
PHYSICAL REVIEW( VOLUME 139, NUMBER SB 6 SEPTEMBER 196S
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Calculations based on a two-parameter description of a uniformly charged liquid drop are reported. Re-
sults include Gssion-barrier energy and other saddle-point properties. The electrostatic energy of the drop
was computed by a novel and highly accurate method. The saddle-point properties and corresponding drop
shapes are compared with calculations that use nine parameters. Agreement is best for fissionability param-
eters greater than 0.70, suggesting that these calculations may provide a few-parameter basis for dynamica)
calculations of adequate precision at the larger Gssionability parameters.

INTRODUCTION

S INCE the appearance in 1956 of Swiatecki's first
paper of the series'-' entitled "The Deformation

Energy of a Charged Drop, "there has been an awakened
interest in the theory of the liquid-drop model of nuclear
fission. These papers provide the most complete descrip-
tion available to date of the static aspects of liquid-drop
fission, including shapes described by as many as 18
parameters. More recently, similar results have been
obtained by other authors~8 who solved an integro-
difFerential equation to obtain the saddle-point shapes.

This paper describes static calculations of fission-
barrier shapes and energies by means of a two-parameter
family of algebraic expressions for the surface. Such
calculations have two goals: (a) to synthesize as far as
possible and simplify the results of Cohen and Swiatecki'
in a few-parameter description, and (b) to provide the
basis (in few parameters) for full dynamical calculations
of the fission process. Kelson' and Nix" adopted similar
programs based, however, on somewhat difFerent families
of shapes.

COULOMB AND SURFACE-ENERGY
CALCULATIONS

We consider the family of surfaces described in
cylindrical coordinates by

p'= uZ4+bZ'+c,

which form was suggested by the saddle-point shapes
obtained in Ref. 5. The requirement of constant volume
is utilized to eliminate the constant c, so that Eq. (1)
describes a two-parameter family of possible shapes at
the fission barrier.

The cylindrical coordinate system chosen for repre-
senting the drop permits a particularly simple expression
for the Coulomb energy, which is quite suitable for
modern digital computers. The Coulomb energy Eg of
the volume of revolution is expressed as a double inte-
gration over the interaction energy of infinitely many
disks, into which the volume may be decomposed.

Gray" obtained a general Bessel function expression
for the electrostatic potential at a point due to a thin
disk of uniform charge density a. Integrating his expres-
sion appropriately over a similar coaxial disk yields the
Coulomb interaction energy of the pair:

Eg d isles —27K 0 dZ+dZg
00 dX

s—x[zz—zg[ Jl(/pe) Jl(~pB) . (2)
0 X2

This expression was integrated with respect to Z~ and
Z~ over the full range of Z to give the total Coulomb
energy of the drop. The resulting Bessel function
integral was converted to an integral of trigonometric
functions by use of Watson's identity. ~ Expressed
relative to the Coulomb energy of a sphere Eq, the
actual integral evaluated is

1 1 1 sin XKd'K
= 120 Zp p1 ds cpm dp

Ec 0 0 0 s(1—y)+Ps'(1 —y)'+pc'+pa' —2pip2 cosy']"'
*Information in this article was developed during the course of work under Contract No. W-7405-ENG. 36 with the U. S. Atomic

Energy Commission.' W. J. Swiatecki, Phys. Rev. 101, 651 (1956).
~ W. J. Swiatecki, Phys. Rev. 194, 993 (1956).
sW. J. Swiatecki, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy,

Geneva, 1058 (United Nations, Geneva, 1958), Vol. 15, p. 248.
4 S. Cohen and W. J. Swiatecki, Ann. Phys. 19, 67 {1962).' S. Cohen and W. J. Swiatecki, Ann. Phys. 22, 406 (1963).

V. M. Strutinskif, Zh. Eksperim. i Teor. Fiz. 42, 1571 (1962) t'English transl. : Soviet Phys. —JETP 15, 1091 (1962)j.' V. M. Strutinskii. , ¹ Ya. Lyashchenko, and N. A. Popov, Zh. Eksperim. i Teor. Fiz. 43, 584 (1962) I English transl. : Soviet
Phys. —JETP 16, 418 (1963).

V. M. Strutinskil, Results of t."alculations Based on the Liquid Drop Model of nuclear Fission {Order of Lenin, Institute of Atomic
Energy, Moscow, 1963).

9 I. Kelson, Phys. Rev. 136, $1677 (1964).
'o J. R. Nix, Lawrence Radiation Laboratory Report No. UCRL-11338, 1964 (unpublished).» A. Gray, Phil. Mag. 38, 201 (1919)."G. ¹ Watson, A Treatise on the Theory of Bessel, Functions, (University Press, Cambridge, England, 1944), p. 389, 13.22{1).

B 1227



8 1228 JAMES N. P. LAWRENCE

TABLE I. Calculated values of relative Coulomb and surface energies of a sphere and two spheroids,
with comparable 6gures for other investigators.

Machine or author

STRETCH
STRETCH
STRETCH
Cohen and Swiateckib
Cohen and Swiatecki
Cohen and Swiateckib
Bcringer'

STRETCH
STRETCH
STRETCH

Gauss order or
number of
grid points

Exacts
16
96
41
61
81
40

Exact+
16
96

Sphere

Relative Coulomb energy Bg
1.000 000 000
0.999 999 707
0.999 999 998
0.999 998 2
0.999 999 3

~ ~ ~

0,999 828

Relative surface energy B8
1.000 000 000
1,000 000 000
1.000 000 000

Spheroid
Major axis 1

Minor axis 0.7

0.988 678 870
0.988 678 577
0,998 678 869
0.988 676 6
0.988 678 4
0.988 678 6

1.021 383 583
1.021 383 583
1.021 383 583

Spheroid
Major axis 1

Minor axis 0.5

0.957 975 925
0.957 975 557
0.957 975 925

~ ~ ~

0.957 662

1.076 728 262
1.076 728 262
1.076 728 262

a "Exact" means that the closed algebraic expressions for the energies were evaluated, while the numbers designate numerical integrations.
b Reference S.
& Reference 14.

where

p,'= 4azo's' —SaZo's'+ (6aZo'+ b)s' —(2aZp'+ b)s,
pop = 4aZpos4y' —SaZp's'y'+ (6aZp'+ b)s'y'

—(2aZp'+ b)sy,

and 2ZO is the length of the drop at p=0.
The integral representation of the surface energy

relative to that of a sphere E8' is

1

—Zp L4a'Z "I'+ (4ab+a)Z 'I'

+ (b'+b)Zoom'+c7"'de. (4)

Equations (3) and (4) were evaluated on the IBM
7030 (sTRErcH) computer by Legendre-Gauss quadra-
ture. "This integration technique was chosen because it
has a precision of order 2X—1 when only E evaluation
points are used. In common with all numerical integra-
tion schemes, more accurate results can be obtained by
using a larger number of evaluation points (higher order
quadrature) at the cost, of course, of more computa-
tional time.

The triple Coulomb integrals were evaluated for the
sphere and two spheroids, using 16th- and 96th-order
Legendre-Gauss quadrature. In Table I these results
are compared to the exact energies for these shapes and
with the results of Cohen and Swiatecki' and Beringer. "
The 16th-order quadrature is seen to be accurate to four
parts in 10', meeting or exceeding the accuracy of
previous calculations. |A'hile the 96th-order Gauss
quadrature was slightly more accurate, each triple inte-
gration required 6 min of computer time compared with
3 sec for the 16th-order quadrature.

Table I also includes the single Gauss quadrature

'3 F. B. Hildebrand, Introduction to Eumerf'ca/ Anulysis {Mc-
Graw-Hill Book Company, Inc. , New York, 1956), p. 312.

'4 R. Beringer, Phys. Rev. 131, 1402 (1963).

results for the relative surface energy B8. Both the
16th- and the 96th-order quadrature are seen to be in
precise agreement with the exact evaluations for the
indicated number of significant digits. These calcula-
tions, therefore, establish the accuracy and desirability
of the 16th-order Gauss quadrature, which was used to
compute the final results.

SADDLE-POINT DETERMINATION

The classical fission threshold is represented by the
saddle point of the relative deformation energy $:

$=Bs I+2x (Bc I), — —

where x=Ecp/2Esp, and is the Bohr and Wheeler
fissionability parameter. "For a function of two vari-
ables such as g(a, b), a saddle point is mathematically
defined to be a point (as p, bsp) in the vicinity of which
the first and second partial derivatives are continuous
and at which (a) the two first partial d.erivatives are
zero and (b) the second partial derivatives satisfy the
relation"

$2( 2 go( go)
&0.

888b 882 862

In the neighborhood of the saddle point, the contour of
the deformation-energy hypersurface is approximated
by a quadratic expression in the parameters. The saddle
point is then obtained by computing the deformation
energy, Eq. (5), in a grid of points near the saddle, and

"N. Bohr and I. A. Wheeler, Phys. Rev. 56, 426 (1939)."If condition (b) is not satis6ed, the point located by condition
(a) may be a maximum, minimum, or inflection point. Two non-
saddle cases arise in the present calculations: (1) When x&1.00,
the spherical con6guration is a minimum of the deformation
energy. (2) %'hen g =1.00, the saddle point and minimum coalesce
and the result is an inQection point.
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mathematically 6tting the "best" quadratic surface to
these energies.

The quadratic approximation in the vicinity of the
saddle point is

$(a,b) =Cr+Cma+C4b+C444'+C4ab+C4b' .(7)

When the coeKcients satisfy Eq. (6) (i.e. , C4'
—4C4C4) 0), the saddle point is

~8p= (Ces—2CK4)/(4C4C6 —C4'),

bs p= (C4C4 —2C4C4)/(4C4C4 —C44) .
Six points in the parameter space are needed to deter-

mine the coeKcients (C,, j=1,6) of Eq. (7). A pen-
tagonal grid was chosen surrounding an initial estimate
of the saddle point (a;,b;) The . deformation energy &

was calculated for each of these six point sets. A matrix

CLO2$—

0020—

O.ols—

0005—

Qt.O

—0.16

—O.I2

—aio

—Ogl4

O.OOO 000
1.00 ONO CNO 070 OAiO CL50 CNO (NO

IIO.S
FrG. 2. Relative deformation energy g versus 6ssionability

parameter x. Solid lines are the results of this study and marked
points (0) are from Ref. 5. For @&0.66 the deformation energy is
plotted on a ~$-scale reduction.

solution of the six simultaneous equations provided the
coefBcients C,, and the new estimate of the saddle point
was obtained from Eq. (8). This new estimate was used
as the initial point in an iterative process with suitable
grid size reductions until the following convergence
criteria were met:

FIG. 1. Comparison of saddle-
point shapes as calculate@in a two-
parameter space (continuous line)
vrith those of Ref. 5 (designated
by y).

x.av

xi 0.5

644=
i
44|—aspic &4.0X10 ',

&b= ib,—bspi &4.0X10

&(= i$' —$spi &50X10 '.

RESULTS AND DISCUSSION

Saddle points were determined for values of x from
0.98 through 0.30 in increments of Ax=0.02. Since for
x= 1.00 the spherical drop is known to be unstable and
to have zero deformation energy, "no calculations were
performed for this value of x.

For each saddle point the following quantities were
calculated: the deformation energy $, the surface
energy Bz, the Coulomb energy 8&, the parallel moment
of interia Ill, the perpendicular moment of inertia I&,
the inverse of the effective moment of inertia r, and the
quadrupole moment Q. The parallel moment of inertia
Ill was taken about the Z axis and the perpendicular
moment about an axis at Z=O perpendicular to the
Z axis. The quantity r is given by 1/I« 1/I, . Cohen-
and Swiatecki's deinition' of the quadrupole moment
was adopted to facilitate comparison with their work.

Table II contains the calculated saddle-point proper-
ties. Figures 1 and 2 and Table III are comparisons of
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TmLE II. Calculated saddle-point properties and shape parameters of drops de6ned by Eq. (2)
for the range of Gssionability parameters.

Saddle-point properties
&s &c Irr

Saddle-point parameter values

8 b c ~o

0.98
0.96
0.94
0.92
0.90

0.00001
0.00005
0.00015
0.00037
0.00072

1.00085
1.00334
1.00740
1.01302
1.02022

0.99957
0.99828
0.99614
0.99312
0.98917

0.9547
0.9127
0.8708
0.8314
0.7934

1.0259
1.0574
1.0949
1.1393
1.1916

0.0728
0.1511
0.2351
0.3251
0.4212

0.2389
0.4880
0.7511
1.0318
1.3346

—0.00610—0.01933—0.03477—0.04988—0.06341

—0.8643—0.7380—0.6211—0.5134—0.4142

0.9540
0.9093
0.8656
0.8225
0.7799

1.0466
1.0931
1.1398
1.1871
1.2354

0.88 0.00125 1.02903
0.86 0.00199 1.03953
0.84 0.00302 1.03183
0.82 0.00434 1.06608
0.80 0.00604 1.08248

0.98422
0.97818
0.97094
0.96235
0.95222

0.7566
0.7208
0.6859
0.6519
0.6187

1.2533
13260
1,4120
1.5144
1.6374

0.5239
0.6333
0.7497
0.8736
1.0054

1.6646
2.0281
2.4332
2.8901
3.4134

—0.07483—0.08398—0.09093—0.09581—0.09881

—0.3231—0.2393—0.1622—0.0912—0.0256

0.7374
0.6949
0.6520
0.6084
0.5637

1.2850
1.3361
1.3894
1.4452
1.5042

0.78 0.00818
0.76 0.01085
0.74 0.01413
0.72 0.01815
0.70 0.02309

1.10135
1.12312
1.14845
1.17832
1.21368

0.94028
0.92614
0.90924
0.88878
0.86386

0.5865
0.5551
0.5250
0.4969
0.4730

1.7871
1.9730
2.2099

2.9531

1.1456
1.2946
1.4522
1.6161
1.77S7

4.0235
4.7513
5.6460
6.7898
8.3111

-0.10011—0.09987—0.09822—0.09526—0.09122

0.0353
0.0922
0.2458
0.1970
0.2469

0.5173
0.4684
0.4158
0.3576
0.2915

1.5673
1.6357
1.7115
2.7973
1.8962

0.68 0.02908
0.66 0.03605
0.64 0.04359
0.62 0.05140
0.60 0.05936

1.25137 0.83655 0.4594 3.5073 1.8916
1.27762 0.81699 0.4610 3.9796 1.9180
1.29019 0.80734 0.4692 4.2452 1.8957
1.29626 0.80254 0.4784 4.3875 1.8625
1.29942 0.79995 0.4872 4.4664 1.8286

10.2135
11.7911
12.6536
13.0998
13.3345

—0.08742—0.08675—0.08886—0.09211—0.09584

0.2945
0.3327
0.3605
0.3829
0.4025

0.2204
0.1654
0.1331
0.2128
0.0986

1.9998
2.0690
2.0971
2.1056
2.1052

0.58 0.06739
0.56 0.07547
0.54 0.08357
0.52 0.09167
0.50 0.09978

1.30111
130299
1.30239
1.30248
1.30238

0.79852
0.79775
0.79739
0.79730
0.79739

0.4956
0.5035
0.5109
0.5180
0.5248

4.5098
4.5314
4.5388
4.5366
4.5276

1.7961
1.7656
2.7369
1.7100
1.6848

13.4517
13.4976
13.4974
13.4663
13.4135

—0.09979—0.10388—0.10805—0.11229—0.11657

0.4203
0.4370
0.4529
0.4682
0.4829

0.0877
0.0790
0.0718
0.0657
0.0603

2.1003
2.0931
2.0844
2.0749
2.0650

0.48 0.10788
0.46 0.11597
0.44 0.12404
0.42 0.13210
0.40 0.14014

1.30217
1.30187
1.30153
2.30115
1.30077

0.79762 0.5312 4.5137 1.6609
0.79793 0.5374 4.4963 1.6384
0.79831 0.5434 4.4761 1.6170
0.79875 0.5491 4.4536 1.5965
0.79922 0.5547 4.4298 1.5771

13.3453
13.2664
13.1788
13.0841
12.9858

—0.12089—0.12523—0.12963—0.13409—0.13855

0.4973
0.5112
0.5249
0.5384
0.5516

0.0556
0.0514
0.0477
0.0442
0.0411

2.0548
2.0444
2.0342
2.0238
2.0136

0.38 0.14816
0.36 0.15617
0.34 0.16415
0.32 0.17210
0.30 0.18004

1.30038
1.30000
1.29963
1.29927
1.29892

0.79971
0.80023
0.80076
0.80131
0.80166

0.5601
0.5653
0.5703
0.5753
0.5800

4.4049
4.3790
4.3524
4.3254
4.2979

1.5585
1.5407
1.5236
1.5072
1.4913

12.8841
12.7800
12.6738
12.5667
12.4587

—0.14306—0.24760—0.15220—0.15682—0.16150

0.5647
0.5776
0.5903
0.6029
0.6154

0.0382
0.0356
0.0331
0.0308
0.0287

2.0034
1.9934
1.9834
1.9736
1.9639

data calculated in this study with those of Cohen and
Swiatecki. In Fig. 1 cross sections of the deformation-
energy saddle-point drop shapes are illustrated, while
in Fig. 2 the deformation energy $ is plotted versus the
Gssionability parameter x for a few values in the range
of x. Table III consists of the percent difference between
the calculated saddle point properties and those of
Ref. 5 for a few values of x.

From Table III it is seen that all of the calculated
properties are within 5% of Cohen and Swiateckis
properties' for x&0.70. In support of this result, Fig. 1
also indicates a close agreement in drop shapes for this
range of x. This is consistent with Cohen and Swiatecki's
result' that only the Grst two of their parameters had
appreciable magnitude for the same x range.

As yet no study of the dynamical motions of the

TABLE III. Percent di8erence between saddle point properties calculated in this two-parameter study and those properties calculated
by Cohen and Swiatecki (see Ref. 5), using nine parameters. The superscript CS refers to Ref. 5.

0.90
0.80
0.70
0.60
0.50
0.40
0.30

+2.42%
+2.20%

6%
+4.23/
+4.65'pg
+5.50'Po
+6.38 jp

&&s/&so'

+0.03%
+0.23%
+0.67%
+1.0
+2.24%
+2.60%
+2.72%

&Bc/aces

0 02%
0.15%—0.61%
1.18'/fo
1.42%—2 30%—2.24%

0.19%
0.85%—2.87%—0.75%

+0.46%
+2.08%
+2 53%

+o.17%
+2.28%
+3 64%
+7 02%
+8.76%

+20.76%
+20.06%

+0.86%
+2 22%
+3 00%
+2.72%
+0 55%
+0.70%—0.65%

+0.85%
+2 45%
+4.77%
+8.05%
+9.94%

+25.32%
+16.89%
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liquid drop has been made with precision comparable to
the static investigations of Cohen and Swiatecki. ' Both
Kelson's and Nix's simplified dynamical treatments9'0
provide static saddle-point properties which agree best
with Cohen and Swiatecki's' for elements less massive
than radium (6ssionability parameter ~0.70). It is
hoped that the present investigations will provide a
few-parameter basis for dynamical calculations of
adequate precision, even for x values approaching 1.00.
Studies directed towards this goal are presently under

way.
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Inelastic Scattering and Neutron Pickup for "C and "0Projectiles on "'Pb*t
K. H. WANG[. AND J. A. McINTYRE)

Physics DeparAnent, Fate University, Em Haven, Connecticut

(Received 1 February 1965; revised manuscript received 6 May 1965}

2'SPb nuclei have been bombarded with "C and '60 projectiles under conditions where a semi-
dassical description of the process should be valid. In the bombardment of ~'Pb with 126.5-MeV
"C (q=ZZV/hv= 24.5},two inelastic-scattering peaks are observed corresponding to Q= —2.7&0.3 MeV
and -4.5&0.3 MeV. The angular distributions of the inelastically scattered "C show a monotonic increase
with decreasing angle until a maximum is reached at about 8, =35 . This angle corresponds to grazing
collisions, assuming that particles follow Rutherford trajectories. The Q = —2.T-MeV peak is identi6ed as the
excitation of the 2.6-MeV state in ~'Pb. The Q= —4.5-MeV peak could be the excitation of the 4.4-MeV
state in '~C or the 4.3-MeV state in + Pb. The inelastic scattering cross section for the excitation of the
2.6-MeV ~spb state by 'sO projectiles having approximately the same velocity (166.4 MeV} is a factor of 2
smaller than when "C is used as a projectile; this result is somewhat surprising since the semiclassical con-
ditions are similar and the elastic-scattering cross sections differ only by 20%. The cross section for the
4.5-MeV excitation is not observed and is smaller by more than a factor of 4. Therefore, in the "C+~SPb
case, the major contribution to the 4.5-MeV excitation very likely originates from the excitation of the
4 4-MeV state in uC The reactions espb(~eO &vO}iN'rpb and 20SPb(uC, isC}~Vb were also observed in these
experiments. Both angular distributions bave a maximum differential cross section of 100 mb/sr, which is
considerably larger than those ordinarily observed in neutron-transfer reactions. The excitation energies
are consistent in both reactions with neutrons being picked up by the projectiles into d&~2 states.

I. INTRODUCTION AND SUMMARY
' "N recent years, it has been found that in inelastic
- ~ scattering, the collective levels are more strongly
excited than others, regardless of the projectiles used.
The preferential excitation of collective levels by alpha
particles has been pointed out by Blair. ' Cohen' has
noted the similarity between the inelastic scattering of
protons and deuterons and has emphasized the col-
lective nature of the process. High-energy electron

~ Supported by the U. S.Atomic Energy Commission.
t Part of a dissertation presented by K. H. Wang in partial ful-

6llment of the requirements for the Ph.D. degree of Vale Uni-
versity.

f Present address: Harvard Cyclotron Laboratory, Cambridge,
Massachusetts.

f Present address: Physics Department, Texas A & M Univer-
sity, College Station, Texas.' J. S.Blair, Phys. Rev. 115,928 (1959}.' B.L. Cohen, Phys. Rev. 116,426 (1959};B.L. Cohen and R.
E.Price, iML 123, 283 (1961}.

scattering' has been shown to strongly excite levels
known to be collective. Heavy-ion (~C) inelastic scat-
tering has also been shown 4' to be very similar to the
alpha-particle scattering. This enhancement can be
understood in terms of the similarity between the
matrix elements of inelastic scattering and electric
transitions, as pointed out by Pinkston and Satchler. 5

Therefore regardless of the projectiles used, the in-
elastic-scattering process has proved to be a good
method for investigating collective states.

In the heavy-ion studies of inelastic scattering, the

~ H. Crannel R. Helm, H. Kendall, j'. Peser, and M. Yearian,
Phys. Rev. 12, 923 (1961). H. W. Kendall and l'. Peser, ibr'd
130, 245 (1963).' S. D. Baker, K. H. Wang, and J. A. McIntyre, Proceedings of
the International Conference on XNclear Structgre, Eingston, 1960
(University of Toronto Press, Toronto, 1960},p. 926; K. H. Wang,
S. D. Baker, and J.A. McIntyre, Phys. Rev. 127, 187 (1962}.' D. J. Williams and F.E.Steigert, Nud. Phys. 30 373 (1962}.' W. T. Pinkston and G. R. Satchler, Nncl. Phys. 21, 270 (1960).


