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We have extended the previously published pion-pion calculations by solving numerically the coupled s- and
p-wave equations based on a method of the inverse amplitude, to see if the lower partial waves near threshold
converge to definite values. Elastic unitarity is still used for the right-hand cut. Numerical calculations show
that the s- and p-wave scattering lengths are very much the same as those obtained before by using only the
left-hand singularities chosen to have the correct functional forms near the branch point; however, the
position and the width of the p-wave resonance energy are substantially improved. Solutions exhibit results
as a function of X similar to those found previously; a p-wave attraction corresponds to a strong s-wave
attraction. Thus we find that the procedure of constructing the amplitude developed in the earlier paper is
convincing.

I. INTRODUCTION
' 'N an attempt to make a limited examination of the
~ - pion-pion scattering problem, a procedure was
described in a previously published paper, ' showing
how one could write down an amplitude, which satisfied
manifestly the analyticity and unitarity requirement
in a single channel in the low-energy region, and then
make use of crossing symmetry to obtain self-consistency
conditions for determination of parameters in the
original amplitude. In addition to unitarity, analyticity,
and crossing symmetry, there were two other essential
features introduced in practical construction of the
partial-wave amplitudes. Firstly, the partial-wave ex-
pansion was terminated at / . In particular, the d waves
were neglected in carrying out the zeroth- and first-
derivative conditions at the symmetry point, while they
were included in the second-derivative conditions in the
scattering-length approximation. Although the esti-
mated d-wave amplitudes were found to be not very
significant at the symmetry point, crossing symmetry
was then satisfied only approximately, as is generally
the case. Secondly, the explicit consideration of higher
energy regions in both positive and negative directions
was suppressed by using a quoth-order polynomial and
regulating both the right-hand and left-hand integrals.
Moreover, the nearby left-hand singularities were
chosen so as to preserve the correct functional forms
near the branch point. The better we explored the
left-hand-cut prescription and inelastic processes, the
more realistic a q~ would be obtained. The present
paper is devoted to a discussion of the convergence
problem of our formulation in Paper I. While still
keeping the problem elastic, we have worked out the
(nearby) left-hand cut through the crossing relation by
machine calculation. In particular, the same 1 and q~

are adopted in numerical calculations of the coupled
s and p-wave ampli-tudes. It is the purpose of this
paper to see how well the lower partial waves near

*Work supported by the U. S. Atomic Energy Commission.
' K. Kang, Phys. Rev. 134, B1324 (1964), to which the reader is

referred for additional references. This paper is referred to as I
throughout.

threshold converge to definite values, for then we will
find the procedure developed in Paper I convincing.

Upon making a numerical evaluation for the left-
hand discontinuities, the number of parameters will
be reduced compared to before, and therefore fewer
conditions will be needed in determining parameters.
The remaining conditions will be used to check self-
consistency. The solutions will be characterized by one
parameter X, again as before. The range of this param-
eter, representing the magnitudes of the s-wave ampli-
tudes at the symmetry point, was discussed in Paper I,
and is modified in the present paper by attributing
strong s-wave attraction in the I=O, l=0 state to the
existence of a pole on the unphysical sheet.

In Sec. II, the integral equations are described and
the additional assumptions that are introduced in the
practical case are discussed. Section III considers the
approximate crossing conditions and the range of the
coupling constant A. . The numerical iteration scheme
which will be used to obtain a numerical solution to
the coupled s a,nd p-wave e-quations is developed in
Sec. IV. Section V contains the results of the numeri-
cal iteration which are compared with those in Paper I.
Finally, in Sec. VI, concluding remarks are given.

II. THE INTEGRAL EQUATIONS FOR THE
PARTIAL-WAVE AMPLITUDES

In I, the partial-wave amplitude for orbital angular
momentum / and isotopic spin I was given by'

3 tr(v) = v'(Mt'(v) —t'pt'(v)8(v)7 —',
where

Mtr(v)=Lv +/(v+1)j t cotlt (v),
and

pt (v)= —Pt (v)[v t+/(v+1)] t for v)0 (3)

The function Rtr(v) is the ratio of the total partial-wave
cross section to the elastic partial-wave cross section,
and is unity in the elastic approximation, which we
shall make throughout.

' The notation and units are those of I.
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where the function Fir(v) is defined by

'()="i '() (5)

p'ir(v) = —v' ImAir(v)/i Air(v) i' for v( —1. (6)

The absorptive amplitude in (6) is given by

2 " ( v+1)
ImA i'(v) =- dv'Pii 1+2v, i v )

The implicit solution of (1) was given by

Cg „++i z r(„I)
Fir(v)= Q a,vv+ dv

v=o or p
v'~+'(v' —v)

vM+i —i
p i(v ) 1 Plr(v )

dv'+ dv', (4)
r, v'~+'(v' —v) 2iri „,.i. v' —v

' p'p'(v')
Lp (v)= —P dv',

ooV V V

alld
p —i pi l(v~)

L,'(v) =—P d v'.
eov V V

(12)

It is observed that our amplitudes (8) and (9)
contain four parameters, whereas in Paper I there were
three additional parameters due to parametrization of
the left-hand singularities. Af ter having obtained
solutions for s and p waves, we may ask whether an
approximate crossing symmetry is maintained in the
course of the numerical calculations. This can be done
by taking s- and p-wave solutions to calculate the
nearby left-hand singularities from the crossing relations
(7) and by comparing them with the defining equations,

ImA, r(v) = —Im(Air) —'/
i (A,r)—i

i

P (13)

The two absorptive amplitudes should not be very
different from each other in the nearby region where
—v is smaller than 9. It should be mentioned that in the
present paper, these equations will not be used as
conditions to determine parameters. Instead they will
be used to show the consistency of our solutions.

XE xrr Z(2f'+1)Pi
i

1+2
i
ImAi r'(v'), (7)

P L' v' )
where (Xrr ) is the well-known 3X3 crossing matrix.
The cutoff parameters R and. L in (4) are, —in principle,
taken at some values where the elastic unitarity and
the convergence of (7) begin to fail, respectively.
However, by proper introduction of the regularization
factors v~+' and v~+' on pir(v) and p'ir(v), respectively,
and of a polynomial with q&+1 terms where qi is the
larger of the two integers E and M, it is hoped that
sensitive dependence on the cutoff values of the dis-
persion integrals is eased, so that one may take R=+ ~
and —I.= —~ for convenience. Furthermore, the last
term in (4), which is the contribution from the large
circle of the contour in the complex plane, can always
be approximately absorbed into the polynomial in the
low-energy approximation.

As in Paper I, it will be assumed that s and p waves
are dominant in both direct and indirect channels, and
X=A=/. Then, in the /th angular-momentum state,
there will occur k+1 constants in the solution (4).

Under the assumptions we have made, the integral
equations become, for the two s waves,

III. SYMMETRY-POINT CONDITIONS AND THE
PION-PION COUPLING CONSTANT

If d and higher waves are small, then one obtains
from crossing symmetry' that at v= ——,

'

(14)
ando

~AD' ~AD'—9A g' ——— ———2 (15)

Thus by giving the s-wave amplitude Ao' the value
—5X at the symmetry point, the conditions (14) and
(15) provide four independent conditions. The constant

P is sometimes referred to as the pion-pion coupling
constant. For a given l|., (14) determines the two s-wave
parameters which in turn will be used in determining
the two p-wave parameters from the two independent
conditions (15).

By taking into account a small effect from d waves
in the scattering-length approximation, one gets a
single second-derivative condition at the symmetry

Po'= ~r+f(v)+Lo'(v)
+i(—pp'(v) 8(v)+p'o'(v) 0 (—v—1)),

(I=0, 2), (8)

for v&0 or v & —1
s wave attraction was exhibited for I 0, l 0, while

3 G. F. Cheer and S. Mandelstam, Nuovo Cimento 19, 752
for —1(v (0, (10) (1961).

and for the p wave, point;

P"()=-.+~+ f()+L"() (BP/8v ) (A p
—pA p ) = 27A i'+ 18(BA i /8v) . (16)

+&$ pi'(v)e(v)+p'i—'(v)9( v —1)j, (9) —We will not attempt to use (16) to determine the
parameters, as this will be used to test the consistency
of the theory.

The range of A. , —0.3 ~&X(0.1, was found in Paper I
to be self-consistent. For this range of ) values, strong

~ ~
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FIG. 1. Position of
poles of the s waves on
the unphysical sheet as a
function of &. Notice
that vg=-,'sl —1.

-as -az,

' Positive values of ) give rise to negative values for a0 and a2
and do not exhibit the resonance behavior in the p-wave state.
Some 6eld-theoretic model calculations claim X to be positive,
for example, M. Alexanian and M. Wellner, Phys. Rev. 137,
8155 (1965).' D. Atkinson, Phys. Letters 6, 69 i1964l; S. Ciulli and GR.
Ghika, Phys. Letters 11, 336 (1964).

6 R. Oehme, Phys. Rev. 121, 1840 (1961).
7 N. E. Booth and A. Abashian, Phys. Rev. 132, 2314 (1963}.

They obtained the I=0 s-wave scattering length F0=2~1 from
experiment. H. J. Schnitzer, Phys. Rev. 125, 1059 (1962), has
used a model based on static theory to extract x-7l- scattering
lengths from total cross sections and angular distributions of
x+N —+2m.+N, and obtained two solutions for the scattering
lengths of the I=O s wave, I=1 p wave, and I=2 s wave:

a p-wave resonance was generated. ' It is well known
that a positive scattering length larger than the force
range requires a pole on the unphysical sheet. In this
regard, several authors' argued that an antibound
state would occur in the I=0, l=0 state, just under the
elastic threshold. Although this may not give any new
information other than that contained in the original
effective-range formula, it is nevertheless interesting
to see if this idea limits the range of A, when compared
with experiment.

An antibound state in a partial wave Air(p) is a.

pole that appears between v= —1 and v=0 on the
second Riemann sheet. The analytic continuation of

Air�(p)

through the elastic cut into the second Riemann
sheet is given by'

Cir(p)=Air(p)t 1—2(—p/1+p)'i'Ai (p)) ' (17)

for —1&p&0. Then the condition for a pole of Cir(p)
at some v is

A, '(p„)=-', [(p„+1)/(—p„))'I', for —1«0. (18)

The condition (18) was solved for the two s waves of
Paper I, and the mass squares so and s2 of the I=0 and
I=2 antibound states are plotted in I'ig. 1. The I=2
s-wave state also exhibits an antibound state; however,
it is much further from the threshold than the I=O
s-wave state. In general, the range —0.3~&X&&—0.1
gives an I=O s-wave scattering length which agrees
well with the experimental value obtained by Booth
and Abashian. ' No I=1 p-wave antibound state was
found.

The numerical calculation is carried out for this
range of X. We shall seek solutions with parameters
ni and P which satisfy the conditions (15) under
numerical iteration. Each solution will be checked for
consistency by observing if (16) is satisfied. In fact,
this can be done by recalculating n& and P from the
first relation of (15) and (16), when the second relation
of (15) is satisfied under iteration, and by comparing
them with those satisfying the two conditions of (15).
The discrepancy between the two sets of parameters
obtained in this way may be attributed to the higher
partial waves that are neglected in deriving the sym-
metry-point conditions. So long as the higher partial
waves are small in the nearby region, they should not
differ very much from each other, and we shall see that
this is indeed so in the present calculation.

y= (1+p) '" for p)0, (19)

x=(—p) '" for p& —1, (20)

the absorptive parts of the s and p waves on the left-
hand cut are then found by (7):

ImAi'( —x—') =4x' y
—'E&(1—2x'y —')

y'(1 —x') )XP xrr' P(2l'+1)Pi 1—2
Il )I "(1—ys)i

XImA i.r'(y '—1)dy, (21)

which in turn is used to find a new function p'tr(p)
from (6),

p'i'( —x—')
= —(—x ')'ImA (—x ')/[A '(—x ')('. (22)

Here, in the first cycle of the iteration, we have used Eqs.
(II.20) and (II.21) of Paper I to obtain ImAi r'(y '—1),
which appears under the integral of (21). To evaluate
ReAP( —x '), the functions (II.12), (II.13), (II.20),
and (II.21) of the earlier paper are used to start with.
Then from this function ReAir( —x ') and (21), the
function Air( —x ') is readily obtainable and thus
p'ir( —x ') of (22) is computed. The procedure tha, t

(0.5, 0.7, 0.16) and (0.65, 0.07, —0.14). J.Hamilton, P. Menotti,
G. C. Oades, and L. L. J. Vick, Phys. Rev. 128, 1881 (1962), have
pointed out shortcomings in Schnitzer's analysis and in particular
that Schnitzer's analysis tends to underestimate the I=0 s-wave
scattering length.

IV. THE ITERATION SCHEME

In order to yield rapid convergence, the iteration
scheme is started with the solutions obtained in Paper I.
In particular, the starting functions for p'ir(p) and
I.ir(p) are given by (II.12), (II.13), (II.20), and (II.21)
of Paper I.

By using new variables
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we have employed in the 6rst cycle will take into account
Air( —x—') as a function of x. Also some contribution of
the left-hand cut is included in the starting cycle. This
feature was completely absent in Paper I. There, in
order to obtain Eqs. (II.12) and (II.13), we consistently
made a constant approximation for the function
Air(v)/ v' near

~
v~ =+1:By starting with ImA&1'(v&)

~ (p i+ /(p +1)) ~~, the function ImA i (v,) was ob-
tained near v, =—1 from Eq. (I.34). Then p'ir(v, =—1)
was computed from Eq. (II.6) with again a constant
approximation for ~Ail(v, ) ~' near v, =—1. The new
functions (22) are used to evaluate the left-hand-cut
contributions Lir(v) of the s and P waves in both the
right- and left-hand energy regions; in the physical
region

FIG. 3. I=2 s-
wave phase shift.
(See caption of Fig.
2.)

-2Wg~(v)

2-

I

lo

L(r(y—'—1)

and in the unphysical region

each iterative cycle, the condition (14) is imposed to
readjust the s-wave parameters. ' Then ni and P are
varied in a systematic manner until the conditions (15)
are satisfied. The final values of the p-wave parameters
which are determined in this way are checked for
consistency with (16).In particular, they are compared
with those obtained from the first relation of (15) and
(16).

These functions (23) and (24) will be used to calculate
(21) and (22) in the next cycle, with the new s-wave
parameters adjusted through the condition (14) for
given values of X. Finally, the s- and p-wave phase
shifts become in terms of the calculated L~l functions,

Mo (y
—'—1)=nr+ f(y ' 1)+Lo—(—y —1),

(I=O, 2) (25)
and

Mi'(y '-—1)=ni+(y ' —1)P+f(y 2—1))
+L,'(y—'—1) . (26)

Starting from the parameters obtained in Paper I
for given values of X, the numerical iteration is per-
formed to determine the functions p'~~ and I.~~. In

-sz~(v&

FIG. 2. Compari-
son of the I=0 s-
wave phase shift.
The dashed curve is
the previous solution
and the solid curve
is from the present
calculation.

l0

V. RESULTS AND DISCUSSIONS

The integral equations (8) and (9) have been solved
numerically on the Brown University IBM-7070 com-
puter. In the range of integration, the variable x is
represented by 30 mesh points. The program is started
by evaluating functions (22) with L&r obtained in
Paper I. The convergence is dependent on the values
of X, ni, and P, and in general, the larger the value of X,
the faster the convergence. For the range of A. , —0.3 ~& X

~&
—0.1, usually the amplitudes are accurate enough

under from three to 6ve iterative cycles. For a given X,
the conditions (15) are imposed for various sets of (~i,P)
and the final sets are those for which conditions (15)
are satisfied within 10% accuracy. Each final set of
parameters satisfies the condition (16) to an accuracy
of 20%. In particular, after the conditions (15) are
satisfied, a, new set of (ni,P) is evaluated from the first
relation of (15) and (16). Both sets usually agree to
within the same accuracy as that to within which
condition (16) is itself satisfied. A typical example
shows that for X= —0.1, the conditions (15) are satisfied
by n&=175 and J3= —12, while the consistency check
gives ni 136.172 and P= ———11.475. It is generally seen
that the larger the value of X, the less accurately the
condition (16) is satisfied. The diA'erence may be due
to the higher partial waves neglected in the condition
(16). In the earlier calculation, the p-wave parameters
for X= —0.1 were ni ——161.0 and P= —128.9902. We
notice that the value of o.~ obtained in Paper I agrees

Our program is written in a very similar manner to that of
S.H. Sransden and. J.W. Morat, Nuovo Cimento 21, 505 (1961).
Since we have not made the subtraction at the symmetry point,
the condition (14} should be imposed in each cycle of iteration.
Their iterative cycle starts with L& (v} set equal to zero.
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x' g, (~)

2-

FIG. 4. I=1 p-wave phase shift. The position of the p-wave
resonance in the present calculation (solid) is significantly im-
proved over that of the previous solution (dashed).

well with the new value; however, the magnitude of P
is substantially decreased in the numerical calcula-
tion. This tendency is a fact that we have noticed in
the earlier paper.

The s-wave scattering lengths are very little changed
from those of the earlier calculations. Generally, it is
seen that the I=O s-wave phase shift is slightly in-
creased and the I=2 s-wave phase shift is decreased.
A typical case is shown in Fig. 2 and in Fig. 3, and
Table I gives some typical results.

From the integral equations (8) and (9), it is clear
that the parameter o; is related to the inverse of the
scattering length. Our I=O s-wave scattering length
is slightly less than 1 (pion Compton wavelength) for
~ = —0.1 and slightly less than 2 for A, = —0.2. Around
A, = —0.2, we get an I=O s-wave scattering length in
good agreement with the experimental value, ' while
around X= —0.1, it agrees with the value 1.0&0.3 used

by Kacser et al. ' in a study of E,4 decays. Our I=O
s-wave two-pion state does not show any possibility
of having a resonance behavior" in the low-energy
region; instead, the I=O s-wave phase shift remains

approximately constant throughout the p-mass region.

TABLE l. s- and p-wave parameters and the positions 3f,
and the widths of the p-wave resonance.

This agrees well with the conclusion of the experimental
analysis by I.ee,"and near A. = —0.2, the s-wave phase
shift coincides with his experimental value.

While the s-wave and p-wave scattering lengths
remain almost unchanged, the position of the p-wave
resonance is very much improved. For smaller values
of

~

X ~, corresponding to weaker s-wave attractive
forces, the positions of the p-wave resonance are larger.
The width F, in Table I is given by the formula Fp
=I'[~n'/(vs+1)]'" where I' is the reduced width.
Again, it is seen that as the value of ~X~ increases or
equivalently as the s-wave forces become more attrac-
tive, the p-wave scattering length becomes larger
and the p-wave resonance energy becomes smaller.
(For X= —0.3, the p-wave parameters are a& ——6 and

P = —34.4.)
When the value of ~X~ is small, the s waves are small

so that the left-hand cut may be influenced largely by
the p wave in indirect channels. Actually, the p-wave
absorptive amplitude on the left-hand cut becomes
comparable in the nearby region when compared to the
s-wave absorptive amplitudes as ~X~ decreases. Then
the situation may resemble the "bootstraps" a little.
Since the relations (15), which are obtained from cross-
ing symmetry, determine the p-wave parameters, our
procedure then may have some similarities to that of
Balazs." In fact, for X= —0.1, the p-wave resonance
energy turned out to be 544 MeV (as shown in Fig. 4)
which is approximately the same as that of Ref. 12.

However, it should be mentioned that the existence
of a resonance in our approach arises naturally as a
result of direct parameter determination and need not
be assumed a priori The situatio. n is different, in this
sense, from the bootstrap formalism, where resonances
must be assumed from the start. But there seems to be a
qualitative possibility in our formalism that the p
wave in the crossed channels might produce the most
important part of the force needed to produce a resonant

p wave in the direct channel, when s waves are of weak
attraction.

- O. I

—0.1 1.4834—0.2 0.5107
4.8675
2.2823

175
28

—12—3.5

Mp I'p
(MeV) (MeV)

544 63
441 81

~ C. Kacser, P. Singer, and T. N. Truong, Phys. Rev. 137,
81605 (1965).These authors obtained agreement with the experi-
mental rate for E,4+ decay when the I=0 s-wave pion-pion inter-
action is described by a scattering-length approximation with a
scattering length ao= 1.0%0.3.

' Some authors assumed a resonance state in the I=O s-wave
state to explain the asymmetric m x+ c.m. distribution in p0

production: S. H. Patil, Phys. Rev. Letters 13, 261 (1964); L.
Durand, III, and Y. T. Chiu, Phys. Rev. Letters 14, 329 (1965).
Others found that the asymmetry can be explained by either
an s-wave I=O ~x resonance or a large s-wave I=O ~x phase
shift near the p-meson position: M. Islam and R. Pinon, Phys.
Rev. Letters 12, 310 (1964).

Fxe. 5. The p-wave left-hand cut for a weak and a moderately
strong coupling. As the values of (X ~

increase, the sign changes of
the left-hand cut disappear.

"Y. Y. Lee, University of Michigan Technical Report No.
04938-1-T, 1964 (unpublished).

~2 L. A. P. Salazs, Phys. Rev. 128, 1939 (1962).
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- 0.(

Fzo. 6. The left-
hand cuts evaluated
from crossing sym-
metry (dashed) and
from the dedning
equation (solid) for
a moderately strong
coupling. --2

"Y.S. Jin and A. Martin, Phys. Rev. 135, 81369 (1964)."B.C. Maglic, L. W. Alvarez, A. H. Rosenfeld, and M. L.
Stevenson, Phys. Rev. Letters 7, 178 (1961).

"For example, M. Bander and G. L. Shaw, Phys. Rev. 135,
8267 (1964)."B.H. Bransden and J. W. Morat, Phys. Rev. Letters S, 145
(1962).

The possible approximate resemblance to the boot-
strap situation, when s waves are small, is seen by
observing the sign changes of the left-hand cut in the
p wave. Figure 5 shows that for smaller

~

X ~, ImAr' has
two changes of sign. However, as ~X~ increases, the
zeros tend to disappear. The behavior of the p-wave
left-hand cut when s waves are small agrees with the
conclusions of fin and Martin" in the case of bootstraps.

Table I shows that our width values for the weak
and moderately strong s waves are riearer to the value
of the width from experiments"" than those from the
low-energy bootstrap system. "The difference may be
due to s waves of moderately strong attraction.

While our amplitudes satisfy elastic unitarity
exactly, crossing symmetry is satis6ed only approxi-
mately. To see this, in Fig. 6 we have plotted ImA & on
the left-hand cut, for a moderately attractive coupling,
calculated from the crossing relation (7) and the
defining Eq. (13). It is seen that the s waves are well
approximated to satisfy crossing symmetry up to the
considerable-energy region. However, the two p-wave
left-hand cuts slowly become different from each other
after v= —5. We will not attempt any discussion on
this since it has already been treated. "Instead, we only
mention the fair agreement to the crossing relation in
the nearby region.

In order to understand that the lower partial waves
near the threshold are very similar to those of Paper I
where the left-hand cuts are kept to give a correct func-
tional form near the branch point, curves of Im(dr) '
are plotted in Fig. 7 and compared with those of the
earlier paper for A. = —0.2. Clearly, in a method based
on the inverse amplitude, these curves correspond to the
"potential. " It is observed that the areas bounded by
the two curves are not very different, although the
potential in the p-wave state used in I has no re-
semblance to the numerically calculated potential.
Thus the partia'l-wave amplitudes near the threshold
remain more or less unchanged. From this, it may follow

W= --2
-2

J~ (A'.)

-IO

~m (A', ) x')o

--2

Fro. 7. Imt A ~r(v)] ' in the present calculation (solid), on the
left-hand cut, are compared with those {dashed) used in I.

that approximating the left-hand singularities so that
they have a correct functional form near the branch
point is not unreasonable as far as an accurate represen-
tation of the amplitude for

~

v
~

&~1 is concerned. How-
ever, the prediction of the position and the width of the
p-wave resonance is already much improved upon
making a better evaluation of the left-hand cut in this
elastic approximation.

VI. CONCLUDING REMARKS

In the present calculations, we have still kept only
the lowest two partial-wave states. The effect due to
the higher -'partial waves to these amplitudes in the
low-energy region is estimated to be about 20%. This
was obtained by checking to what extent the final
solutions satisfy the second-derivative coridition. Thus
the second-derivative condition is not used to select
out the final parameter X, since this condition itself
is inexact. It is seen that this condition is better satisfied
for weak and moderate s-wave attraction. Upon making
an improved evaluation of the left-hand cut, the
scattering lengths of both the s- and p-wave amplitude
are not much changed from those we obtained by
using only correct functional forms near the branch
point for the left-hand cut; however, the position and
width of the p-wave resonance are much improved for
weak and moderately strong s-wave attraction. For
stronger s-wave attraction, the s-wave and p-wave
scattering lengths become larger and the position of
the p-wave resonance energy moves toward zero energy.

We have thus seen that for
~

v~ (1, the "potential"
chosen to have a correct functional form near the
branch point gives a sufIiciently accurate amplitude,
and that a better expression for the potential improves
the accuracy. This, we feel, justifies our procedure of
constructing the scattering amplitude. That is, because
of the uncertainty of the singularities in the high-energy
region, we choose to incorporate this uncertainty in the
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polynomial by suppressing explicit consideration of
the higher energy region through regularized integrals,
which are cut off at some finite values of the energy
up to which the singularities are known. The order of
regularization is chosen so that the cutoff dependence
of the integrals becomes insensitive, as discussed in
Sec. II. The fact that the potentials calculated have
no worse behavior in the high-energy region than those
used in Paper I, as is seen in Fig. 7, allows us to use the
same order of regularization as before. If we knew a
representation of inelastic effects, this would have been
used to adjust the order of regularization.

That the second-derivative condition is satisfied only
approximately by our solution implies the necessity
of bringing the d waves into the formulation. Then the

symmetry-point conditions will have to be modified.
The elastic approximation becomes very poor, since
it gives only tiny effects of higher partial waves in the
symmetry-point region. Eventually, the inelastic effects
should be brought in when higher partiat. waves are
included.
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A model for the 2m decay modes of the X meson, based on the assumption of the icosuplet transformation
property of the weak Hamiltonian under SU3, is constructed. The model incorporates CP violation in a
natural way.

' 'N this note we propose to construct a model for the
~ ~ nonleptonic two-body decay modes of the E meson
based on the SU(3) symmetry. The recent observation'
of the x+x decay mode of E2' has established' the vio-
lation of CP in this decay. Within the framework of
SU(3), a possible way of introducing CI' violation in
weak interactions is to ascribe an icosuplet transforma-
tion property' to the weak Hamiltonian. With the choice
of such a Hamiltonian, one can hope that the E+ decay
into pc+pro, which goes by a T=3/2 spurion, may not
require a special treatment over the 2m decay modes of
E1'. The purpose of this note is to construct such a
model and to show that all known 2z decay modes of
the E meson can be understood consistently on the
basis of this model. We use CPT invariance and work
throughout in the limit of exact SU(3).

Our model for the weak Hamiltonian responsible for
the decay modes is

H=Ht+eHs,

' J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964).' There have been severai attempts LI. Bernstein, N. Cabibbo,
and T. D. Lee, Phys. Letters 12, 146 (1964); M. Levy and
M. Nauenberg, Phys. Letters 12, 155 (1964); J. S. Bell and
J. K. Perring, Phys. Rev. Letters 13, 348 (1964)j to understand
this experiment in a CE-invariant way.

3 The terminology is due to B. W. Lee, S. Okubo, and
J. Schecter, Phys. Rev. 135, B219 (1964).

and the SU(3) transformation properties of Hr, H, are

Hr 10+10"',

Hs i(10—10*) .
(2)

(3)

(E+~H ~pr+pr )= —3/4v2 seen appe'&"

(E ~H~pr pr')= —3/4%2secn aspe'&"+ ',
(E'

~
H [

' )p=rpSroeCn {((1/20) as7+-s'as)

X~i(SP+a) & g @7,'(5~e) g

(E'~H~pr'pre)=SeCn {((1/20)ap7+sas)
27 J )

(E'~H ~pr+7r )=&2 seen {—t (1/20)as7+sas)
X& (~p+ ) 1g27~ (4—et')it{

27 f y

(E'~H ~pc+pc )=v2 seen {—L(1/20))as7+sras)
Xe~(ee-~) 1av7e&(os+a))

(4)

It is clear that H1 and II2 are, respectively, even and odd
under CP. Thus H can lead to CP-violating transitions.
e is a real parameter which measures the strength of
CP' violation. Specifically, the relevant spurions re-
sponsible for the decay E—+2m transform like the
I'= —1, I=-, state in io, and the I'= —i, I=-,' state
in 10*. On the basis of (1)—(3), one can construct the
decay matrix elements, using the appropriate spurions.
Making use of CPT invariance these matrix elements
can be written as


