,&o) scattering. But before considering this more
complicated problem which involves a scattering
particle with a higher I, we must try the simpler case of
7r—(zo, o') scattering. If this is caPable of giving a self-
supporting system without the consideration of more
complicated problems, it would satisfy our criterion of
simplicity and we would not have to consider any more
complicated problem. But this is simply the xXproblem
which, as we have already seen, does lead to a closed
self-supporting system. Thus the physically interesting
case is also the simplest from our point of view.

88= i8, 8 $109i027 (2o)

of the meson-baryon states. Since the X and 6 become
the +~+ octet and +2+ decimet, respectively, this difhculty
has to be overcome if we mant to generalize Chew's
reciprocal bootstrap to the SU(3) case.

4. THE SU(3) CHEW RECIPROCAL
BOOTSTRAP FOR ANY l

In this section we shall follow the same procedure
with all the above particles generalized to SU(3)
multiplets. Let us Grst consider 0 octet —~~+ octet
scattering, which is the generalization of mE scattering.
Here we can use exactly the same techniques as in the
SU(2) case except for the octet state, which has to be
treated as a two-channel problem since it occurs twice
in the direct product reduction

There have been several attempts to treat the two-
channel nature of the problem in a simple way. 2 ~ 3 ~ Of
these the method of Gerstein and Mahanthappa'
appears to be a pure ansatz. Dashen's method' does not
reduce to the correct result in the limit in which the
octet and decimet masses become equal, as we shall see.
Hara's method' appears to be correct but is somewhat
complicated to use in practice. We have therefore de-
cided to simply assume that the masses of the exchanged
octet and decimet are degenerate. This means that the
positions of the pseudopoles in Eq. (3) are taken to coin-
cide, which makes it possible to reduce the problem to a
one-channel problem, since we can diagonalize the input
with an energy-independent matrix. This assumption
should be a reasonable approximation, since the pseudo-
poles are distant from the physical region. Moreover
Dashen and Frautschi' have noticed in their X/D
perturbation approach that the breaking of the mass
degeneracy of exchanged particles usually leads to fairly
small eEects.

In practice, instead of actually diagonalizing the
input we shall find it convenient to diagonalize the
output first. Since, in this new representation, the input
must also be diagonal, w'e therefore have to impose the
condition that the oG-diagonal terms be zero. This
procedure is completely equivalent to first diagonalizing
the input and getting out a diagonal output. Now the
output in the usual 8,—8 representation has the form

( n
U —gllo

i

E—3 (1—n)/QS

3(1—a)/QS)

a ) (22)

where a= La'+ (9/S) (1—a)'7—', to give

!
Fly 20/Qa 0)

~a —co 0 0) s)s —a)
(23)

Nom with 8 and i0 exchange with equal masses for
the 8 and 10 the input as given by Eq. (3) has the form

2~/9 o(v'S)a(1 —n) Vo

(21)
o(V'S)a(1 —a) 4(1—n)' ~s—~

'

where co+ is the position of the octet pole, yo 3f'——
where f' is the usual pseudovector coupling with the
value @=0.08, and a/(1 —a) is the D to F ratio
Equation (21) can be diagonalized with the matrix

t (2/9)L3(1- )*+ 'j~.+l~
~a+~ & o(v'S)vio

o (V'S)vio i
X—(2/9) L3 (1—a) —(S/3)ao jyo (ps+ (0

(24)

' I. S. Gerstein and K. T. Mahanthappa, Nuovo Cimento 32, 239 {1964).In addition, attempts have been made using relativistictreatments by R. E. Cutkosky, Ann. Phys. {N. Y.) 23, 415 {1963);A. W. Martin and K. C. Kali, Nuovo Cimento 31, 1324 {1964);and by P. Carruthers {see Ref. 4); these are, however, too complicated for our purpose, particularly since it has not been demon-strated that such treatments lead to any better results than the static model.
R. Dashen and S.C. Frautschi, Phys. Rev. 137' 31318 {1965).' 4Ve shall also use a/{1—a) to denote the D to F ratio for the coupling of (8, l—$) baryons to mesons in the general I, case. Thecorresponding ratio for {8,3+$) baryons mill be denoted by P/(1 —P).
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where s& = —co~ is the assumed common position of the exchange pseudopole. Here we have used the SU(3) crossing
matrix" instead of el~ . In our new diagonalized representation R becomes

6 2 +5 3(i—~)2r ~—~I 6{i—}'+a'+3rj+2r~ {1—~)—-(1—~) — ~(i —~)$6(i —)~ ——;~+3rg+—~ r—
9 5 3+5 3 g5

&8 (25}
2 +5 3 {1—n)'r

~{1—~}r6{1—~}~—-,'2+3rJ+—n~r ——
3 5 3 5

10
-,'i1 —a)'$3 (1—ul' ——;a'+37j—2ai1 —alF+—a4

27

where I'= y&0/ys. Since this must be diagonal, we get an
equation connecting F and a by putting the off-diagonal
term equal to zero. %e now have one-channel problems
for the diagonal elements and an application of Eq. (8)
leads to setting the 11 element of Eq. (23) equal to
the 11 element of Eq. (25). This gives a second equation
connecting F and 0.. If we now solve these two equations
we get I'=1.13 and o, =0.68. With these values, the
22 element of Eq. (25) is negative; this corresponds to
a repulsive force."

If we now look at the (x,)+ decimet state, Eq. (8)
gives'0

I'= (16/33)Lx4oz+4a(1 —a)j. (26)

With the above value of a this leads to I'=0.72, which
is roughly consistent with the value obtained in the
octet calculation. If we now use Eq. (9), we find that the
F's are small in all other states (compared to the values
in the 2+ octet and (-', )+ decimet). Thus it is consistent
to have the —,'+ octet and (-,')+ decimet reciprocally
bootstrapping in 0 octet —2+ octet scattering.

The above bootstrap can be extended to all /&1,
just as in the SU(2) case. The only change is to replace
the spin crossing matrix (10) with the matrix (13).

5. OTHER BOOTSTRAP POSSIBILITIES

Ke shall now look at other pairs of multiplets to see
whether any of them can support themselves. We follow
exactly the same procedure as before. In looking at the
1, 10, 10 and 27 states we simply use the SU(3) analog
of Eq. (8), since these are one-channel problems. When
dealing with an octet state, we assume that all exchanged
particles have the same mass; this permits us to diag-
onalize the problem and use Eq. (8) in the new rep-
resentation. If we follow this procedure for /&0, we
find that the various possibilities can be grouped into
the following cases:

(a) Suppose we write (Fj) for a state with SU(3)
dimensionality F and total angular momentum j.The
cases (1, l—2)-(10, 1+2), (1, l—2)-(I0 l+2) (1 l—k)-
(27, l——.'), (1, l+k)-(10, l—2), (1, l+l)-(10, l+-'),
(1, l+2)-(1o, l—2), (1, l+2)-(1o l+2), (1o, l—k)-
(1o, l—2) (1o l—2)-(2» l—2) (1o l—2)-(2» l—k)
(8, l+2)-(1o, l—2), (8, l+2)-(1o, 1+2) (8 l—2)-

"See, e.g., V. Singh, Nuovo t imento M, 763 (1964).
"The method of Ref. 2 leads to ~=0.57 and a =0.78. It thus

gives values different from the value m=0.68 which one gets if
one assumes octet-deciment degeneracy.

(10, l——,'), (8, l——,')-(10, l+-,') and (8, l——,')-(27, l—2)
lead simply to negative ratios of coupling constants if
we apply Eq. (8). They are thus inadmissible.

(b) The cases (1, l—-', )-(1, l+2), (1, l——,')-(10, l——,'),
(1 l—2)-(1o l—2) (1 l—k)-(27, l+2) (1 l+k)-
(27, l—-', ), (1, l+-', )-(27, l+-,'), (10, l——,')-(10, l+-', ),
(10, l——,')-(10, l+-,'), (10, l——,')-(27, l+-,'), (10, l+-,')-
(10, l——,'), (10, l+-,')-(10, l+-,'), (10, l+-,')-(27, l——,'),
(10, l+-,')-(27, l——,'), (10, l+-,')-(27, l+-,'), (10, l——,')-
(10, l+-', ), (10, l—-', )-(27, l+-,'), (10, l+2)-(27, l—2),
(10, l+-,')-(27, l+-,'), (27, l—-', )-(27, l+-,'), (8, l+g)-
(10, l+-,'), (8, l——,')-(10, l—-', ), and (8, l+-', )-(27, l+ &)

give residue ratios which are completely difrerent,
depending on whether one uses Eq. (8) for the first
state or the second in each case. They are thus incon-
sistent. In the last of these cases, there are actually
two possibilities corresponding to 0,=0 or 1, but both
are ruled out for the same reason.

(c) In the cases (8, l+-,')-(1, l——,'), (8, l+-,')-(1, l+2),
(8, l——,')-(1, l——',), and (8, l—-', )-(1, l+-', ), there are
again two possibilities, one of which is excluded for the
same reason as in (a) and the other for the same reason
as in (b).

(d) In the case (8, l—-', )-(8, l+-', ) there are four
possibilities corresponding to n=0, 1 and P=O, 1;
three of these are excluded for the same reason as in
case (a) and one for the same reason as in (b).

(e) In each of the cases (8, l+-', )-(27, l——',) and
(8, l ,')-(27, l+—-,')—there are two possibilities again. In
both cases, however, if we follow the procedure of Sec. 4,
we Qnd that, in the diagonalized octet state, the 11 and
22 matrix elements of the input residue matrix are
comparable in magnitude. This means that two octet
states come out of the calculation, although only one is
exchanged in the crossed channel. Thus it is inconsistent
to have just the above pairs supporting each other.

(f) We are finally left with the case (8, l+-', )-
(10, l—-', ). Here the result is very similar to the case
(8, l—-', )-(10, l+-', ) which we considered in the preceding
section. If, however, we calculate the F's of Eq. (9), we
find that, at least for low l, F is quite large in the (1,l—2)
state. This would imply that an extra particle comes out
of the calculation and so it would be inconsistent to have
just the (8, l+-,')-(10, l——',) pair supporting itself. Of
course, this does not happen for very large values of l.
For such values, however, our model is meaningless any-
way. We conclude therefore that the (8, l—2)-(10, l+-,')
pair is the only one capable of supporting itself in 0
octet —~+ octet scattering for /&0.
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For l= 0, the main difference is that the j=l—~ state
is absent. If, however, we look at all pairs not involving
this angular-momentum state, we 6nd that we reach
the same conclusions as for l&0 except for the three
cases: (1,—,')-(27,—',), (8,-', )-(27,~), and (8,2)-(10,—,'). We
shall proceed to consider these one by one.

(i) For (1,-', )-(27,2) an approximately self-consistent
solution can be found if we use Eq. (8). However, the
residue of the (27,~) state turns out to be much smaller
tha, n that of the (1,—') state. Pmq/I'~=5/33 or 7/27
depending on which strap one looks at. From Eq. (9)
this means that the corresponding Ii for that state is
also very small. But this, as we discussed already, means
that the corresponding isobar either does not exist or
has too high a mass to play any role in our simple model.
The (1,2')-(27$) pair thus is inadmissible.

(ii) For (8,—',)-(27,—',) we have two solutions. One of
these can be excluded for the same reasons as in case
(b). The other solution is more or less consistent by
itself. If, however, we calculate the F's using Eq. (9)
we find that it is large in the (1,—',) state. Thus, an extra
particle would come out of the calculation, and it is
not consistent to consider just the above pair as
supporting itself.

(iii) It now remains to consider the case (8,—',)-(10,—,').
If F&o and 1"8 are the residues in the 10 and 8 states,
respectively, and P is the D to F ratio in the 8 state, we
obtain P =0.67 if we follow the method of the preceding
section. For this value I'~0/Ps=2 in the 8 state and
I'»/Ps=-,' in the 10 state; these values are roughly
consistent with each other. If we use Eq. (9), we find
that the F's are fairly small in all the other states.
Thus our model does seem to suggest the possibility of
an 8-10 bootstrap in the s wave.

Now it is well known that purely attractive forces
cannot produce a resonance in the s wave. One can
readily see that the forces in both the (8,—,') and (10,—',)
states here are purely attractive, so, if they bootstrap
each other, they can only exist as bound states. Further,
since we are considering s-wave scattering, the parity
of these states would be opposite to that of the external
(8,—,') baryon, which we take by definition to be positive.
We shall use the obvious notation (8,—,+) to distinguish
the different parity states. Since the (8$,

—
) and (10,—,

' )
states would be bound states and so lie close to the
external (8,—,'+) state, one would then be forced to
consider a considerably enlarged problem involving all
these states as external particles. This enlarged problem
may or may not have a solution. Even if it does, a
solution not involving the s-wave states would be
singled out as a much simpler one. '

Suppose we now assume only the existence of a 0
octet and ask the question: What is the simplest set of
baryons which can be self-supporting' Now the
simplest possibility which suggests itself is the scattering
of the 0 octet with a spin--', SU(3) singlet. However,
there is obvioulsy no way of producing this singlet as
a bound-state pole in this scattering process. Ke,

therefore, turn to the next most complicated problem,
which is the scattering of the 0 octet with a ~+ octet.
But this as we have seen, does lead to a self-supporting
system. Thus, just as in the SU(2) case, the physically
interesting case is also the simplest.

CONCLUSION

In most bootstrap calculations, one normally assumes
the existence of certain particles and tries to calculate
some of their parameters. Within the bootstrap philos-
ophy, however, one should also be able to predict the
existence or nonexistence of sets of particles. In practice
it is diflicult to see how this can ever be done (even in a
very limited approximate framework), since it involves
trying out an infinite number of possibilities. However,
the above calculations suggest that this may be possible
if we also bring in some criterion of simplicity to limit
the number of possibilities. We have shown how, within
a drastically oversimpli6ed scheme, the bootstrap
approach when combined with such a criterion does
seem to lead to a unique self-supporting system.
Moreover, this also happens to be the physically
interesting case."

Once we have found such a self-supporting set, we
can ask whether it leads to additional particles and if so
whether they do not have any important effect on that
set (if they did, they would have to be considered as
part of that original set). For instance, in our model,
the 0 octet, ~+ octet, and —,'+ decimet form the original
set. Having established from a p-wave calculation that
this set is self-supporting we looked at other l waves in
0 octet —2+ octet scattering and found a chain of
pairs of mutually supporting particles. In the static
model, these do not affect the results of the p-wave
calculation. We 6nd then that one has an octet-decimet
bootstrap in all other waves. One, therefore, has a whole
series of "dependent" particles, which owe their
existence to particles established in the p-wave calcula-
tion, but which do not affect the p-wave particles
themselves.

Another example of such "dependent" particles is
the chain considered in Ref. 5. Here again one takes the
p-wave octet-decimet as given and obtains further
particles which do not aGect the basic set very much.
It is quite trivial to generalize the results of Ref. 5
and obtain similar chains in which the octet (I——,) and
decimet (I+-,') isobars are the lowest members.
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Then

lim (catt Brr&»(co)).

&err&'&= lim (u&t&cBrr&»(co)).

We wish to give here an argument to show that the
inclusion of vector mesons does not affect the above

Mrg —
CO

conclusions. For simplicity, we shall consider the xE
case, although the aryunent can be trivially generalized This gives for the change in the reduced wi
to the SU(3) case.

Let Mz J (» be the contribution of p-meson exchange
to the force term Byg. Then the contribution to Erg is

ImaBrr &»(~')
AXrr &» (c0) =— Dr r (co') .

7l I, 4) —
GO

With the linear D approximation (Eq. 7) this becomes

rr&»(~)

= ABrr&&'(co)Drr(co)+ —lim (&ohBr j&»((a)).
we have

C (It)
p 4k2

~B»& &(~)= ln~ l+
4k' 4 m, '

lim (cdhBr J&" ((a)) =0.

With the expression for Mrr &» (&a) given by Chew, ' viz.
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P ecession of Relat'~st'c PMticles of A bit M7 Spm m a Slowly
Varying Electromagnetic Field
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(Received 19 April 1965)

It is shown that, under accelerator or bubble-chamber conditions, the passage of a particle of arbitrary
spin through an electromagnetic Geld effects a Lorentz transformation on its momentum and polarization,
and a linear differential equation determining this transformation is given. Ne also give explicitly the
decay-time dependence of the angular distribution that describes the decay of a particle moving in an
electromagnetic field, and thereby obtain a method, explained in detail, of measuring the magnetic mo-
ment of an unstable, higher spin particle like the 0 . It is noted that the gyromagnetic ratio g—2 leads to
particularly simple equations of motion for all spins, and not only for spin $. In an appendix we use a
novel covariant algebraic method to solve the equations of motion and obtain the finite Lorentz transfor-
mation, in the case of a constant and homogeneous electromagnetic field. The method involves the intro-
duction of an algebra of 4-by-4 matrices that plays the same role for 4-vectors as the Dirac algebra for
4-spinors.

I. RELATIVISTIC LARMOR THEOREM
~

~ ~

~~ ~~

~

~

~

~

K wish to describe the time evolution of the
polarization matrix, or density matrix in spin

space, of a relativistic particle of arbitrary spin in a
slowly varying electromagnetic 6eld. This matrix is
perhaps most directly observable if the particle decays,
for it determines the angular distribution of the decay
products, a function, I(pr, pm, ), of the 4-momenta
p&, pm. of the daughter particles. Knowledge of the
momentum and po1arization matrix at a time t=0, and
of its subsequent time evolution, allows one to predict
the dependence I(pcpm . t) of the dec.ay angular dis-
tribution on the decay time t. %e will obtain this
dependence explicitly.

*Present address: Courant Institute of Mathematical Sciences,
New York University, New York, New York.

The equation of motion of the dipole polarization,
corresponding to spherical harmonics of order 1 in the
decay angular distribution, has been described. in the
literature, ' and is known most familiarly in covariant
form as the Bargmann-Michel-Teledgi (BMT) equa-
tion. ' However, particles of spin j)-, also have higher
multipole polarization, corresponding to harmonics of
all orders up to 2j in the angular distribution. The new
content of the description given here is that it is applied
to these higher moments as well. It takes the form of a
simple generalization of Larmor's theorem which, how-
ever, when stated relativistically is found to apply to
the momentum as well as to the polarization.

' H. Bacry, Nuovo Cimento 3, 1164 (1962).This article contains
many references to earlier work on the subject.

~ V. Bargmann, L. Michel, and V. Teledgi, Phys. Rev. Letters 2,
435 {1959).


